
Publication of linked data streams on the Web

Elias Bernhaut
of Zürich ZH, Switzerland

Student-ID: 14-735-773
elias.bernhaut@uzh.ch

Thesis August 1, 2018

Advisor: Daniele Dell’Aglio

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I thank Dr. Daniele Dell’Aglio for his support throughout the process of the thesis.
I am glad that he had an open ear and helped me with his guidance. Further, I thank
Natálie Libosková for her help, review and caring words and finally I also thank Raffael
Kallis for his support.

Zusammenfassung

Der Zugang zu Informationen ist ein wichtiger Faktor für fundierte Entscheidungen,
sei es im Rahmen von Abstimmungen oder auch Geschäftsentscheidungen. Open Data
ist der Baustein für die Veröffentlichung von Informationen, einschliesslich Datensätzen,
die von Regierungen veröffentlicht werden. Open Government Data (OGD) ermöglicht
Bürgern den Zugang zu Informationen und bildet die Grundlage für neue Applikationen,
welche Regierungsdaten als Datenquelle nutzen.

Parallel zur Open Data Bewegung erweitert das Semantic Web den globalen Open
Linked Data Graphen zum Aufbau der Linked Open Data Cloud (LOV). Linked Data
bietet den Vorteil global identifizierbarer Einheiten, die durch Beziehungen miteinander
verbunden sind. Anwendungen mit Zugang zum Web können auf den Graphen der LOV
zugreifen, um Informationen aus verschiedenen Quellen abzurufen.

TripleWave ist ein Framework für die Veröffentlichung von Linked Data als Daten-
ströme im Gegensatz zu statischen Datensätzen. Es kann gestreamte Eingangsdaten
miteinander verknüpfen und so in global verknüpfte Datenströme umwandeln.

Da TripleWave gestreamte Eingangsdaten transformieren kann, fehlt die Möglichkeit,
statische Datensätze, die häufig aktualisiert werden, in verknüpfte Datenströme zu trans-
formieren. In dieser Arbeit analysiere ich die Anforderungen an eine tragfähige Lösung
und wähle eine Mapping-Sprache mit Hilfe der Untersuchung von OGD-Datensätzen,
welche die Grundlage für die Auswertung bilden. Ich zeige, dass keine vorhandene
Mapping-Sprache die Anforderungen erfüllt. Eine neue Mapping-Sprache ist daher
notwendig und so stelle ich ein neues, an der Mapping-Sprache RML orientiertes Mapping-
Modul namens JRML vor. JRML ist ein Javascript-Modul für Datenmappings zu Linked
Data mit einer integrierten, Pull-basierten Datenabrufstrategie, die von einem Sched-
uler gesteuert wird. Ich zeige, wie JRML die Anforderungen für die Transformation der
OGD-Datensätze der Umfrage erfüllt, wie ich JRML implementiere und in TripleWave
integriere. Schliesslich veröffentliche ich eine Reihe von transformierten Datensätzen,
um das Ergebnis zu präsentieren und damit die Anzahl der Linked Open Data Streams
im Web zu erhöhen.

Abstract

The access to information is an important factor for making informed choices, for
example in the context of votings or business decisions. Free information is published on
the Web as Open Data including free datasets published by governments. The so called
Open Government Data (OGD) empowers the citizens with the access to information
and builds the basis for new applications using government data as datasource.

Parallel to the Open Data movement, the Semantic Web expands the global graph of
Open Linked Data building the Linked Open Data Cloud (LOV). Linked Data comes
with the advantage of globally identifiable entities interlinked through relationships.
Applications with access to the Web are able to access the graph of the LOV for the
retrieval of information from various sources.

Linked Open Data datasets are majorly published as static datasets which means they
don’t change over time in contrast to dynamic datasets. An ongoing research has the
goal to publish dynamic datasets as data streams. A notable example for a framework
approaching the publication of Linked Data as data streams is TripleWave. It can
interlink streamed input data and thus transform it to Linked Data streams.

As TripleWave can transform streamed input data, it is missing the ability to transform
static datasets which are updated frequently into Linked Data streams. Throughout this
thesis, I analyse the OGD datasets and identify the requirements for their publication
as Linked Open Data streams which are not yet covered by TripleWave. I show that
no existing mapping language fulfills the requirements for the publication of the OGD
datasets. A new mapping language is therefore necessary and thus I introduce a new,
RML oriented mapping module named JRML. JRML is a Javascript module for data
mappings to Linked Data with an integrated, pull-based data-fetching strategy controlled
by a scheduler. I show how JRML meets the requirements for transforming the OGD
datasets of the survey, how I implement JRML and how I integrate it into TripleWave.
Finally I publish a range of transformed datasets to present the result and thus increase
the number of Linked Open Data streams on the web.

Table of Contents

1 Introduction 1

2 Related Work 3
2.1 Open Data . 3
2.2 Linked Data . 4
2.3 Linked Data mappings for existing datasets 6
2.4 Stream Publishing . 7

3 Problem analysis 9
3.1 The current state of TripleWave . 9
3.2 Approaching a consensus for publication 10
3.3 A survey on OGD datasets . 10

3.3.1 Procedure . 10
3.3.2 Results . 11
3.3.3 Obtained datasets . 12

3.4 Requirements . 18
3.4.1 Configuration of TripleWave . 18
3.4.2 Startup of TripleWave . 18
3.4.3 Supported Data Formats . 19
3.4.4 Input source . 20
3.4.5 A new way of transformation . 21

4 Changes to TripleWave 23
4.1 The configuration . 23

4.1.1 Choosing the right representation 23
4.1.2 Choosing the layout . 25

4.2 Startup . 26

5 Transforming 3-star data to RDF 31
5.1 Choosing a mapping language . 31

5.1.1 Encoding . 32
5.1.2 Scheduling . 32
5.1.3 Subject aggregation . 34
5.1.4 Multiple subjects per iteration . 35

x Table of Contents

5.1.5 Advanced transformations . 36
5.1.6 Full source transform before mapping 37
5.1.7 The solution space . 38

5.2 JRML . 39
5.2.1 General RML to JRML mapping 39
5.2.2 Encoding . 40
5.2.3 Scheduling . 40
5.2.4 Subject aggregation . 42
5.2.5 Multiple subjects per iteration . 42
5.2.6 Advanced transformations . 42
5.2.7 Full source transform . 44

5.3 Implementation of JRML and design decisions 44
5.3.1 Setup and interface . 44
5.3.2 Architecture and code style . 45
5.3.3 The collector . 47
5.3.4 The Scheduler . 47
5.3.5 The datasource service . 47
5.3.6 The query mechanism . 48
5.3.7 The iterator . 49

5.4 Integration of JRML into TripleWave . 49

6 Deployment 53
6.1 Choosing datasets for deployment . 53
6.2 The WWAU dataset . 54
6.3 The FAU dataset . 55
6.4 The HAQMZH dataset . 56
6.5 The NTAU dataset . 57
6.6 The PKDE dataset . 58

7 Conclusions 61

A Appendix 65
A.1 Run instructions . 65

A.1.1 The command TripleWave . 66

x

1

Introduction

In the age of information, the access to key information and knowledge is more important
than ever. The Open Knowledge International (OKI) mission is to make open knowledge
a mainstream concept. The vision of OKI is to bring knowledge to the people which
brings power to the majority opposed to the minority. According to OKI, the access to
data empowers the people to make free choices about life, purchasing and voting.1

Following the intent of OKI, governments publish datasets as licensed open data on
several platforms including the Open Data Platform of Zürich2 the Open Data platform
of Austria3 and the Open Data platform of Germany.4

Bizer et al. (2009) present the concept of Linked Data. Linked Data is data which is
interlinked with other data, building the the Linked Open Data Cloud (LOV) – a global
graph of interlinked datasets containing more than a thousand datasets including data
from OGD portals. The usage of URIs as identifiers in Linked Data makes it possible
to link data on a global level. Open Government Data (OGD) can greatly improve its
value and improve interoperability through the presentation of the data as Linked Data.
Using the Resource Description Framework (RDF) is the preferred format for publishing
Linked Data (Bizer et al., 2009). Publishing OGD data in RDF format allows clients to
query linked data accross multiple datasets on the Web.

An upcoming research interest is targeted to Linked Data publications as data streams
on the Web. Data streams represent an endless flow of information and thus, data
streams are used when the data is of continuous nature. Barbieri and Valle (2010)
propose a concept for the publication of Linked Data streams. Mauri et al. (2016) provide
TripleWave, a framework which achieves the publication of Linked Data data streams.
TripleWave has the ability to map input data streams to RDF streams or replay a series
of RDF graphs with time annotations to build an RDF stream. TripleWave outputs
RDF stream can be accessed through pull- and push-based strategies.

Up to now, there is no solution integrated to TripleWave for publishing as RDF streams
Web datasets which are frequently updated, e.g., continuously updating OGD datasets
with time annotations. Muntwyler (2017) provides guidelines for the publication of open
data through the usage of TripleWave. The presented solution relies on external data

1https:// okfn.org/ about/ (accessed 13.07.2018)
2https:// data.stadt-zuerich.ch (accessed 13.07.2018)
3https:// www.data.gv.at (accessed 13.07.2018)
4https:// www.govdata.de (accessed 13.07.2018)

https://okfn.org/about/
https://data.stadt-zuerich.ch
https://www.data.gv.at
https://www.govdata.de

2 CHAPTER 1. INTRODUCTION

retrieval scripts that fed data to Apache Kafka5 with TripleWave as a transform compo-
nent reading data from Kafka and supplying the transformed data back to Kafka through
connector scripts. This approach consists of a lot of components working together.

To increase the number of Linked Open Data streams on the Web, a dedicated solution
is needed for the publication of frequently updating datasets. The publication of Linked
Open Data streams includes the retrieval of Open Data from the Web and the mapping
of the retrieved data to RDF. The goal is a self-contained solution that is preferably
integrated into TripleWave.

The contribution of this thesis is the creation of a streamlined solution for the pub-
lication of frequently updating datasets through an extension to TripleWave. Through
the addition of a datasource to TripleWave, I integrate the data retrieval and mapping
to RDF directly into TripleWave through a newly invented component named JRML.
JRML is a data mapping language and processor based on RML (Dimou et al., 2014)
which is already used in TripleWave for input stream to RDF stream mappings. JRML
extends RML and ports it to a Javascript environment with slight changes to the struc-
ture of the mapping declarations.

JRML is able to retrieve the datasets from the Web or locally. It maps them with
advanced transformations through which mapping structurally challenging data becomes
possible. The whole power of Javascript and its ecosystem is available to be used for
transformations within the mapping definitions.

In this thesis, I investigate and analyse OGD datasets from the Austrian and German
Open data platforms to extend the list of suitable OGD datasets for the publication as
RDF streams created initially by Muntwyler (2017) in Section 3.3. I then analyse how
TripleWave must be changed to integrate better into the Javascript environment and to
ease the deployment in Section 3.4. In Section 5.1, I evaluate the mapping language I am
going to use through an analysis of the requirements with respect to the obtained OGD
datasets. I show that no current mapping solution fulfills the requirements and that a
new solution must be found. As solution, I propose JRML in Section 5.2, a mapping
language based on RML (Dimou et al., 2014) but ported to Javascript. I explain step
by step what adaptions and changes I apply to fulfill the requirements. I illustrate the
architecture and design desicions of the implementation of JRML and how I deployed a
range of five OGD datasets with their specific challenges concerning the mapping (see
Chapter 6) before I come to the conclusion and future work in Section 7.

5http:// kafka.apache.org (accessed 13.07.2018)

2

http://kafka.apache.org

2

Related Work

In this chapter, I present related works to provide the necessary knowledge base. In the
first Section, I explain the term Open Data and show that governments make their data
openly available as Open Data. In the following section I talk about Linked Data, the
Linked Data Cloud (LOD) and the 5 stars rating for data presentation. Finally, I show
approaches to the publication of streams that transport Linked Data.

2.1 Open Data

Data is today a widely common term, for this thesis however, it is necessary to grasp the
term open data. To explain, it is necessary to focus on the open part of the term. Open
can have various meanings in different domains. A general definition of openness in the
domain of data is given by the Open Knowledge International organization: “Open data
and content can be freely used, modified, and shared by anyone for any purpose”. In
other words, open data refers to a domain of computer science where data is shared
across the World Wide Web and stored at various places.1

To specify what data on the Web is allowed to be used for, the data has to be provided
under a license which formalizes the constraints. There is a wide range of licenses which
are applicable to data. Only a few of them are open data licenses which ensure the data
can be defined as open. A list of licenses which are compatible with open data as defined
by the Open Knowledge International organization,2 as well as the ruleset these licenses
have to follow,3 can be found on https:// opendefinition.org/ .

Open data licenses find application in various contexts. One context in which they are
used is related to government data and is usually referred to as Open Government Data
(OGD). To explain the need for OGD, the Open Knowledge Foundation refers to the
need of citizens to have information about the processes of their government. Therefore,
the citizens have to be granted free access to government data and have to be able to
share this information with other citizens. In addition, the government can help to
create businesses and services by making their data openly accessible. Another principle

1https:// opendefinition.org/ (accessed 31.05.2018)
2https:// opendefinition.org/ licenses/ (accessed 31.05.2018)
3https:// opendefinition.org/ od/ 2.1/ en (accessed 31.05.2018)

https://opendefinition.org/
https://opendefinition.org/
https://opendefinition.org/licenses/
https://opendefinition.org/od/2.1/en

4 CHAPTER 2. RELATED WORK

supporting opening up government data is a better contribution to the decision-making
process of the government by being better informed through OGD.4

2.2 Linked Data

Linked data, according to Bizer et al. (2009), refers to machine-readable data published
on the Web. Linked Data can define links to external datasets which in turn can link
back to the same data and/or other external datasets. In the Web, HTML documents
are connected through hyperlinks. Linked Data on the other hand makes use of the
Resource Description Framework (RDF) format to make statements about the world
and establish links (Bizer et al., 2009). This results in what is commonly known as the
Web of Data.

Berners-Lee (2006) is concerned with interlinking data on a global level. To bring all
data into a global namespace, he proposes a set of four rules for publishing data on the
Web.

According to Bizer et al. (2009), these rules have become known as the ’Linked Data
Principles’ and are now standard ingredients for publishing connected data on the Web.

The rules include that URIs should be used to name things. Bizer et al. (2009) state
that URIs are a more generic way to identify real world entities. Commonly known are
URLs which are used to address documents and entities located on the Web. Entities
identified by a URI can be looked up at the location the URI points to by simply using
HTTP to access the resource.

The four rules for publishing data on the Web by Berners-Lee (2006) are:

• “Use URI names for things”

• “Use HTTP URIs so that people can look up those names”

• “When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL)”

• “Include links to other URIs, so that they can discover more things”

Linked Data is linked together through the URIs of the entities it describes. RDF is
used as the data description language and it encodes data in the form of triples. Each
triple consists of three parts: a subject, a predicate and an object where the subject
and the object are either URIs or a URI and a string literal. The predicate defines the
relation between the subject and the object.

Two examples of triples given by Bizer et al. (2009) are:

4https:// opengovernmentdata.org (accessed 01.06.2018)

4

https://opengovernmentdata.org

2.2. LINKED DATA 5

subject http:// dig.csail.mit.edu/ data#DIG
predicate http:// xmlns.com/ foaf/ 0.1/ member
object http:// www.w3.org/ People/ Berners-Lee/ card#i

subject http:// data.linkedmdb.org/ resource/ film/ 77
predicate http:// www.w3.org/ 2002/ 07/ owl#sameAs
object http:// dbpedia.org/ resource/ Pulp Fiction % 28film% 29

Figure 2.1: Example RDF triples (Bizer et al., 2009)

For describing real world entities through RDF and URIs, vocabularies are needed
for expressing relationships and identities. Vocabularies are written in RDF as well,
usually with the RDF Vocabulary Definition Language (RDFS) (Brickley, 2004) or the
Web Ontology Language (OWL) (McGuinness et al., 2004). It is a common practice for
data publishers to reuse existing vocabularies instead of creating a new one from scratch
every time. But it is no easy task to find the right vocabularies and definitions that fit
the data. Vandenbussche et al. (2017) present the Linked Open Vocabularies (LOV), a
dataset containing various available RDFS and OWL vocabularies. It is hosted by the
Open Knowledge Foundation and allows to search for relevant vocabularies. Generally,
well-known vocabularies such as FOAF, Dublin Core, SIOC, SKOS, vCard, DOAP, OAI-
ORE or GoodRelations should be preferred over unknown vocabularies. However, the
choice of vocabularies is open and various vocabularies can be used in parallel (Bizer
et al., 2009).

Because RDF is a datamodel it requires a syntax to be serialized. There are several
syntax options for RDF. The most common syntaxes are: RDF/XML, Notation3, its
subset Turtle.

Open data published on the Web as linked data is called Linked Open Data (LOD)
and the set of LOD sets composes the LOD cloud.5 The LOD cloud can be seen as the
whole linked open data that is published. Together, the data builds a large graph of
linked data located in multiple datasets which themselves have links to other datasets.

The creator of the Web, Tim Berners-Lee, presents a scale of stars from 1 to 5 to rate
how powerful and easy to use the data in question is (Berners-Lee, 2006). The stars
depend on each other, meaning that three star data needs to fulfill the criteria that two
star data has to fulfill plus the additional criteria for the third star.

Here I list the stars together with their meanings. Figure 2.2 illustrates the five stars
in a visual manner in the form of stairs.

• 1: The first star is attributed to the mere publication of the data on the Web under
an open license. The format of the data does not matter for this star.

• 2: For applying the second star, the data has to be published as structured data
which enables processing the data through proprietary software for as example
calculations and visualizations.

5http:// lod-cloud.net (accessed 01.06.2018)

5

http://dig.csail.mit.edu/data#DIG
http://xmlns.com/foaf/0.1/member
http://www.w3.org/People/Berners-Lee/card#i
http://data.linkedmdb.org/resource/film/77
http://www.w3.org/2002/07/owl#sameAs
http://dbpedia.org/resource/Pulp_Fiction_%28film%29
http://lod-cloud.net

6 CHAPTER 2. RELATED WORK

• 3: The third star can be applied if the data is published in a non-proprietary
format, for example CSV instead of XLS. This enables processing the data with
free or custom software in any required way.

• 4: The forth star can only be applied if URIs are used to identify things in given
data. This lets others to point to the given data items and link their own data to
it or bookmark it.

• 5: The last star can be applied when linking data to other data for forming a
context. It allows the discovery of more related data and the exploration of the
data by learning from the schema.

Figure 2.2: The 5 stars of Linked Open Data (source: http://5stardata.info)

2.3 Linked Data mappings for existing datasets

Datasets such as OGD sets are rarely deployed in formats obtaining more than three
stars. The reason for this can be found in the additional effort and the convenience of
the publication. As a result, most data is available in a structured format that can be
processed by a software, such as data stored in CSV, XML, JSON format or in databases.

Because most of the existing data is stored in databases, the World Wide Web Con-
sortium (W3C) created the recommendation for the RDB to RDF Mapping Language
(R2RML). The R2RML mapping language describes mappings from relational databases
to RDF datasets (Das et al., 2012).

6

2.4. STREAM PUBLISHING 7

Another mapping language targeting relational databases is D2RQ (Bizer and Seaborne,
2004) which allows querying relational databases as RDF graph through Sparql and the
publication of the content of a relational database on the Semantic Web. D2RQ is simi-
lar to R2RML because both allow mapping relational database data to RDF. However,
it goes one step further because it treats the database itself as an RDF graph.

The D2RQ format, as well as R2RML, only target relational databases and therefore
do not define a general mapping solution. More per-format mappings include the usage of
XML tools like XSLT, XPath and XQuery (Dimou et al., 2014). None of these solutions
provide mappings for multiple source formats.

A more generic solution which allows mappings from multiple source formats to RDF
is presented by Dimou et al. (2014). The RDF Mapping Language (RML) is a superset
of R2RML. Every R2RML mapping is a valid RML mapping. On top of the R2RML
specification, RML specifies additional properties. For example properties for defining
the query language used in the predicate-object mappings and for defining the itera-
tion. R2RML and CSV/spreadsheet-to-RDF mapping solutions assumed each row of
the dataset is one entity Dimou et al. (2014). With RML, there is now also a way
to cross-link data from multiple sources and throughout multiple formats. I.e. in one
RML file definition, multiple sources can be defined and mapped. At the same time the
mappings define links across the sources (Dimou et al., 2014).

2.4 Stream Publishing

The LOD cloud and most linked data published on the Web provide and describe static
data. Streaming data had been neglected and not given much attention (Barbieri and
Valle, 2010).

According to Barbieri and Valle’s (2010) definition, a datastream is an ordered se-
quence of pairs where each pair consists of a tuple with its timestamp.

Barbieri and Valle (2010) propose an approach for publishing data streams as linked
data. With the development of the C-SPARQL engine as an extension to SPARQL, they
provide a way to run continuous queries on streaming data. C-SPARQL can process
data streams and RDF streams together with RDF graphs. To represent RDF streams,
Barbieri and Valle (2010) propose to use named graphs (Sequeda and Corcho, 2009).
Sequeda and Corcho (2009) distinguish between (s-graphs) and Instantanious Graphs
(i-graphs). A stream is represented as an s-graph and several i-graphs, one for each
timestamp (Barbieri and Valle, 2010). An s-graph contains metadata about the stream
content of the current window over the RDF stream. C-SPARQL also supports sliding
windows allowing the extraction of the last data elements of the stream.

C-SPARQL enables the consumption and querying of streaming data. However, it does
not provide a way to publish streams. Mauri et al. (2016) close this gap and propose
TripleWave as a reusable and generic tool for the publication of RDF streams. Triple-
Wave serves as a RDF stream producer and data format transformer. It can consume
non-RDF streams from the Web, as well as static, time annotated datasets, transform
the data to the RDF format and publish it as RDF streams. It thus supports pull-based

7

8 CHAPTER 2. RELATED WORK

and push-based consumption and is able to replay time annotated data, possibly in an
endless loop. The RDF stream published by TripleWave publishes its RDF data items
in the JSON-LD format6 and distinguishes between the s-graphs and i-graphs. For the
configuration of the data transformation to RDF, Mauri et al. (2016) makes use of RML
(see 2.3).

TripleWave is part of a set of technologies named RDF Stream Processing (RSP)
and takes its place as an RDF stream publishing service for providing data for stream
reasoners (Dell’Aglio et al., 2017). Dell’Aglio et al. (2017) present with their proposal for
WeSP, a framework for the exchange of RDF streams, an approach for an improvement
and realization of an eco-system of stream engines on the Web.

Sedira et al. (2017) present a Vocabulary of Interlinked Datastreams (VoIS) for de-
scribing stream descovery, access, recall and provenance. It allows stream consumers to
find relevant streams, accessing them and reason about origin data origin.

Taelman et al. (2016) demonstrate the mapping and publishing of continuous sensor
data through RML and NodeJS. They use tessel microcontrollers7 to obtain sensor data
which is mapped by RML and published as RDF stream.

6https:// json-ld.org (accessed 01.06.2018)
7https:// tessel.io (accessed 23.07.2018)

8

https://json-ld.org
https://tessel.io

3

Problem analysis

In this chapter I show the current state of TripleWave, its problems and necessary
improvements for the publication of OGD datasets. I show the need for a configuration
refactoring and a new implementation of the RML mapping which can handle the various
forms of publishing OGD data. A survey on OGD datasets provides the basis for the
requirements of the implementation which I define in Section 3.4.

3.1 The current state of TripleWave

TripleWave was introduced by Mauri et al. (2016) for the creation of RDF streams and
their publication on the Web. In its current state, TripleWave accepts inputs from
either a Webstream through a custom connector or from a local file holding RDF data
which TripleWave can stream. Currently supported output protocols are WebSocket and
MQTT.

Connectors which create an input stream for TripleWave have to be CommonJS1

modules which NodeJS uses. The expected module export is a NodeJS transform stream.
The origin of the streamed data does not matter to TripleWave. In case of OGD datasets,
the data is usually retrieved directly from the OGD platforms. In other cases it is
generated, stored locally or obtained from databases. The data flowing into TripleWave
has to be a in Javascript Object Notation (JSON). A flat JSON object is an object in
Javascript Object Notation which has not more than one level of properties and therefore
no nested objects or arrays. The connector alone does not suffice for TripleWave to
generate a corresponding RDF output. An R2RML mapping file (see Section 2.4) is
required in addition to the connector and defines the mapping from the input data to
RDF.

The current solution presents problems. The transformation process of TripleWave
based on R2RML is a small subset of both: RML and R2RML and neither of those
specifications are fully implemented. The mapping directly transforms the input data to
the JSON-LD RDF format where the represented triples are directly added to a graph
with the identity of the subject given by the mapping. The specification of R2RML (Das
et al., 2012) states that if neither a graph nor graphMap is specified, the graph to which

1http:// www.commonjs.org/ (accessed 29.07.2018)

http://www.commonjs.org/

10 CHAPTER 3. PROBLEM ANALYSIS

the triples are added has to be the default graph. This means TripleWave uses its own
interpretation of the mapping which can be confusing for users. In addition, there is
no streamlined way to retrieve common datatypes/sources from the Web and feed them
into TripleWave. Programming a new connector each time a datasource has to be added
is cumbersome and induces a lot of duplication. The connector has to transform the
retrieved data to fit the flat JSON structure needed by TripleWave. The configuration
of TripleWave is done in .properties files which are used mainly in the programming
language Java for configurations. While this works, .properties configurations are no
standard in the Javascript environment. Configurations in Javascript are commonly
done in JSON notation either in a .json file or as a Javascript object exported from a
NodeJS module.

3.2 Approaching a consensus for publication

As mentioned in Section 3.1, a missing feature of TripleWave is to this day an expressive
way to point to a datasource/set somewhere on the Web and let TripleWave transform
it into an RDF stream.

There are many applications for which this feature is useful. It can for example
example be used internally by companies to transform their own datasets to RDF or
it can be used to transform openly available datasets on the Web to an RDF stream,
provided the datasets contain time annotations or are updated frequently.

TripleWave was built on a set of requirements. Based on a set of analysed datasets
which were not considered before, new requirements emerge, which are not covered by
the current features of TripleWave.

The following section lists a set of OGD datasets obtained from German OGD plat-
forms. OGD datasets are freely available and follow the Open Data rules, see 2.1. In
Section 3.4 I will obtain the requirements for a solution for the transformations explained
above.

3.3 A survey on OGD datasets

This section contains a survey on dynamic OGD datasets which can be potentially pub-
lished as RDF streams. The task of TripleWave is to publish data as RDF streams. OGD
provides a lot of datasets that can be freely used and transformed by TripleWave into
RDF annotated streams. As the goal of this thesis is the publication of more datasets and
the extension of TripleWave to support the publication of frequently updating datasets
on the Web, a list of representative datasets is necessary.

3.3.1 Procedure

Muntwyler (2017) analysed a wide range of Swiss datasets. I extend the list in this
survey, focusing on the German and Austrian portals.

10

3.3. A SURVEY ON OGD DATASETS 11

Streaming data is data connected with specific points in time and is therefore an-
notated with timestamps. When a data stream should be created out of static data
from OGD portals, there is a need for data that has time annotations and is updated
frequently. If no time annotation is given and the dataset updates can be considered to
happen in real-time, the time of the publication can be used as time annotation.

To narrow down the search through these requirements on the datasets, I used the
following keywords for the search:

• RSS

• real time

• Echtzeit

• Messwerte

• Messdaten

• Parkplätze

• aktuell

Most keywords are German because the datasets are in German. Only ”real time” is
English, because it is a phrase often used in German instead of Echtzeit when talking
about real time data. RSS feeds provide datafeeds which act in a way like data streams.
Searching for RSS feeds reveals frequently updated dataset and datasets also available
in other formats. Messwerte/daten are measurements. Measurements are a well-known
category of streaming data and are usually supplied with time annotations of the time of
the measurement. Aktuell means latest or current in english and is a keyword targetting
data that is kept up-to-date. Parkplätze are parking lots. This search is very specific
but the thesis of Muntwyler (2017) has shown that datasets providing data about the
availability of parking lots were well fitting as they provide information about what
parking lots are available at the moment and are updated frequently. The aim of this
keyword is to find other similar datasets.

3.3.2 Results

There are two large Swiss OGD portals - one for the entire Switzerland and one for the
city of Zürich.

• https:// opendata.swiss The dataportal for Open Data of the Swiss Government

• https:// data.stadt-zuerich.ch The dataportal for Open Data of the city of Zürich

Querying these portals with the selected keywords revealed nothing but the same
datasets already found by Muntwyler (2017). Therefore, other German speaking coun-
tries are taken into consideration. Namely Austria and Germany.

The Austrian OGD portal is https:// www.data.gv.at . Querying this portal resulted
in 12 new datasets:

11

https://opendata.swiss
https://data.stadt-zuerich.ch
https://www.data.gv.at

12 CHAPTER 3. PROBLEM ANALYSIS

• LWAU: Luftmessnetz: aktuelle Messdaten Wien

• AKAU: Abflusswerte Kärnten

• KSAU: Kulturserver Graz RSS feeds

• BSAU: Baustellen

• FAU: Feinstaub PM10

• GAU: Globalstrahlung

• HMAU: Hydrologische Messdaten

• MZAU: Meteorologische Messdaten der ZAMG

• WTAU: Wetterstation Tirol

• NTAU: Niederschlagsdaten Stationen Hydrologischer Dienst Tirol

• WWAU: Wartezeiten in den Magistratischen Bezirksämtern Wien

• AOAU: Aktuelle Ozondaten Österreich

Doing the same on the German portal https:// www.govdata.de resulted in a smaller
range of datasets:

• PKDE: Stadt Kleve: Parkleitsystem Stadt Kleve

• FPDE: Freie Pegeldaten über PEGELONLINE

• RDE: Radmonitore

3.3.3 Obtained datasets

The datasets obtained from the sources above are listed in this section with their relevant
metadata.

The Title represents the name of the dataset as defined on the OGD platform which
provides the dataset.

The Short Name is a short abstraction of the name connected with the abbreviation
of the country that provides the dataset, which is also given in the row Country. In this
thesis, I will use the Short Name to refer to a dataset.

The Provider refers to the organisation that provides the data. Each dataset is pub-
lished with a license that dictates the terms of use. The license is listed with its short
name. For example, the full name of the license CC BY 3.0 AT is Creative Commons
Attribution Namensnennung 3.0 Österreich.

The Link points to the dataset on the OGD platform and not directly to the data
because some datasets are spread over multiple files/have multiple representations. More
metadata can be found on the website of the dataset description.

12

https://www.govdata.de

3.3. A SURVEY ON OGD DATASETS 13

The metadata Real-Time shows whether the dataset is considered to be real-time
according to the metadata given by the provider. Datasets are considered to be real-
time if they are updated continuously.

The Publication-Frequency describes how often a new document is published and Up-
date Frequency how often the given document is updated with new data. These mea-
surements are not given by all dataset providers. Therefore, the listed measurements
are obtained by the inspection of the datasets if no publication/update frequencies are
given by the provider. If a new document is published for each update, the update and
the publication frequencies are the same. Some datasets show that they are updated
continuously, but are not real-time. An example is the dataset LWAU. The provider
claims that the data is updated continuously, but the dataset gets updated only every
30 minutes. I do therefore not list this dataset as real-time or as updated continuously.

The Precition of Time Stamp defines the granularity of the timestamp the dataset
provides.

The Number of Records shows how many records are defined in the resource. Where
the number of records could not be obtained, I show N/A for Not Available.

The Representation stands for the dataformat in which the data comes. Some datasets
are available in multiple formats, such as FPDE. GeoRSS is RSS but follows an additional
standard for the description of geodata.2

The Number of Stars stands for the number of stars of the 5 stars of Linked Open
Data (see Section 2.2).

The Change strategy stands for the update pattern applied by the publishers. The
update pattern can be either static or mixed. If the update pattern is mixed, the file-fill
strategy and the file-exchange strategy are listed with the pattern: mixed/{file-fill}/{file-
exchange}. See a description of the possible strategies below:

1. Static - Each event (whole dataset at a certain time) provides new entries with a
common timestamp

2. Mixed - One event holds entries with multiple timestamps. For this variant there
are all combinations of the following two possible strategies for this variant:

The file-fill strategy:

a) Added - New entries are added to the existing entries.

b) Fillup - The entries for new data already exist but are not yet filled in.

The file-exchange strategy:

a) Everlasting - The same file is used for all entries and is never exchanged.
Items are only added.

b) Exchangable - The file gets replaced once in a while (daily, monthly etc.).

The Comment contains additional comments for datasets which are in some way
special or unique.

2http:// www.georss.org (accessed 25.06.2018)

13

http://www.georss.org

14 CHAPTER 3. PROBLEM ANALYSIS

T
itle

L
u

ftm
e
ssn

e
tz

:
a
k
tu

e
lle

M
e
ssd

a
te

n
W

ie
n

A
b

fl
u

ssw
e
rte

K
ä
rn

te
n

K
u

ltu
rse

rv
e
r

G
ra

z
R

S
S

F
e
e
d

s
B

a
u

ste
lle

n

S
h

ort
N

a
m

e
L
W

A
U

A
K

A
U

K
S

A
U

B
S

A
U

C
ou

n
try

A
u

stria
A

u
stria

A
u

stria
A

u
stria

P
rov

id
er

S
tad

t
W

ien
L

an
d

K
ärn

ten
S

tad
t

G
raz

L
an

d
O

b
erösterreich

L
icen

se
C

C
B

Y
3.0

A
T

C
C

B
Y

3.0
A

T
C

C
B

Y
3.0

A
T

C
C

B
Y

3.0
A

T
L

in
k

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
d
9
a
e1

2
4
5
-1

5
8
e-4

d
7
9
-

8
6
a
4
-2

d
9
b3

d
efbed

c

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
5
4
5
9
cb0

a
-8

cc3
-4

0
5
6
-

8
7
1
7
-c6

0
febea

fd
ed

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
f3

6
e3

4
0
4
-c7

1
1
-4

f3
5
-

8
3
1
2
-7

5
7
d
6
a
6
6
9
1
f2

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
e3

a
d
9
e6

0
-9

a
4
8
-4

0
fd

-
a
5
d
e-ed

3
3
5
1
c9

2
2
2
d

R
eal-T

im
e

n
o

yes
n

o
yes

P
u

b
lica

tio
n

F
req

u
en

cy
every

3
0

m
in

u
tes

con
tin

u
ou

sly
d

aily
con

tin
u

ou
sly

U
p

d
a
te

F
req

u
en

cy
every

3
0

m
in

u
tes

con
tin

u
ou

sly
d

aily
con

tin
u

ou
sly

P
recision

o
f

T
im

e
S

ta
m

p
seco

n
d

secon
d

secon
d

secon
d

N
u

m
b

er
o
f

R
eco

rd
s

1
8

N
/A

N
/A

N
/A

R
ep

resen
tation

C
S

V
G

eoR
S

S
R

S
S

G
eoR

S
S

N
u

m
b

er
o
f

S
tars

3
3

3
3

C
h

a
n

g
e

S
trateg

y
static

m
ix

ed
/ad

d
ed

/
ex

ch
an

gab
le

static
static

C
om

m
en

t
M

u
ltip

le
R

S
S

en
d

p
oin

ts
availab

le

T
a
b

le
3.1:

O
b

tain
ed

d
atasets

w
ith

th
eir

m
etad

ata.
P

art
1

14

https://www.data.gv.at/katalog/dataset/d9ae1245-158e-4d79-86a4-2d9b3defbedc
https://www.data.gv.at/katalog/dataset/d9ae1245-158e-4d79-86a4-2d9b3defbedc
https://www.data.gv.at/katalog/dataset/d9ae1245-158e-4d79-86a4-2d9b3defbedc
https://www.data.gv.at/katalog/dataset/d9ae1245-158e-4d79-86a4-2d9b3defbedc
https://www.data.gv.at/katalog/dataset/5459cb0a-8cc3-4056-8717-c60febeafded
https://www.data.gv.at/katalog/dataset/5459cb0a-8cc3-4056-8717-c60febeafded
https://www.data.gv.at/katalog/dataset/5459cb0a-8cc3-4056-8717-c60febeafded
https://www.data.gv.at/katalog/dataset/5459cb0a-8cc3-4056-8717-c60febeafded
https://www.data.gv.at/katalog/dataset/f36e3404-c711-4f35-8312-757d6a6691f2
https://www.data.gv.at/katalog/dataset/f36e3404-c711-4f35-8312-757d6a6691f2
https://www.data.gv.at/katalog/dataset/f36e3404-c711-4f35-8312-757d6a6691f2
https://www.data.gv.at/katalog/dataset/f36e3404-c711-4f35-8312-757d6a6691f2
https://www.data.gv.at/katalog/dataset/e3ad9e60-9a48-40fd-a5de-ed3351c9222d
https://www.data.gv.at/katalog/dataset/e3ad9e60-9a48-40fd-a5de-ed3351c9222d
https://www.data.gv.at/katalog/dataset/e3ad9e60-9a48-40fd-a5de-ed3351c9222d
https://www.data.gv.at/katalog/dataset/e3ad9e60-9a48-40fd-a5de-ed3351c9222d

3.3. A SURVEY ON OGD DATASETS 15

T
it

le
F
e
in

st
a
u

b
P

M
1
0

G
lo

b
a
ls

tr
a
h

lu
n

g
H

y
d

ro
g
ra

p
h

is
ch

e
M

e
ss

d
a
te

n
M

e
te

o
ro

lo
g
is

ch
e

M
e
ss

d
a
te

n
d

e
r

Z
A

M
G

S
h

o
rt

N
am

e
F
A

U
G

A
U

H
M

A
U

M
Z

A
U

C
o
u

n
tr

y
A

u
st

ri
a

A
u

st
ri

a
A

u
st

ri
a

A
u

st
ri

a
P

ro
v
id

er
L

a
n

d
N

ie
d

er
ö
st

er
re

ic
h

L
an

d
N

ie
d

er
ös

te
rr

ei
ch

L
an

d
S

al
zb

u
rg

Z
A

M
G

L
ic

en
se

C
C

B
Y

3
.0

A
T

C
C

B
Y

3.
0

A
T

C
C

B
Y

3.
0

A
T

C
C

B
Y

3.
0

A
T

L
in

k
h
tt

p
s:

/
/

w
w

w
.d

a
ta

.g
v.

a
t/

ka
ta

lo
g/

d
a
ta

se
t/

8
b0

5
7
f3

2
-1

3
1
2
-4

0
a
e-

a
e5

1
-9

a
a
0
a
0
d
3
7
2
ca

h
tt

p
s:

/
/

w
w

w
.d

a
ta

.g
v.

a
t/

ka
ta

lo
g/

d
a
ta

se
t/

f9
e4

0
f3

0
-8

a
c6

-4
3
e2

-
9
ee

7
-f

7
2

b7
1
2
ea

9
e1

h
tt

p
s:

/
/

w
w

w
.d

a
ta

.g
v.

a
t/

ka
ta

lo
g/

d
a
ta

se
t/

3
c5

8
9
d
c0

-3
5
ed

-4
8
cf

-
b5

9
8
-4

2
8
e4

5
8
8
b1

9
c

h
tt

p
s:

/
/

w
w

w
.d

a
ta

.g
v.

a
t/

ka
ta

lo
g/

d
a
ta

se
t/

9
b4

0
a
0
a
f-

a
6
fe

-4
7
ff

-
9
6
2
4
-2

ea
8
f4

0
c7

4
6
f

R
ea

l-
T

im
e

n
o

n
o

n
o

n
o

P
u

b
li

ca
ti

on
F

re
q
u

en
cy

h
o
u

rl
y

h
ou

rl
y

ev
er

y
15

m
in

u
te

s
ev

er
y

h
ou

r
U

p
d

at
e

F
re

q
u

en
cy

h
o
u

rl
y

h
ou

rl
y

ev
er

y
15

m
in

u
te

s
ev

er
y

h
ou

r
P

re
ci

si
on

of
T

im
e

S
ta

m
p

d
ay

d
ay

m
in

u
te

h
ou

r
N

u
m

b
er

o
f

R
ec

o
rd

s
2
1

7
98

8
10

R
ep

re
se

n
ta

ti
o
n

C
S

V
C

S
V

T
X

T
C

S
V

N
u

m
b

er
o
f

S
ta

rs
3

3
3

3
C

h
a
n

ge
S

tr
at

eg
y

m
ix

ed
/fi

ll
u

p
/

ex
ch

an
g
ab

le
m

ix
ed

/fi
ll

u
p

/
ex

ch
an

ga
b

le
m

ix
ed

/fi
ll

u
p

/
ex

ch
an

ga
b

le
st

at
ic

C
o
m

m
en

t
N

ew
fi

le
ea

ch
d

ay
.

P
la

ce
h

o
ld

er
s

fo
r

th
e

va
lu

es
fo

r
ea

ch
h

ou
r

N
ew

fi
le

ea
ch

d
ay

.
P

la
ce

h
ol

d
er

s
fo

r
th

e
va

lu
es

fo
r

ea
ch

h
ou

r

T
a
b

le
3
.2

:
O

b
ta

in
ed

d
at

as
et

s
w

it
h

th
ei

r
m

et
ad

at
a.

P
ar

t
2

15

https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.data.gv.at/katalog/dataset/f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
https://www.data.gv.at/katalog/dataset/f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
https://www.data.gv.at/katalog/dataset/f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
https://www.data.gv.at/katalog/dataset/f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
https://www.data.gv.at/katalog/dataset/3c589dc0-35ed-48cf-b598-428e4588b19c
https://www.data.gv.at/katalog/dataset/3c589dc0-35ed-48cf-b598-428e4588b19c
https://www.data.gv.at/katalog/dataset/3c589dc0-35ed-48cf-b598-428e4588b19c
https://www.data.gv.at/katalog/dataset/3c589dc0-35ed-48cf-b598-428e4588b19c
https://www.data.gv.at/katalog/dataset/9b40a0af-a6fe-47ff-9624-2ea8f40c746f
https://www.data.gv.at/katalog/dataset/9b40a0af-a6fe-47ff-9624-2ea8f40c746f
https://www.data.gv.at/katalog/dataset/9b40a0af-a6fe-47ff-9624-2ea8f40c746f
https://www.data.gv.at/katalog/dataset/9b40a0af-a6fe-47ff-9624-2ea8f40c746f

16 CHAPTER 3. PROBLEM ANALYSIS

T
itle

W
e
tte

rsta
tio

n
s-

d
a
te

n
T

iro
l

N
ie

d
e
rsch

la
g
s-

d
a
te

n
S

ta
tio

n
e
n

H
y
d

ro
g
ra

p
h

isch
e
r

D
ie

n
st

T
iro

l

W
a
rte

z
e
ite

n
in

d
e
n

M
a
g
istra

tisch
e
n

B
e
z
irk

sä
m

te
rn

W
ie

n

A
k
tu

e
lle

O
z
o
n

d
a
te

n
Ö

ste
rre

ich

S
h

ort
N

a
m

e
W

T
A

U
N

T
A

U
W

W
A

U
A

O
A

U
C

ou
n
try

A
u

stria
A

u
stria

A
u

stria
A

u
stria

P
rov

id
er

L
an

d
T

irol
L

an
d

T
irol

S
tad

t
W

ien
U

m
w

eltb
u

n
d

esam
t

G
m

b
H

L
icen

se
C

C
B

Y
3.0

A
T

C
C

B
Y

3.0
A

T
C

C
B

Y
3.0

A
T

C
C

B
Y

3.0
A

T
L

in
k

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
bb4

3
1
7
0
b-3

0
fb-4

8
a
a
-

8
9
3
f-5

1
c6

0
d
2
7
0
5
6
f

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
4
4
7
2
0
e9

0
-c2

d
e-4

9
7
b-

8
1
6
2
-3

8
1
0
2
0
6
d
d
0
1
1

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
e3

8
cd

ef5
-f9

9
3
-4

e6
f-

9
1
9
e-a

c6
8
d
2
6
d
7
2
7
d

h
ttp

s:/
/

w
w

w
.d

a
ta

.gv.
a
t/

ka
ta

log/
d
a
ta

set/
8
b3

b3
cd

f-2
be6

-4
f0

b-
8
c8

6
-f6

be6
7
e5

b0
0
2

R
eal-T

im
e

n
o

yes
yes

yes
P

u
b

lica
tio

n
F

req
u

en
cy

every
h

ou
r

con
tin

u
ou

sly
con

tin
u

ou
sly

con
tin

u
ou

sly
U

p
d

a
te

F
req

u
en

cy
every

h
ou

r
con

tin
u

ou
sly

con
tin

u
ou

sly
con

tin
u

ou
sly

P
recision

o
f

T
im

e
S

ta
m

p
seco

n
d

secon
d

m
in

u
te

secon
d

N
u

m
b

er
o
f

R
eco

rd
s

N
/A

1-10K
1

108
R

ep
resen

tation
J
S

O
N

C
S

V
J
S

O
N

J
S

O
N

N
u

m
b

er
o
f

S
tars

3
3

3
3

C
h

a
n

g
e

S
trateg

y
static

m
ix

ed
/ad

d
ed

/
ex

ch
an

gab
le

static
static

C
om

m
en

t

T
a
b

le
3.3:

O
b

tain
ed

d
atasets

w
ith

th
eir

m
etad

ata.
P

art
3

16

https://www.data.gv.at/katalog/dataset/bb43170b-30fb-48aa-893f-51c60d27056f
https://www.data.gv.at/katalog/dataset/bb43170b-30fb-48aa-893f-51c60d27056f
https://www.data.gv.at/katalog/dataset/bb43170b-30fb-48aa-893f-51c60d27056f
https://www.data.gv.at/katalog/dataset/bb43170b-30fb-48aa-893f-51c60d27056f
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011
https://www.data.gv.at/katalog/dataset/e38cdef5-f993-4e6f-919e-ac68d26d727d
https://www.data.gv.at/katalog/dataset/e38cdef5-f993-4e6f-919e-ac68d26d727d
https://www.data.gv.at/katalog/dataset/e38cdef5-f993-4e6f-919e-ac68d26d727d
https://www.data.gv.at/katalog/dataset/e38cdef5-f993-4e6f-919e-ac68d26d727d
https://www.data.gv.at/katalog/dataset/8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002
https://www.data.gv.at/katalog/dataset/8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002
https://www.data.gv.at/katalog/dataset/8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002
https://www.data.gv.at/katalog/dataset/8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002

3.3. A SURVEY ON OGD DATASETS 17

T
it

le
S

ta
d

t
K

le
v
e
:

P
a
rk

le
it

sy
st

e
m

S
ta

d
t

K
le

v
e

F
re

ie
P

e
g
e
ld

a
te

n
ü

b
e
r

P
E

G
E

L
O

N
L

IN
E

R
a
d

m
o
n

it
o
re

P
a
rk

p
lä

tz
e

A
P

I
(B

e
ta

)

S
h

o
rt

N
am

e
P

K
D

E
F

P
D

E
R

D
E

P
A

D
E

C
o
u

n
tr

y
G

er
m

an
y

G
er

m
an

y
G

er
m

an
y

G
er

m
an

y
P

ro
v
id

er
S

ta
d

t
K

le
ve

IT
Z

B
B

u
n

d
U

n
iv

er
si

tä
ts

st
ad

t
R

os
to

ck
D

B
B

ah
n

P
ar

k
G

m
b

H

L
ic

en
se

D
at

en
li

ze
n

z
D

eu
ts

ch
la

n
d

-
Z

er
o

-
V

er
si

on
2.

0

C
C

B
Y

C
C

0
C

C
B

Y
4.

0

L
in

k
h
tt

p
s:

/
/

w
w

w
.g

o
vd

a
ta

.d
e/

w
eb

/
gu

es
t/

su
ch

en
/

-/
d
et

a
il

s/
pa

rk
le

it
sy

st
em

-s
ta

d
t-

kl
ev

e-
od

p

h
tt

p
s:

/
/

w
w

w
.g

o
vd

a
ta

.d
e/

w
eb

/
gu

es
t/

su
ch

en
/

-/
d
et

a
il

s/
pe

ge
lo

n
li

n
e

h
tt

p
s:

/
/

w
w

w
.

go
vd

a
ta

.d
e/

w
eb

/
gu

es
t/

su
ch

en
/

-/
d
et

a
il

s/
ra

d
m

o
n

it
o
re

h
tt

p
s:

/
/

m
cl

o
u

d
.d

e/
w

eb
/

gu
es

t/
su

ch
e/

-/
re

su
lt

s/
d
et

a
il

/
pa

rk
p
lt

ze
a
p
ib

et
a

R
ea

l-
T

im
e

ye
s

ye
s

n
o

ye
s

P
u

b
li

ca
ti

on
F

re
q
u

en
cy

co
n
ti

n
u

ou
sl

y
co

n
ti

n
u

ou
sl

y
d

ai
ly

co
n
ti

n
u

ou
sl

y
U

p
d

at
e

F
re

q
u

en
cy

co
n
ti

n
u

ou
sl

y
co

n
ti

n
u

ou
sl

y
ev

er
y

15
m

in
u

te
s

co
n
ti

n
u

ou
sl

y
P

re
ci

si
on

of
T

im
e

S
ta

m
p

se
co

n
d

m
in

u
te

m
in

u
te

se
co

n
d

N
u

m
b

er
o
f

R
ec

o
rd

s
1
0

N
/A

>
1M

N
/A

R
ep

re
se

n
ta

ti
o
n

X
M

L
J
S

O
N

/W
S

D
L

/C
S

V
/

T
X

T
/W

M
S

/W
F

S
/

S
O

S

J
S

O
N

/C
S

V
/X

L
S

X
J
S

O
N

(R
E

S
T

)

N
u

m
b

er
o
f

S
ta

rs
3

3
3

3
C

h
a
n

ge
S

tr
at

eg
y

st
a
ti

c
st

at
ic

m
ix

ed
/a

d
d

ed
/

ev
er

la
st

in
g

st
at

ic

C
o
m

m
en

t
M

an
y

d
iff

er
en

t
w

ay
s

to
ge

t
th

e
d

at
a.

T
h

e
cu

rr
en

t
d

at
a

ca
n

b
e

re
tr

ie
ve

d
in

d
iv

id
u

al
ly

fo
r

d
iff

er
en

t
st

at
io

n
s

D
at

a
is

av
ai

la
b

le
fr

om
20

13
to

n
ow

.
A

ll
d

at
a

is
in

on
e

h
u

ge
fi

le

D
at

a
p

re
se

n
te

d
th

ro
u

gh
a

R
E

S
T

A
P

I

T
a
b

le
3
.4

:
O

b
ta

in
ed

d
at

as
et

s
w

it
h

th
ei

r
m

et
ad

at
a.

P
ar

t
4

17

https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve-odp
https://www.govdata.de/web/guest/suchen/-/details/pegelonline
https://www.govdata.de/web/guest/suchen/-/details/pegelonline
https://www.govdata.de/web/guest/suchen/-/details/pegelonline
https://www.govdata.de/web/guest/suchen/-/details/pegelonline
https://www.govdata.de/web/guest/suchen/-/details/radmonitore
https://www.govdata.de/web/guest/suchen/-/details/radmonitore
https://www.govdata.de/web/guest/suchen/-/details/radmonitore
https://www.govdata.de/web/guest/suchen/-/details/radmonitore
https://mcloud.de/web/guest/suche/-/results/detail/parkpltzeapibeta
https://mcloud.de/web/guest/suche/-/results/detail/parkpltzeapibeta
https://mcloud.de/web/guest/suche/-/results/detail/parkpltzeapibeta
https://mcloud.de/web/guest/suche/-/results/detail/parkpltzeapibeta

18 CHAPTER 3. PROBLEM ANALYSIS

3.4 Requirements

Publishing the datasets (see Section 3.3) with the current version of TripleWave includes
the usage of TripleWave-external scripts for pulling the dataset from the Web, parsing the
data and pass it to TripleWave through a data stream. A new way to define datasources
and transformations is needed which improves the deployment process of frequently
updating datasets.

In this section, I analyse the requirements for an appropriate transformation solu-
tion. The wording used in the requirement listings follows the Best Current Practices
for the Internet Community defined at https:// www.ietf.org/ rfc/ rfc2119.txt (accessed
01.07.2018).

3.4.1 Configuration of TripleWave

The configuration of TripleWave through .properties files follows the default for Java
applications. In the Javascript community and therefore also the NodeJS community,
the accepted default for configurations are .json and .js files. The current configuration
of TripleWave does not fit into the Javascript environment (see Section 3.1).

The explicit requirements for the configuration change are:

• RC1: The configuration should follow the Javascript conventions.
TripleWave should use the accepted community default for configuring Javascript
applications.

• RC2: The new configuration system must preserve the configuration
possibilities.
TripleWave should not loose functionality and dynamics.

• RC3: The configuration property names should keep their semantics.
Users of TripleWave should not get confused by major property name changes.

• RC4: The configuration may be extended to enable multiple runs with
different configurations.
For the parallel run of multiple TripleWave instances (see Requirement RS4), a
configuration which can configure the single instances is necessary.

3.4.2 Startup of TripleWave

TripleWave can be started by running the command line script start.sh or start.bat.
Even though this works fine for starting up TripleWave, the command line script has to
be in the current working directory or on the path and the script has to be in the same
directory as the source files. Up till now, TripleWave cannot be installed through npm.

The explicit requirements for the startup change are:

• RS1: A triplwave command must be available on the system path for
starting TripleWave.

18

https://www.ietf.org/rfc/rfc2119.txt

3.4. REQUIREMENTS 19

The source files do not have to be in the current working directory from which
TripleWave is started.

• RS2: The startup task must locate the configuration in the current
working directory or through a custom path relative to the current
working directory.
The configuration files do not have to be placed at an exact position in the system,
but can be organized by the user.

• RS3: TripleWave must support global installations through npm or yarn
such that no further code changes are needed for publishing TripleWave
on the npm registry.
TripleWave should follow the NodeJS default for installing command line applica-
tions.3

• RS4: TripleWave may allow to start multiple instances simultaneously
(In conjunction with RC4).
Multiple TripleWave instances can be started simultaneously without the need for
multiple configurations with multiple manual startups.

3.4.3 Supported Data Formats

Looking at the amount of datasets in a certain format (see Table 3.5), it can be seen that
most of the datasets are available either in CSV, JSON or XML. RSS feeds and WSDL
are a vocabulary of XML, so the total of datasets that are available in XML amounts to
5 datasets. Some datasets are also available in other formats.

Plain Text files (TXT) often contain unstructured or semi-structured data. This makes
it hard to parse and use them. Transformations for this filetype would be possible but
generally only with a lot of processing.

XLSX 4 is hard to parse as it contains a hierarchy of XML files which describe the
structure and look of an Excel Stylesheet. This format is therefore cumbersome to handle
because it spreads data across multiple files and mixes it with styling definitions.

WMS 5 and WFS 6 are dataservices for Geodata.

3https:// docs.npmjs.com/ getting-started/ installing-npm-packages-globally#how-to-install-global-
packages (accessed 27.06.2018)

4http:// officeopenxml.com/ anatomyofOOXML-xlsx.php (accessed 20.06.2018)
5http:// www.opengeospatial.org/ standards/ wms (accessed 20.06.2018)
6http:// www.opengeospatial.org/ standards/ wfs (accessed 20.06.2018)

19

https://docs.npmjs.com/getting-started/installing-npm-packages-globally#how-to-install-global-packages
https://docs.npmjs.com/getting-started/installing-npm-packages-globally#how-to-install-global-packages
http://officeopenxml.com/anatomyofOOXML-xlsx.php
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wfs

20 CHAPTER 3. PROBLEM ANALYSIS

Type Amount

CSV 7
JSON 6
RSS 3
TXT 2
XML 1
XLSX 1
WSDL 1
WMS 1
WFS 1

Table 3.5: The datatypes of the datasets ordered for the amount of their occurrence

To reduce the scope of the thesis, only the most occurring formats and the most
usable formats are considered. These are the three formats CSV, JSON and XML
(which includes RSS and WSDL).

The explicit requirements for the supported data types are:

• RF1: The CSV, JSON and XML datatypes must be supported.
TripleWave must accept and process datasets in the most common formats as
shown above.

• RF2: Standardized query languages for the supported datatypes must
be supported.
The user can refer to values in the datasets with known, powerful and standardized
methods.

3.4.4 Input source

Until now, TripleWave has three possible input sources, namely: time annotated RDF
datasources, RDF streams and non-RDF streams (Mauri et al., 2016). Looking at the
OGD datasources listed in Section 3.3, the datasets get updated frequently but the
updates are applied to files rather than published in a stream. In addition, none of the
datasets has more than three stars, which means that the data is not linked and data
items are not uniquely identifiable. Therefore, this data does not serve as an RDF input
and in the current state of TripleWave it can only be passed to TripleWave through the
non-RDF stream source input. This requires the data to be a stream but the datasets
are static and therefore they cannot serve non-RDF streams. One approach to solve
this problem is to create a configuration script for TripleWaves’ transform mode (Mauri
et al., 2016) which pulls the datasets from the Web and transforms them into a data
stream which is passed to TripleWave. Muntwyler (2017) used a similar approach with
Apache Kafka as event broker and external connector scripts between the dataset on the
Web and Kafka as well as between Kafka and TripleWave. These solutions do not seem
to be streamlined and every new dataset needs its own new transformation to a data
stream and an R2RML transform definition.

20

3.4. REQUIREMENTS 21

The explicit requirements for the new input source are:

• RD1: TripleWave must be extended to accept a new input source for
frequently updated datasets.
No additional retrieval and input scripts will be necessary to feed TripleWave with
data from frequently updated datasets located on the Web or locally.

• RD2: A new transformation configuration must transform the data from
the new datasource to an RDF representation (see Section 3.4.5).
TripleWave will be able to transform CSV, JSON and XML (see Section 3.4.3)
datasources to RDF. The current transformation through the integrated R2RML
processor is not expressive enough to handle all forms of datasets (see Sections 3.1
and 3.4.5).

• RD3: The data retrieval must follow a time-based interval instruction.
Frequent changes in a dataset can be pulled in the same intervals as the dataset
gets updated, to publish the data as close to the updates as possible. A scheduler,
as shown in Figure 5.10, must be created to schedule the request timing.

• RD4: The data retrieval must be pull-based.
As the datasources are static files and do not push change notifications to clients,
there is no indication that a dataset has changed. Pulling the datasets in the
intervals in which they are supposed to be updated is therefore the best mechanism
to get up-to-date data.

3.4.5 A new way of transformation

Because of the shortcomings of the current R2RML transformation implemented in
TripleWave (see Section 3.1), a new transformation has to be created (RD2, Section
3.4.4) for handling the complex transformations necessary for publishing frequently up-
dated datasets on the Web such as OGD datasets published in CSV, XML or JSON.
Unlike the current solution, the new transformation must be able to handle the complex
forms in which the datasets arrive. In case of XML or JSON, this means that nested
datastructures have to be easy to access and map to RDF.

Another problem with the current state of TripleWave is that the datasets have to
be downloaded, reformed and put into a stream – all through an additional script, for
that TripleWave can digest and transform it through the R2RML transform. Declar-
ative mappings targeted directly to the datasets remove the need for an upfront data-
transformation through additional, user-defined code. The discussion of the best solution
and its implementation can be found in Chapter 4.

• RT1: The transformation should be expressive enough to transform the
listed OGD datasets in Section 3.3 and by Muntwyler (2017).
This applies only to the datasets which are represented in the supported
formats (see Section 3.4.3).
A wide number of existing datasets can be transformed with the new solution.

21

22 CHAPTER 3. PROBLEM ANALYSIS

• RT2: The transformation must identify the data items in the input file
(which must be the RDF entities in the output).
Entities can be specified explicitly rather than using a convention for inferring the
entities from the source data. Conventions, such as each row in a CSV defines an
entity, only work if the user is in control of the data format. An RDF entity is the
subject to a set of triples.

• RT3: The transformation must present a way to compute the properties
of an entity from the datasource.
The properties applied to the entities will be defined explicitly. Additional infor-
mation can be added and the value format be changed if needed. For example: if
the user needs a timestamp from the datasource as a property in the new RDF
entity and he wants it in a specific timestamp format, he needs a way to define the
format mapping as well as where in the dataset to take the previous timestamp
from.

• RT4: The transformation must create RDF output.
The output can be directly streamed out of TripleWave in JSON-LD, the repre-
sentation of RDF that TripleWave uses in its output streams.

22

module.exports = {
example: "configuration"

}

(a) Javascript

{
"example": "configuration"

}

(b) JSON

Figure 4.1: A basic configuration layout in (a) Javascript and (b) JSON

4

Changes to TripleWave

In this chapter, I design a solution for the requirements for the configuration and the
startup of TripleWave (see Sections 3.4.1 and 3.4.2 respectively).

4.1 The configuration

The first part of the solution is a new configuration for TripleWave based on the old
solution. I explain my choice of the new representation in Section 4.1.1, show the de-
scription of the new configuration and how I achieved the mapping of the properties in
Section 4.1.2.

4.1.1 Choosing the right representation

The two standard ways of configuration in Javascript and the specification of requirement
RC1 are to put the configuration into a .json or a .js file. The .json file holds a serialized
version of a Javascript object (JSON) and lends itself well for descriptive configurations.
A Javascript file (.js) is used in cases where serialized Javascript objects are not enough.
It allows for the dynamic creation of the configuration and for passing functions/code
as part of the configuration.

Both JSON and Javascript objects have the same structure, however, a Javascript file
with a configuration object does not implicitly expose the object. It has to be exported
from the Javascript file through the export mechanism of NodeJS: module.exports. Figure
4.1a shows an example configuration in Javascript with the module export. On the right,
Figure 4.1b shows the same configuration in JSON.

24 CHAPTER 4. CHANGES TO TRIPLEWAVE

Propertyname Description

port The port of the TripleWave server
hostname The hostname of the TripleWave server
path The path to the root of the server
externaladdress The external address to the TripleWave server; If not

given, the port, hostname and path are used to
construct this address

mode The mode in which TripleWave runs; Available modes
are: endless, replay and transform

sources The source for the streaming data. Possible sources
are: rdfstream and triples

ws enabled A flag to enable the websocket
ws stream location The location (path) to the websocket stream
ws port The port that points to the stream
ws address The full address to the websocket stream (Typically

with the ws:// protocol prefix)
mqtt enabled A flag to enable mqtt
mqtt broker address The address of the mqtt broker
mqtt broker port The port of the mqtt broker
mqtt topic The mqtt topic to which TripleWave should push the

streaming data
transform folder Used by TripleWave to point to the folder with the

transformer and mapping files
transform transformer The transformation component – a NodeJS module

that exports a stream for the input to TripleWave
which should be transformed

transform mapping The mapping component – an R2RML mapping that
defines mappings on the data coming from the
transformer

rdf file The file path to the RDF data
rdf query folder The folder which the file is located in
rdf query endpoint The endpoint which queries are sent to
rdf update endpoint The endpoint which updates are sent to
rdf stream item pattern The pattern used for finding the key and timestamp of

the input data
rdf stream content pattern The pattern used for inserting new triples
rdfstream file The file with rdf data that should be replayed in the

mode ’rdfstream’.
tbox stream location The tbox stream location

Table 4.1: A list of all possible configuration properties for TripleWave

24

4.1. THE CONFIGURATION 25

Both configurations look similar, yet the JSON configuration looks a bit cleaner be-
cause there is no need for the module.exports = part.

All configuration properties that can be passed to TripleWave in its current state are
represented in Table 4.1. These are the options that still have to exist in the new version
of the configuration.

All the properties in a .properties configuration that TripleWave expects currently
are of type text. Therefore, the listed properties must be entered in text format. This
includes paths to the code that Triplewave uses as input, namely the property trans-
form transformer. This property has to be given together with transform folder to build
the path for a Javascript source file that exports a stream which TripleWave uses as data
input.

This configuration could be directly translated to a JSON configuration overtaking the
property-names with textual values. However, JSON, unlike .properties allows nested
structures which makes the grouping of related properties possible. In the case of Triple-
Wave, a good example is the grouping of all configuration properties for the websocket.
The same grouping is possible with Javascript objects as JSON represents serialized
Javascript datastructures.

The choice between a Javascript object and JSON comes down to the measure in
which they differ. This is the dynamic aspect of Javascript. Javascript allows to com-
pute a path instead of hardcoding it into the configuration file. For example, the path1

utility from NodeJS is very handy for this. Another feature added by Javascript is that
code can be passed as part of the configuration. It can be seen, in the example about
the transform folder above, that Javascript allows a more succinct solution for the con-
figuration. For one, the transform folder property becomes obsolete as the relative and
absolute path to the file can be easily computed. In addition, the transform transformer
can be changed to take a NodeJS Stream object2 directly instead of taking a filename
that points to a Javascript file which exports one.

The downside of using Javascript objects is that the code assigned to the configuration
is ignored when the object is serialized. It follows that it is not possible to send a
serialized configuration over the network or store it in a database. Nevertheless, no
requirements are calling for a serialization of TripleWave configurations.

4.1.2 Choosing the layout

The properties described in Table 4.1 have to be mapped to a Javascript configuration.
New possibilities allow for new structures. Javascript objects can group properties and
take references to Javascript values as property values.

For the mapping of the old configuration to Javascript objects, I define the following
rules:

1. Use the naming of the old properties

1https:// nodejs.org/ dist/ latest-v10.x/ docs/ api/ path.html (accessed 26.06.2018)
2https:// nodejs.org/ dist/ latest-v10.x/ docs/ api/ stream.html (accessed 26.06.2018)

25

https://nodejs.org/dist/latest-v10.x/docs/api/path.html
https://nodejs.org/dist/latest-v10.x/docs/api/stream.html

26 CHAPTER 4. CHANGES TO TRIPLEWAVE

2. Use the underscore () as breakpoint for nesting

3. Use nesting only for grouping

4. Group properties with the same prefix

5. Keep the underscore for multipart-names in case no grouping can be created at
the breakpoint between the parts of the name (e.g. stream item)

6. If there is a better solution than for the rules above, apply the better solution.
(e.g. rdf query folder and rdf query endpoint would be mapped according to the
above rules but a grouping of rdf query endpoint with rdf update endpoint makes
more sense)

The result of the mapping is shown in Table 4.2. The transform folder and the
rdf query folder are not needed anymore and are therefore marked with a - (dash). The
configuration for transform folder is now implicit in the properties transform.transformer
and transform.mapping, the configuration for rdf query folder in rdf.file.

The main groups are ws, mqtt and rdf. I created only a few nested groups where
Rule 4 applies, namely the mqtt.broker, the rdf.endpoint and the rdf.stream item. The
rdf.endpoint mapping applies to the example of Rule 6. These are the only names
for which the name changed slightly. The semantic meaning of endpoint.query and
query endpoint is arguably the same as the dot signifies a particular group such that
endpoint.query is a query of the group endpoint and is thus a query endpoint. No
grouping can be established for stream location, stream item and tbox stream location.
In those cases, Rule 5 applies and thus I keep the underscore.

In the following list, I evaluate if the requirements for the configurations are fulfilled:

• RC1 The requirement RC1 is fulfilled due to the usage of .js files for the configu-
ration.

• RC2 All configuration options from the current version of TripleWave are still
available. The removed options for declaring folder paths are now implicit to the
options which take absolute paths.

• RC3 Regarding the discussion above concerning the grouping rules, RC3 is fulfilled
as the new names keep the semantics of the current configuration.

• RC4 The last requirement, RC4, is discussed in Section 4.2 because it is tied
tightly to TripleWaves’ startup procedure.

4.2 Startup

The refactoring of TripleWave enables installing it globally through npm (RS3). Follow-
ing the npm guidelines, a path to an executable has to be added to the package.json file
with the bin entry.3

3https:// docs.npmjs.com/ files/ package.json#bin (accessed 28.06.2018)

26

https://docs.npmjs.com/files/package.json#bin

4.2. STARTUP 27

Properties Javascript object

port port
hostname hostname
path path
externaladdress externaladdress
mode mode
sources sources
ws enabled ws.enabled
ws stream location ws.stream location
ws port ws.port
ws address ws.address
mqtt enabled mqtt.enabled
mqtt broker address mqtt.broker.address
mqtt broker port mqtt.broker.port
mqtt topic mqtt.topic
transform folder -
transform transformer transform.transformer
transform mapping transform.mapping
rdf file rdf.file
rdf query folder -
rdf query endpoint rdf.endpoint.query
rdf update endpoint rdf.endpoint.update
rdf stream item pattern rdf.stream item.pattern
rdf stream item content pattern rdf.stream item.content pattern
rdfstream file rdfstream file
tbox stream location tbox stream location

Table 4.2: The property mappings of the TripleWave configuration from .properties to
.js

While the currently existing start.sh and bash.bat could serve as executables, it is
more appropriate to use the community default instead of adding another language to
the codebase like in this case shell or batch scripts. It’s is possible and a convention to
use Javascript for the startup script. All needed is an installed version of node visible
to the path and a single shebang line at the top of the Javascript file that should serve
as the command line script: #!usr/bin/env node.

The Javascript file can then be executed from the command line like any other com-
mand line script. The command line arguments are available in the global variable
process.argv (argv stands for argument vector).

At the time of the publication of TripleWave, npm reads all informations it has to
know about the module from the package.json file. One of them, as stated above, is the
bin entry. Adding the Javascript file with the NodeJS shebang allows npm to find the
script and install it on the path when the module gets installed globally.

27

28 CHAPTER 4. CHANGES TO TRIPLEWAVE

Figure 4.2 shows the bin entry for TripleWave. It expects the command line script,
following the NodeJS convention, to be located in the bin folder relative to the root of
TripleWaves’ filestructure.

"bin": {
"triplewave": "./bin/triplewave.js"

}

Figure 4.2: The bin entry for TripleWave

Requirement RS2 targets the configuration parameter passed to the command line
script. If TripleWave is called with the command triplewave, where should the startup
script look for the configuration? In the current version of TripleWave, the convention is
that the configuration file is located at the path ./config/config.properties relative to the
root of TripleWave. In addition, the configuration location can be specified as param-
eter named --configuration to the shell or batch script which refers to a configuration
relatively to the current working directory. But now, TripleWave can be called from
anywhere on the system.

There are not many strategies for a configuration lookup. One possibility is to keep a
standard folder like .triplewave in the home directory with a list of configurations in it,
of which the user can choose from with a command line parameter. A configuration in
a standard folder might make sense if he always knows the names of the configurations
and does not have to look for them in that particular folder. It is more convenient for
a user to pass configurations to an application through a path relative to the current
location in the terminal like the current --configuration parameter. It would be the best
to keep this parameter that is already known to TripleWave users and only add another
default behavior. The current default does not work anymore because it looks for the
configuration in the source files of TripleWave which should not be accessed in a globally
installed TripleWave. Therefore I define a new default behavior. The --configuration
parameter, if not set explicitly, gets the default value ./tw config.js. Like that, the
startup script looks for a file named tw config.js in the current working directory if no
other path is given. In addition, I add the shortcut -c for the configuration parameter
for convenience. With this, TripleWave can as example be started with: triplewave
-c another config.js.

TripleWaves’ new startup script can now start TripleWave from anywhere on the sys-
tem when the right configuration is given. But at times, users want to start multiple
instances of TripleWave, each with a different configuration. This is possible with mul-
tiple executions of the triplewave command and passing different configuration options
to each of them.

To facilitate grouped startups of different configurations, multiple configuration files
could be specified in one call to TripleWave. I consider this to be cumbersome and
the major usecase is to start up all, or groups of configurations together. Grouping
configurations in configuration files can be achieved on file-level. This means that one
configuration file holds a group of TripleWave configurations that should start simul-

28

4.2. STARTUP 29

taniously. As I explained in Section 4.1, the new TripleWave configuration is done in
Javascript files. For multiple configurations in one Javascript file, the configurations
can be represented and exported from the Javascript module as an array instead of a
Javascript object. The new startup script recognizes that the configuration is an array
and forks as many child processes as there are configurations and starts TripleWave
instances with the single configurations. Sometimes though, a user could want to run
only one configuration of a group, for testing or because only that one is needed. To
give the user the possibility to start a single configuration out of the group, I add a new
parameter for TripleWave. The new parameter -i or --index accepts a number which is
the (zero-based) index of the configuration in the array.

The following list wraps up this section with an evaluation about the fulfillment of
the requirements for the startup:

• RS1 With the bin entry in the package.json and the new startup script it is now
possible to start TripleWave from the commandline with the command triplewave
when TripleWave is installed globally on the system. Thus, requirement RS1 is
fulfilled.

• RS2 The –configuration parameter together with its new default value allows
TripleWave to be started with a configuration relative to the current working
directory which fulfills the requirement RS2.

• RS3 The existing package.json delivers all necessary information for TripleWave
except the command line script entry, which I created with the bin entry. RS1 and
RS3 are therefore both fulfilled with the same change.

• RS4 The requirement RS4 is fulfilled through the possibility to use an array with
configurations in the configuration files.

• RS4 Together with RS4, the requirement RC4 is fulfilled as well.

29

5

Transforming 3-star data to RDF

The main contribution of this thesis is a solution for retrieving and transforming fre-
quently updated datasets. The requirements for the solution are listed in Section 3.4.

When mapping datasets to other representations, it is crucial to know the domain
and what possibilities there are to transform one representation to another. In this
thesis, I am concerned with the transformation from CSV, JSON and XML (source) to
RDF (target) (RF1). Thus, a transformation from a flat (CSV) or nested (JSON/XML)
dataset to a graph-based representation (RDF) is required. In addition, the output RDF
must be in JSON-LD format and published as a stream item in the output of TripleWave.
The output format of TripleWave describes each stream element as RDF data that is
packed in a named graph with a timestamp (Mauri et al., 2016). Named graphs allow
talking about graphs and relationship between graphs (Carroll et al., 2005). Barbieri
and Valle (2010) propose to use a specific schemata for the IRI of i-graphs (One stream
item is an i-graph): http://ex.org/%stream-name%/URLencode(%timestamp%).

During this chapter, I denote an event as one retrieval of the dataset and a stream
item as one i-graph for the outgoing data stream.

5.1 Choosing a mapping language

Few solutions for mapping relational data from databases to RDF exist. Two known
ones are R2RML (Das et al., 2012) and D2RQ (Bizer and Seaborne, 2004) (see Section
2.3). A solution that builds on R2RML and extends it is RML (Dimou et al., 2014) which
adds definitions for accepting more datasources in addition to databases. In the current
specification,1 RML defines the support for CSV, JSON and XML. RML is the only
known mapping language (RF2) supporting the mapping from the datatypes CSV, JSON
and XML to RDF (Dimou et al., 2014). These datatypes match exactly the requirement
RF1 and therefore, I consider RML as the best contestant to fit the requirements. By
using RML, both requirements concerning the data formats are fulfilled (see Section
3.4.3). R2RML and D2RQ cannot be used for the transformation because both do not
define variants to access or refer to values in nested datastructures such as in JSON or
XML.

1http:// rml.io/ spec.html (accessed 30.06.2018)

http://rml.io/spec.html

32 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

RML is not necessarily a perfect fit for the transformation of the datasets even though
it fits the best out of D2RQ, R2RML and RML. I now elaborate what the RML provides
that is of use and if RML covers the requirements:2

• A means to define a data source (rml:source). Supported datasources are relational
databases, CSV, XML and JSON.

• A means to define a query language which should be used to refer to values in the
dataset (rml:referenceFormulation).

• A means to define an iteration instruction through the query language (rml:iterator).

• A means to define the graph in which a subject is defined (rr:graph / rr:graphMap).

• A means to define what the subject of the transformation is (rr:subject / rr:subjectMap).

• A means to define what properties are assigned to the subject (rr:predicateObjectMap).

• A means to interpolate query results into a string for the names of subjects, objects
and graphs (rr:template).

The prefixes of the predicates like rr and rml define the namespace (IRI) in which the
predicates are defined. The RML mapping language is a specification which makes use
of the Turtle syntax (see Section 2.2) – a syntax which can be serialized to RDF graphs.

What RML provides is important to know for the next subsections where I show
aspects and problems of the data mapping in connection with the OGD datasets and
how RML applies to the observed problems. In Section 5.2, I show a solution to the
mapping problems.

5.1.1 Encoding

OGD datasets have no guidelines or restrictions on their formatting or their encoding.
The result is that datasets can come in various encodings. One example dataset is
TAQMZH with the encoding latin1 (ISO 8859-1). RML has no means to define the
encoding of the input sources. I argue that an automatic detection is possible but is
out of scope for this thesis. In addition to a (future) automatic detection, I propose
to have the possibility to provide the encoding as a parameter or configuration for the
transformation as this is generally a feature users want to control.

5.1.2 Scheduling

The mapping languages mentioned above, for example RML, are created for mapping
static datasets and database data to RDF. In RML, the source of a dataset which is the
target to a transformation can be defined explicitely as source using an URL through

2The prefix rr stands for the R2RML namespace (http:// www.w3.org/ ns/ r2rml# accessed 02.07.2018),
the prefix rml for the RML namespace (http:// semweb.mmlab.be/ ns/ rml# accessed 02.07.2018)

32

http://www.w3.org/ns/r2rml#
http://semweb.mmlab.be/ns/rml#

5.1. CHOOSING A MAPPING LANGUAGE 33

(a) External scheduler (b) Internal scheduler

Figure 5.1: Two possible designs for the scheduler integration

which the RML processor is able to pull the dataset from the location given as rml:source.
A transform processor can be triggered any time (Dimou et al., 2014).

Regarding the frequently updated datasets, I need a solution for triggering the pro-
cessor in predefined intervals or at certain times during the day/month/year. I name
that solution a scheduler.

RML does not define means for scheduled processing (Dimou et al., 2014). It is possible
to create the scheduling as a component that lives outside of the mapping declaration.
The difference between a solution where the RML processor is and is not in charge
can be seen in Figures 5.1a and 5.1b respectively. The separation of concerns does not
become clear when the RML processor is not in charge of the scheduling. This is because
the RML processor is responsible for the retrieval of the datasource. When the same
component as the scheduler is responsible for the datasource retrieval, the separation
of concerns becomes clear. That component is then responsible for the data retrieval
and the input of the data to the RML processor. I.e. the best solution is an integrated
scheduler in the RML processor which is not subject to the RML specification.

{ "IsOpen": false,
"MBA1_8": 0, "MBA2": 0, "MBA3": 0, "MBA4_5": 0, "MBA6_7": 0,
"MBA9": 0, "MBA10": 0, "MBA11": 0, "MBA12": 0, "MBA13_14": 0,
"MBA15": 0, "MBA16": 0, "MBA17": 0, "MBA18": 0, "MBA19": 0,
"MBA20": 0, "MBA21": 0, "MBA22": 0, "MBA23": 0,
"Timestamp": "11:36",
"Wartekreis": 0 }

Figure 5.2: The dataset WWAU as an example source

33

34 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

5.1.3 Subject aggregation

Figure 5.2 shows an example of a source in JSON representation. It is the dataset
WWAU holding the current waiting time approximation at the pass service counter at
different Municipal District Offices (in German: Magistratische Bezirksämter, MBA).
There are two possibilities to map this dataset to RDF:

1. The whole data entry is considered to be a subject.
In this case only one stream item is created and the subject name is the timestamp.
In other words, all subjects are aggregated into one stream element as shown in
Figure 5.3a. The dots (....) are a placeholder for the rest of the elements.

2. Each MBA entry is considered to be a subject.
In which case 19 stream items are created, each in a graph with the same timestamp
but transporting a different subject. In other words, no aggregation of subjects
is created and therefore, each subject is presented as a single stream element. A
sample of a single stream element is shown in Figure 5.3b.

The general difference between the two approaches is the aggregation. The first ap-
proach aggregates the subjects which are in the same graph and originate from the same
event. When the subjects are not in the same graph, they cannot be aggregated into one
stream item. Both approaches could be wanted by users of TripleWave and therefore,
there must be a means to declare on what level an aggregation is wanted.

I propose the creation of three levels of aggregation:

• The level all aggregates all subjects that are in the same graph into the respective
graph. (See Figure 5.3a)

• The level subjects aggregates all subjects that are generated by one iteration
through the source into their respective graph.

• The level none does not apply any aggregation. All subjects are the single items
of their graph and as many stream items as there are subjects are generated. (see
Figure 5.3b)

There is no aggregation specification for RML because RML does not work on data
streams. RML specifies how to retrieve data and transform it into RDF for producing a
set of triples for each source retrieval (Dimou et al., 2014). The only possible aggregation
in RDF is the collection of triples in a named graph. Having a data stream of RDF
introduces new aggregation possibilities.

When an internal scheduler is added to a RML processor (like in Figure 5.1b), the
output of the RML processor must be a data stream. I.e. the aggregation of subjects
into stream items must be the responsibility of the RML processor.

34

5.1. CHOOSING A MAPPING LANGUAGE 35

{
"http://www.w3.org/ns/prov#

generatedAtTime": "2018-07-02T11
:51:26.535+02:00"

"@id": "http://streamreasoning.org/
wwau/2018-07-02T16%3A35%3A00%2B01
%3A00",

"@graph": [
{

"@id": "http://streamreasoning.
org/MBA10",

"http://www.w3.org/2006/time#
hasDuration": [

{
"@value": "PT0M",
"@type": "http://www.w3.org

/2001/XMLSchema#duration"
}

]
},
{

"@id": "http://streamreasoning.
org/MBA11",

"http://www.w3.org/2006/time#
hasDuration": [

{
"@value": "PT0M",
"@type": "http://www.w3.org

/2001/XMLSchema#duration"
}

]
},
....

]
}

(a) Aggregation of subjects

{
"http://www.w3.org/ns/prov#

generatedAtTime": "2018-07-02T11
:51:26.535+02:00"

"@id": "http://streamreasoning.org/
wwau/2018-07-02T16%3A35%3A00%2B01
%3A00",

"@graph": [
{

"@id": "http://streamreasoning.
org/MBA20",

"http://www.w3.org/2006/time#
hasDuration": [

{
"@value": "PT0M",
"@type": "http://www.w3.org

/2001/XMLSchema#duration"
}

]
}

]
}

(b) No aggregation of subjects

Figure 5.3: The two different possible outputs for the WWAU dataset

5.1.4 Multiple subjects per iteration

The RML mapping specification allows to define subjects on the level of an iteration
such that every iteration step produces one subject (Dimou et al., 2014). For some
datasets, this is not enough. One of them is the dataset WWAU shown in Figure
5.2. The RML mapping allows to define an iteration expression which in most cases
works well for defining the exact subjects. In the example of WWAU, the iteration
expression has to match exactly every key/value pair of all MBA{number} entries. The
default reference formulation (query language) in RML for referencing values in a JSON

35

36 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

source is JSONPath3 (Dimou et al., 2014). It follows that no iteration can be specified
with JSONPath for referring to only exactly each MBA{number} key/value pair in the
dataset. In addition, if an iteration could theoretically be defined, back-references to the
key for the usage as subject name are impossible.

The creation of dedicated mappings for single values inside an iteration can solve
this problem. When each iteration can yield multiple (even different from each other)
subjects in every iteration, the case of WWAU can be solved without defining an iter-
ation (respectively one iteration only for the whole dataset). One subject can then be
defined for every MBA{number} key/value pair and thus one iteration yields as many
MBA{number} as needed.

This addition to RML enables the definition of different property mappings for each
subject. Nevertheless, there is no dataset in my list for which this feature is needed.

5.1.5 Advanced transformations

The RML (and R2RML) mappings are one-to-one mappings. A value in the source
gets mapped to a value in the RDF output, with the optional addition of a language
(rr:language) or datatype (rr:datatype).

OGD data publishers, publish the data in the format they prefer. Because users of
TripleWave and therefore users of an integrated RML processor are not in control of the
data representation of the OGD datasets, the data is likely published in a format that
is either unexpected or not in the format required or wanted for the output.

A reoccurring example are timestamps published in various representations and no-
tations. An example is the previously presented dataset WWAU. The timestamp it
delivers shows only two digits for the hours and two digits for the minutes seperated
by a colon. This timestamp represents the time of the current day at which the status
was last updated. The date part is missing and must be recreated through a refer-
ence to the date of the current day. Another dataset, PKDE, delivers the timestamp
in the format: 04.07.2018 13:40:00. The date is given in German notation and the
timestamp includes hours, minutes and seconds. I.e. different datasets adopt differ-
ent time formats. The timestamp in the output stream should be compilant to the
proposal of Barbieri and Valle (2010), and be part of the graph: http://ex.org/%stream-
name%/URLencode(%timestamp%). Direct timestamp mappings result in a range of
various formats, different for each dataset. A mapping from an arbitrary timestamp to
a standardized output format has requirements exceeding a simple restructurization as
the case of WWAU shows. The missing date, seconds and the timezone should be added
to the delivered timestamp. The date can be obtained with a lookup of the current date,
the seconds set to zero when no seconds are available. The best guess for the timezone
is the timezone in which the data was created. In the case of WWAU, the timezone is
likely GMT+1 given the dataset was created in Vienna. The timestamp of PKDE misses
only the timestamp.

Another example is the FAU dataset. It is published as a CSV file with stations

3http:// goessner.net/ articles/ JsonPath/ (accessed 03.07.2018)

36

http://goessner.net/articles/JsonPath/

5.1. CHOOSING A MAPPING LANGUAGE 37

(subjects) on each row and the measurements for particulate matter at different times
during the day (hour steps) is presented in the columns. Hourly updates to the dataset fill
the measurements into the already existing but not yet filled 24 measurement columns.
One column for each hour of the day. Yet unavailable measurements are denoted with
the placeholder -999. I need from the datasets only the newest measurement of each
station. To do so, the last column before -999 must be found. Another strategy is
chosing the column by the current time of retrieval. Here, like in the example with the
timestamps above, additional logic to RML is required to achieve a specific selection.

A simple RML direct mapping cannot manipulate, reformat or make additions to the
input data. For example, there is no definition in RML for referring to the current date
to add it to the timestamp. There is no definition for applying string concatenation or
substring replacement. Further, the specific selection of data is not possible with RML
when special conditions are needed for which information like the current time of the
day is necessary.

Consequently, I need a solution that allows applying arbitrary transformations to the
input data if necessary together with a solution for better data selection. A possible
solution is an expansion of RML with conditional elements and advanced expressions
(for example like in XSL). Another solution is using RML as mapping language and
adding an interface to the RML processor for applying hooks through an already existing
programming language. Finally, it should be considered moving the RML mapping from
a representation in RDF format to a programming language in which the transformations
can be directly supplied together with the data query instructions.

5.1.6 Full source transform before mapping

In some cases, the structure of input data can be totally different to expectations about
a format. For example a CSV file presenting data in a very particular way. A concrete
example is the TAQMZH dataset. The datarows start at row seven, the first column
contains the timestamp. When new data comes in, a row is added below. The rest of
the columns contain measurement data. The first seven rows contain metadata. The
first row shows where the measurement is taken. The second row presents a shortname
for the name of the place. The third row contains a long name for the measurement, the
forth a short chemical name. Row five shows the name of the file and lastly, row six the
measurement unit. The metadata for the measurements is defined on each column and
therefore annotates the measurements of that column. A small extract of the dataset is
shown in Table 5.1.

The measurement locations are lined up in the columns. Metadata is described on
the columns as well, the timestamp on the other hand on the row. The expected RDF
output for this dataset is a graph with the timestamp and containing the observations,
each with its measurement and metadata as properties of the observation.

An RML processor must be able to parse an input file to represent it in a format
in memory through which a query language can refer to values. The processing of the
TAQMZH dataset fails at this step because the CSV does not follow the convention
of a header now describing the properties. The remaining rows represent the values

37

38 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

Datum Zürich Stampfenbachstrasse Zürich Stampfenbachstrasse

Zch Stampfenbachstrasse Zch Stampfenbachstrasse

Ozon, höchstes Stundenmittel Stickstoffdioxid

O3 max h1 NO2

d1 d1

µg/m3 µg/m3

04.06.2018 113.68 23.96

05.06.2018 121.13 20.27

06.06.2018 121.73 14.39

07.06.2018 99.84 15.65

Table 5.1: An extract of the TAQMZH dataset

corresponding to the properties. A mechanism must therefore exist for transforming the
dataset to a format interpretable by the processor. The mechanism must be applied when
the data is retrieved but before the parsing takes place. Consequently, the mechanism
must consist of a middleware taking text input and producing a transformed text output
used by the parser of the RML processor.

Most of the problems described in the previous sections can be solved with this ap-
proach. It should only be used for the most complex datasets when no other solution
exists.

5.1.7 The solution space

The analysis of the datasets and their specific properties unveiled the non-existence of
specifications needed to express mappings for the OGD datasets shown in Section 3.3. I
shortly presented ways to overcome the detected problems with the datasets.

Other mapping specifications like RML, namely R2RML and D2RQ do not provide a
solution. R2RML is a subset of RML and D2RQ is targeted towards relational databases
only.

Below, I list a number of possible alternatives to using RML. Not all of them are
viable options. I discuss which alternatives are viable and which are not in the following
paragraphs:

1. Extend RML with more expressions.

2. Use RML for the mapping and add hooks into the RML processor for a general
purpose language.

3. Reuse the RML definitions from the specification but write the mapping in a
general purpose language with extensions/adaptions for providing pieces of logic
(functions) in the place of queries.

Alternative (1) reuses the RML specification and builds on top of it. Unfortunately,
RML is written in RDF and extending it to support advanced transformations is out of

38

5.2. JRML 39

scope of this thesis as a solution must be Turing complete due to the needed advanced
transformations. An extension of RML to form a Turing complete language is a bigger
task than can be covered in a bachelor thesis. Further, RML is a descriptive language
and self-contained. For example, referring to the current time of a mapping execution
should hardly be described in RDF.

Alternative (2) has the advantage that it does not try to bring features of general
purpose languages into a language in that they don’t belong. Hooks into a running
parsing or mapping process is a well-known concept, e.g. the Simple API for XML
(SAX).4 The downside of Alternative (2) is that the mapping and the processing logic
are split. This is a negative factor because the real output cannot be inferred anymore
by reading the mapping, as the hooks apply additional transformations. The previously
descriptive mapping looses its integrity through the split.

Alternative (3) breaks the RML approach: moving the specification from one language
to another requires to change the structure of the mapping definitions. Through the
change from RDF to another language, the mapping definitions lose the namespace
prefix (see Section 5.2.1). Further, the mapping cannot be serialized anymore as logic
(functions) is added to the mapping definition. This is no problem as long as the mapping
definitions don’t have to be sent through the network in the form of data. The advantage
of this approach is the disadvantage of alternative (2): the mapping is self-contained and
necessary logic can be added where the mappings are defined.

Due to the discussion above, I choose Alternative (3) as a solution. In the following
section, I show how the problems above can be solved with such an alternative.

5.2 JRML

Since TripleWave is built in Javascript, it is natural to create the mapping processor in
Javascript as well. Javascript has made its way to a general purpose programming lan-
guage throughout recent years and runs with NodeJS natively, decoupled from browsers.
As discussed in Section 4.1, configurations in Javascript can be written in JSON or
Javascript objects. An RML-like mapping allowing advanced transformations (see Sec-
tion 5.1) can only be defined in a programming language - here Javascript. I.e. JSON
cannot be used because it cannot express logic (functions).

I propose JRML, to specify, RML mappings in Javascript. JRML is an extended and
slightly restructured version of RML with the structure retained as much as possible,
but translated into Javascript objects.

In the following, I describe how I map the RML specification to Javascript objects
and how I adapt and extend it to solve the problems described in Section 5.1.

5.2.1 General RML to JRML mapping

The structure of RML is nested and consists of RDF triples. Its hierarchical structure
is fairly simple to translate to a Javascript representation. Figure 5.4 shows a straight-

4http:// www.saxproject.org (accessed 05.07.2018)

39

http://www.saxproject.org

40 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

forward example of a direct mapping from RML to JRML.

The hierarchy directly maps to JRML. It should be noted that the graph description
(#VenueMapping) is lost in the new mapping, together with the namespace of the
predicates. The predicate rml:logicalSource for example loses the namespace http://
semweb.mmlab.be/ ns/ rml#. The namespaces are used for reference and not important
for the functionality. The loss of the graph can in theory be compensated by putting
the Javascript object in a named variable or introduce a further nesting layer for graph
names wrapping the mapping definition. This is not necessary for the range of this thesis
because the purpose of JRML is to map OGD datasets to data streams and cross-linking
between datasets is not considered in this thesis. A reference name for the data source
is thus not needed.

The namespaces of the predicates are still necessary and can be used in JRML through
functions creating named RDF nodes. To do so, it is necessary to import the library N3.5

N3 implements the RDF Representation specification6 and is built to enable treating
RDF in Javascript.

A structural change is the usage of predicateObjectMaps as an array instead of a
single predicateObjectMap. Opposed to RML, Javascript objects cannot define multiple
properties with the same name in the same Javascript object (Javascript object keys are
unique). I.e. subsequent rr:predicateObjectMap from RML are represented in JRML as
an array of predicateObjectMap objects. The same change applies to rr:class which is
an array named classes in JRML.

5.2.2 Encoding

An extension of RML is needed for declaring the encoding in which the source is parsed
as described in Section 5.1.1. This can be a simple property named encoding in the
section logicalSource. I choose this section because the encoding is part of the metadata
characterizing the source. The property value is a string with the name of the encoding.
The possible encodings are all encodings accepted by the toString method of a NodeJS
buffer.7

5.2.3 Scheduling

The scheduling mechanism is best integrated in the RML processor as discussed in
Section 5.1.2. JRML needs additional definitions to specify in what interval or during
what times of the day the source has to be retrieved, transformed and sent out through
an RDF stream. The scheduling can be described as a key/value pair on the logicalSource
like the encoding. A key/value pair describing the scheduling consists of the scheduler key
with the value being a Javascript object. The scheduler object accepts three properties:

5https:// www.npmjs.com/ package/ n3 (accessed 05.07.2018)
6http:// rdf.js.org (accessed 05.07.2018)
7https:// nodejs.org/ docs/ latest/ api/ buffer.html#buffer buf tostring encoding start end (accessed

05.07.2018)

40

http://semweb.mmlab.be/ns/rml#
http://semweb.mmlab.be/ns/rml#
https://www.npmjs.com/package/n3
http://rdf.js.org
https://nodejs.org/docs/latest/api/buffer.html#buffer_buf_tostring_encoding_start_end

5.2. JRML 41

@prefix rr: <http://www.w3.org/ns/
r2rml#>.

@prefix rml: <http://semweb.mmlab.be/
ns/rml#>.

@prefix ql: <http://semweb.mmlab.be/ns
/ql#>.

@prefix xsd: <http://www.w3.org/2001/
XMLSchema#>.

@prefix schema: <http://schema.org/>.
@prefix wgs84_pos: <http://www.w3.org

/2003/01/geo/wgs84_pos#lat>.
@prefix gn: <http://www.geonames.org/

ontology#>.

<#VenueMapping>
rml:logicalSource [
rml:source "http://www.example.com

/files/Venue.json";
rml:referenceFormulation ql:

JSONPath;
rml:iterator "$"

];

rr:subjectMap [
rr:template "http://loc.example.

com/city/{$.location.city}";
rr:class schema:City

];

rr:predicateObjectMap [
rr:predicate wgs84_pos:lat;
rr:objectMap [

rml:reference "$.venue.latitude"
]

];

(a) Example RML mapping in turtle for-
mat (source http:// rml.io/ spec.html#
example-JSON)

const N3 = require(’n3’);
const { namedNode } = N3.DataFactory;

function ql(id) {
return namedNode("http://semweb.

mmlab.be/ns/ql#" + id);
}

function schema(id) {
return namedNode("http://schema.org/

" + id);
}

function wgs84_pos(id) {
return namedNode("http://www.w3.org

/2003/01/geo/wgs83_pos#" + id);
}

module.exports = {
logicalSource: {
source: "http://www.example.com/

files/Venue.json",
referenceFormulation: ql("JSONPath

"),
iterator: "$"

},
subjectMap: {
template: "http://loc.example.com/

city/{$.location.city}",
classes: [schema("City")]

},
predicateObjectMaps: [
{

predicate: wgs84_pos("lat"),
objectMap: {
reference: "$.venue.latitude"

}
}

]
}

(b) Direct JRML mapping of Figure 5.4a

Figure 5.4: An example direct mapping from RML to JRML (note: this is not final the
final JRML version)

• interval : it is a number (in milliseconds) defining an interval in which the dataset
should be fetched.

41

http://rml.io/spec.html#example-JSON
http://rml.io/spec.html#example-JSON

42 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

• cron: it is a cron pattern (string) as specified at http:// crontab.org . It defines
specific times during a day at which the dataset should be refetched.

• timeZone: it is a timezone string. The available timezones can be found at http:
// momentjs.com/ timezone/ .

An interval and a cron job can be defined at the same time, while a timeZone specifies
the cron value further.

5.2.4 Subject aggregation

Subject aggregation can be achieved in JRML with the new property aggregate in the
section logicalSource. The aggregation levels that I proposed in Section 5.1.3 all, subjects
and none can be applied. To rehearse:

• all aggregates all subjects living in the same graph into the respective graph.

• subjects aggregates all subjects that are generated by one iteration through the
source into their respective graph.

• none does not apply any aggregation. All subjects are the single items of their
graph.

5.2.5 Multiple subjects per iteration

Allowing multiple subjects per iteration comes with a structural change to the previ-
ously shown JRML in Figure 5.4. RML and the prevously shown JRML both put the
subjectMap directly in the root of the mapping. This indicates that only one subject
definition is created per source and is applied for every iteration step.

To allow multiple subjects per iteration, one more nesting level is needed since Javascript
object keys are unique and multiple subjectMaps cannot be defined on the same level. In
addition, predicateObjectMap definitions are bound to the subject and must be grouped
with the subject they belong to. For this purpose, JRML introduces the new root prop-
erty eventItem. eventItem contains the mapping definitions for each event (an event is
one request of the data source). An eventItem must be an array of objects. Each object
consists of a subject and a predicateObjectMaps definition. The properties subject/sub-
jectMap and predicateObjectMaps are not allowed on the root level anymore to prevent
from confusion between subjects in the eventItem list and the root.

This structural change allows defining multiple subjects for each iteration step and in
addition, it enables defining of a custom predicateObjectMap for each subject.

5.2.6 Advanced transformations

One of the most interesting changes from RML to JRML is the advanced transformations
that can be applied in place of any query definition. As JRML is written in Javascript,
the functions for advanced transformations can be defined directly in Javascript.

42

http://crontab.org
http://momentjs.com/timezone/
http://momentjs.com/timezone/

5.2. JRML 43

I illustrate the advanced transformations on the example of the timestamp mapping of
the WWAU dataset as discussed in Section 5.1.5. The timestamp input comes in the for-
mat HH:MM only, the date is missing from the timestamp together with the seconds and
the timezone. To receive a standardized format with the additional date-time informa-
tion included, adanced transformations are needed. The timestamp must be placed as
part of the graph URI (http:// ex.org/ %stream-name% /URLencode(%timestamp%)).
First of all, TripleWave must know where to define the graph name. This is done in
RML in the graphMap definition which is part of the subjectMap. The same applies to
JRML. The graphMap takes a template for querying elements in the dataset and for string
interpolation. The RML approach directly translated to JRML would be template:
sr("wwau/Timestamp") where the function sr is a namespace wrapper (see Figure
5.4). The reference to the timestamp of the dataset is Timestamp. The curly braces
in the string are the way RML handles string interpolation with an integrated query.
JRML has this feature as well, but in the case of the WWAU timestamp, further trans-
formations are necessary to retrieve the missing date-time components as the example
mapping translates to: http:// streamreasoning.org/ wwau/ 11:36 . The timestamp is di-
rectly mapped and an URI encoding was not applied either. JRML allows to instead
use a function as value for template as shown in Figure 5.5. The function takes one
parameter named query which is a function as well. The function query takes a string
as an argument, which must be a query in the query language defined in logicalSource.
Therefore, query(’Timestamp’) returns the Timestamp entry of the current itera-
tion. The return value of the function passed to template is used as value for the RDF
graph in which the subject is placed. The code illustrated in Figure 5.5 uses the NPM
module momentjs8 to transform the timestamp from the WWAU dataset. The function
creates a moment time object time and adds the minutes and hours from the dataset. It
sets the seconds to zero and sets the timezone offset (time.utcOffset(60)) before
the timestamp is placed in a standardized format and URI encoded into the graph string.

As the example illustrates, arbitrary transformations can be applied through this
addition to JRML. A query function can be used in JRML at all places where queries
can be applied in the original RML plus predicateObjectMap.predicate for the option of
dynamic predicates. A query function can be used for:

• logicalSource.iterator

• subjectMap.template

• graphMap.template

• predicateObjectMap.predicate

• predicateObjectMap.objectMap.template

8https:// www.npmjs.com/ package/ moment (accessed 06.07.2018)

43

http://ex.org/%stream-name%/URLencode(%timestamp%)
http://streamreasoning.org/wwau/11:36
https://www.npmjs.com/package/moment

44 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

graphMap: {
template: query => {

const timestamp = query(’Timestamp’).shift();
const [h, min] = timestamp.split(’:’);
const time = moment();
time.second(0);
time.minute(min);
time.hour(h);
return sr(

‘wwau/${encodeURIComponent(
time.utcOffset(60).format()

)}‘
);

}
}

Figure 5.5: The graphMap template mapping of the WWAU dataset

5.2.7 Full source transform

I explained in Section 5.1.6 why advanced transformations are not enough for very cus-
tom datasets like TAQMZH. The addition of the property transform in the logicalSource
section of the mapping definition allows a source transformation before the source is
parsed by the JRML processor. The value of transform is a Javascript function taking a
string as a parameter. The function must return a string. The input string is the source
of the dataset as plain string.

In the case of TAQMZH (see Table 5.1), the source can be transformed to a new CSV
string through the re-organization of the values: the header must be one line of text
with the values Date, Place, Description, Measurement, Dataset, Unit and Value. The
rows below contain the values for the respective columns. The described format can be
handled by JRML. An iteration can be defined for it and references to values in the
iteration can be applied as usual.

5.3 Implementation of JRML and design decisions

In this section, I explain how I implemented JRML and discuss my design decisions at
code level.

5.3.1 Setup and interface

I realize the JRML processor as a standalone NPM module. For the use of the module in
TripleWave, I add the JRML processor as an external dependency. The module exposes
only one function: the entry point and the same time the startup instruction for the
processor. The startup function takes two parameters:

• config : the JRML mapping configuration as explained in Section 5.2

44

5.3. IMPLEMENTATION OF JRML AND DESIGN DECISIONS 45

• collector : a collector object factory function returning a collector which implements
the collector interface (see Section 5.3.3)

When called, the startup function returns a NodeJS data stream.9 The data stream
supplies the RDF items generated by the source transforms of JRML.

5.3.2 Architecture and code style

The JRML processor supports NodeJS versions above and including version 8.3. It makes
extensive use of the ES6 Javascript specification10 and async/await syntax to write and
handle promises11 in Javascript which are part of the upcoming ES2017 specification.12

The async/await syntax is supported by NodeJS version 8.3 and newer. The current
Long Term Support (LTS) version of NodeJS is at the time of writing 8.11.3 and thus,
all new NodeJS installations should be able to run the JRML processor.

I built the code base with functional programming patterns opposed to an object
oriented approach for simplifying testing and keeping side-effects at a minimum. The
code base consists therefore mainly of plain functions which do not rely on their context
and are self-contained. The functions work only on plain Javascript datastructures
excluding class constructs with the only exception of NodeJS data streams.

The internals of the JRML processor are shown in Figure 5.6 as a sequence diagram
with the functional components on listed on top. The diagram shows how one data source
retrieval is processed after the scheduler triggers. The datasource component retrieves
the dataset from the web and transforms (parses) it to a format which it can use. The
source data is piped into the iteration stream which is a NodeJS Transform stream.13

When the iteration stream receives a dataset, it starts the iteration through triggering the
iterator with the given datasource. The iterator iterates through the dataset according to
the instructions given by the mapping declaration. For each iteration step, the mapping
transformer is called for processing the active iteration. When the mapping transformer
issues a new RDF triple, it passes it to the collector. For simplicity and readability, the
push() call is marked with an asterisk in the figure to indicate that it is possibly called
multiple times. When the aggregation level is set to none, the mapping transformer calls
group on the collector which groups the triples issued since the beginning or since the
last group call. When the aggregation is set to subjects, the group call is executed by the
iterator whenever one iteration is complete. At the end of all iterations, when all triples
are written to the collector, collect is called to end the processing and retrieve a new
representation of the RDF items (depending on the implementation of the collector). The
newly obtained RDF items are pushed to the iteration stream ready for the consumer.

9https:// nodejs.org/ dist/ latest-v10.x/ docs/ api/ stream.html (accessed 06.07.2018)
10https:// www.ecma-international.org/ ecma-262/ 6.0/ (accessed 06.07.2018)
11https:// promisesaplus.com (accessed 06.07.2018)
12https:// www.ecma-international.org/ ecma-262/ 8.0/ #sec-async-function-definitions (accessed

06.07.2018)
13https:// nodejs.org/ dist/ latest-v10.x/ docs/ api/ stream.html#stream duplex and transform streams

(accessed 06.07.2018)

45

https://nodejs.org/dist/latest-v10.x/docs/api/stream.html
https://www.ecma-international.org/ecma-262/6.0/
https://promisesaplus.com
https://www.ecma-international.org/ecma-262/8.0/#sec-async-function-definitions
https://nodejs.org/dist/latest-v10.x/docs/api/stream.html#stream_duplex_and_transform_streams

46 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

F
igu

re
5
.6

:
T

h
e

arch
itectu

re
of

th
e

J
R

M
L

p
ro

cessor
as

seq
u

en
ce

d
iagram

.

46

5.3. IMPLEMENTATION OF JRML AND DESIGN DECISIONS 47

interface Collector {
push(...args: Term[]): void;
group(): void;
collect(): Promise<any>;

}

(a) The interface in typescript notation

type CollectorFactory = () =>
Collector;

(b) The factory in typescript notation

Figure 5.7: The collector in typescript notation

5.3.3 The collector

A collector is an object that implements the collector interface. The collector is passed
as an argument to the JRML processor and can therefore be defined by the user (for
example TripleWave). The collector interface is shown in Figure 5.7a (using the type-
script interface notation.14). The function definition of the collector factory is shown in
Figure 5.7b

A Term is an object that implements the Term interface defined in the RDF Rep-
resentation specification.15 A Promise is an object that implements the interface16 for
promises that are compatible with the ES6 specification for promises.17

An implementation of the collector interface accepts triples or quads through the push
method and groups them with the method group. For keeping track of the pushed triples
that should be grouped and later collected, the collector implementation is expected to
keep an internal state storing the triples. The interface does not prescribe a represen-
tation policy for the internal state as it should not be exposed. The group method is
expected to group the triples/quads that were pushed since the creation of the collector
or since the last call to group if available.

5.3.4 The Scheduler

The scheduler is an object internal to the JRML processor and depends on a JRML
mapping configuration. The type definitions for the scheduler are shown in Figure 5.8.

The scheduler is responsible for calling a function whenever a defined time interval
has passed or a date-time defined by the cron string is reached. Therefore, the scheduler
is an object which encapsulates the timing logic only and prescribes execution times.

5.3.5 The datasource service

The datasource service consists of a set of functions which depend on a scheduler and the
JRML mapping configuration. A datasource is created through the call to the function

14https:// www.typescriptlang.org/ docs/ handbook/ interfaces.html (accessed 09.07.2018)
15http:// rdf.js.org/ #term-interface (accessed 09.07.2018)
16https:// github.com/ Microsoft/ TypeScript/ blob/ master/ lib/ lib.es2015.promise.d.ts (accessed

09.07.2018)
17https:// www.ecma-international.org/ ecma-262/ 6.0/ #sec-promise-objects (accessed 09.07.2018)

47

https://www.typescriptlang.org/docs/handbook/interfaces.html
http://rdf.js.org/#term-interface
https://github.com/Microsoft/TypeScript/blob/master/lib/lib.es2015.promise.d.ts
https://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects

48 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

interface Scheduler {
interval?: number;
cron?: string;
start(): void;
resume(): void;
stop(): void;

}

(a) The scheduler interface

type SchedulerFactory = ({
interval?: number,
cron?: string,
timeZone?: string

}) => (() => void) => Scheduler;

(b) The scheduler factory type

Figure 5.8: The scheduler in typescript notation

which is exported by the datasource module with the JRML mapping configuration, the
URL to the source and a scheduler. The function returns a data stream providing new
source items whenever the scheduler triggered the service to retrieve a new version of
the datasource.

The data service is in charge of applying intitial full source transformations (see Section
5.2.7) and of parsing the input dataset to an internal representation which can be queried:

• JSON is parsed with JSON.parse.18 The internal representation are plain Javascript
objects.

• XML is parsed with the npm module xmldom.19 The internal representation is an
XML DOM.

• CSV is parsed with the npm module csv-parse.20 The internal representation are
plain Javascript objects.

5.3.6 The query mechanism

The query mechanism makes strong use of function currying and partial application. The
final query function passed to the JRML mapping configuration must have all necessary
information about the query context and iteration available. Partial function application
allows a gradual application of context information and works therefore like a multi-level
factory function.

The necessary context information for the query function are:

1. The query language defined in the JRML mapping configuration

2. The source that comes from the datasource stream

3. The iteration step

18https:// developer.mozilla.org/ de/ docs/ Web/ JavaScript/ Reference/ Global Objects/ JSON/ parse
(accessed 09.07.2018)

19https:// www.npmjs.com/ package/ xmldom (accessed 09.07.2018)
20https:// www.npmjs.com/ package/ csv-parse (accessed 09.07.2018)

48

https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://www.npmjs.com/package/xmldom
https://www.npmjs.com/package/csv-parse

5.4. INTEGRATION OF JRML INTO TRIPLEWAVE 49

4. The list of items that are iterated

5. The query instruction

The first four parameters are gradually applied in the business logic of the JRML
processor. Whenever new information is available to the JRML processor, the query
function is enriched and the new, enriched query is passed to the next processing steps.

When the query is enriched with all but the last parameters and is called with the
query instruction, the query is executed and returns the result.

When a function is defined in the JRML mapping configuration in place of a query
instruction, the query function is passed to that function as parameter in the state of the
forth enrichment (before applying the query instruction). When instead of a function a
string is given, the string is used as query instruction and the query function in its forth
enrichment state is executed with the given string as instruction.

5.3.7 The iterator

The iterator consists of a set of functions which depend on the JRML mapping con-
figuration, a query enriched with the query language and a datasource. The iterator
retrieves items from the datasource through the iteration instruction defined in the con-
figuration and performs an iteration over those items. A callback function passed to the
iterator is called for each iteration step with a context object providing the datasource,
the current iteration item, the current iteration step (number) and a query enriched with
the iteration step and the list of items iterated.

5.4 Integration of JRML into TripleWave

JRML is a standalone node module accepting a mapping configuration and an optional
collector object. The default collector object of JRML provides the stream items in the
JSON-LD format, which is the output format of TripleWave and thus, no additional
collector is needed.

For the configuration of TripleWave to use JRML, I extend the input possibilities
for the source key with the additional value of jrml. When the source is set to jrml,
TripleWave requires the additional key named jrml to be defined. The key jrml accepts
as value a JRML mapping configuration.

Figure 5.10 shows the dataflow of TripleWave with the integration of JRML in contrast
to the current dataflow of TripleWave shown in Figure 5.9. With JRML integrated
into TripleWave, a new branch is added to the dataflow including the scheduler which
retrieves (pulls) the datasets form the Web and the JRML transform applied before the
publication of the RDF output stream.

49

50 CHAPTER 5. TRANSFORMING 3-STAR DATA TO RDF

Figure 5.9: The dataflow in the current version of TripleWave

Figure 5.10: The anticipated dataflow after the implementation

In the following list, I evaluate if the state of TripleWave with the addition of JRML
fulfills the requirements listed in Sections 3.4.4 and 3.4.5.

• RD1: With the integration of JRML into TripleWave, the requirement RD1 is
fulfilled as TripleWave can now use frequently updated datasets as input source
through the use of JRML.

• RD2: JRML maps the datasets to RDF, in the case of TripleWave to the RDF
representation JSON-LD. The requirement RD2 is therefore fulfilled.

• RD3: JRML integrates a scheduler that can be configured with an interval or
with a cron instruction. The requirement RD3 is therefore fulfilled.

• RD4: The data retrieval of JRML pulls the datasets from the Web, timed through
the Scheduler. The requirement RD4 is therefore fulfilled.

50

5.4. INTEGRATION OF JRML INTO TRIPLEWAVE 51

• RT1: I evaluated and deployed the most complex of the datasets listed in Section
3.3 and listed by Muntwyler (2017) which are published in the formats CSV, JSON
or XML. The datasets which are more than 50MB in size can be transformed
but if the dataset is updated in intervals shorter than the download speed, the
latest stream items must be grouped and the retrieval interval increased. The
requirement RT1 is therefore fulfilled.

• RT2: Entities in the output stream can be defined through subjects in JRML
mapping configurations. JRML allows to define multiple subjects per iteration
(see Section 5.2.5). The requirement RT2 is therefore fulfilled.

• RT3: The properties of an entity can be computed from the input source through
predicate object maps in JRML. The advanced transformations (see Section 5.2.6)
allow to apply arbitrary transformations on the input data.

• RT4: JRML outputs RDF. The RDF representation that JRML generates can
be changed through the usage of a custom collector (see Section 5.3.3), but the
default format is JSON-LD. The requirement RT4 is therefore fulfilled.

51

6

Deployment

In this chapter, I present the datasets which I deploy one by one and describe decisions
connected to the respective dataset. Further, I show a table with the RDF triples for
each dataset.

Every dataset is deployed within an RDF graph following the format proposed by
Barbieri and Valle (2010): http:// ex.org/ %stream-name% /URLencode(%timestamp%
). The timestamp must be in the ISO 8601 format (Klyne and Newman, 2002)

6.1 Choosing datasets for deployment

To filter the datasets for the deployment, I used three criteria:

1. The representation of the published dataset (should be JSON, XML and CSV –
which are the formats supported by JRML)

2. How new entries are created in the dataset

3. The special characteristics of the dataset which make a purely declarative mapping
solution fail (complex characteristics preferred)

The third filter criterium takes various specialties of the datasets into account which
make mapping the dataset through a generalized, declarative, mapping language like
RML impossible.

The list of all datasets consist of 41 datasets. 25 datasets were collected by Muntwyler
(2017) and 16 datasets by me (see Section 3.3). After applying the first criterium, 35
datasets are left. Six datasets are not published as CSV, XML or JSON. After applying
the second criterium, 10 datasets are left: the other 25 follow a static update strategy and
for three datasets, no data is available anymore. Three datasets (MAQMZH, TAQMZH
and HAQMZH) have the exact same layout and update strategy - the only difference
is the time interval between the updates. The overlap in layout and update strategy
reduces the number of datasets to eight because I choose only one of the three datasets –
which is HAQMZH. I choose HAQMZH out of the three because it is the fastest updating
dataset. The datasets FAU and GAU also overlap, NTAU and TCZH show the same
layout and update characteristics which reduces the number of datasets to 6. Three of

http://ex.org/%stream-name%/URLencode(%timestamp%)
http://ex.org/%stream-name%/URLencode(%timestamp%)

54 CHAPTER 6. DEPLOYMENT

the seven datasets (ADSBB, PTZH and RDE) left are updated frequently by adding new
entries to the bottom of the document which is in the CSV format for both datasets. The
files instances stay the same but their size keeps growing. All three datasets are above
200 MB in size. The size together with an update strategy of adding new entries at the
bottom of the document lead to a nearly unusable datasets when delivering real-time
data. Even though they can possibly be used, it is most likely that about 200 MB of
unneeded entries have to be loaded everytime a new entry is added, only to put one new
item on the stream. This is highly inefficient. For the purpose of this thesis, I exclude
datasets with a size bigger than 50 MB for sparing network load on the deployment
machine. I am left with three datasets: HAQMZH (CSV), FAU (CSV), NTAU (CSV).

The datasets left have all different layouts and characteristics. It can be seen that
most datasets that have special characteristics are published as CSV. There is only one
JSON dataset which is not updated statically and no XML dataset.

I include the dataset PKDE in the range of datasets that I deploy to test the XML
support. Further, the dataset WWAU does not show special update characteristics but
is interesting in terms of the third filter criteria. It is the only dataset for which multiple
subjects per iteration are needed.

I end with five datasets that have to be deployed and which show the most complex
mappings throughout the datasets. The final list of datasets is: HAQMZH (CSV),
FAU(CSV), NTAU(CSV), WWAU(JSON), PKDE(XML)

6.2 The WWAU dataset

I showed the structure of the dataset WWAU and how it is relevant to the outcome of
JRML in the Sections 5.1 and 5.2. The main characteristics of the WWAU dataset is
its need for multiple subjects per iteration as stated in Section 5.1.4. JRML achieves
the mapping of multiple subjects per iteration through an array of mapping definitions
defined the eventItem entry of JRML (see Section 5.2.5). Each element in the array
describes a subject and a predicateObjectMap. The subject is one MBA (see Section
5.1.3). The timestamp in the resulting graph must be constructed through the current
date taken from the system (see Section 5.2.6) which is achieved through a new advanced
transformation mapping (see Figure 5.5). I define the predicateObjectMap with the
predicate hasDuration and an objectMap referencing the waiting time in minutes, in the
xsd:duration format1 which I add as datatype. The query must be a transformation
function for adding the identifiers for the duration format in minutes: query =>"PT"
+ query(pred) + "M".

Because the dataset is updated continuously with no delay, I choose to use the interval
option of the scheduler with a value of 2 seconds (2000 milliseconds).

Only one property (hasDuration) is defined in the mapping. The MBA identifier refers
to the name of the MBA as given by the dataset. Table 6.1 shows the mapping of the
property formally.

1http:// www.datypic.com/ sc/ xsd/ t-xsd duration.html (accessed 10.07.2018)

54

http://www.datypic.com/sc/xsd/t-xsd_duration.html

6.3. THE FAU DATASET 55

To describe data with no vocabulary definitions, I create new definitions in the names-
pace http:// streamreasoning.org/ {datasetname}/ where the dataset name is replaced
with the name of the dataset in lower-case – here wwau.

Subject Predicate Object

srwwau:{MBA name} time:hasDuration {waiting duration}
ˆˆxsd:duration

Table 6.1: The mapping of the WWAU dataset. The prefix srwwau: refers to the names-
pace http:// streamreasoning.org/ wwau/ , the prefix time: to the namespace
http:// www.w3.org/ 2006/ time#.

6.3 The FAU dataset

The FAU dataset holds hourly average values of the particulate matter PM10 measured
through the air quality monitoring network of north-east Austria (NUMBIS).2

The speciality of the dataset FAU is that new entries are added on the columns. There
is a preset of 24 entries (columns), one for each hour of the day. If no data is given for a
certain hour, the field holds a value of -999. Each row in the CSV except for the header
describes the location at which the measurement is taken.

Two existing vocabularies about air pollution are the OWL vocabulary for weather3

and the vocabulary presented by Galárraga et al. (2017). The OWL weather ontology
defines the property hasAirPollution but restricts its domain to a WeatherState which
the FAU dataset provides no information about. The ontology of Galárraga et al. (2017)
enables talking about the air pollution through the notion of an observation. In the
FAU dataset, one measurement of the air pollution at one station is one observation. I
use the ongology defined by Galárraga et al. (2017) to describe the RDF output of the
transformation as listed in Table 6.2

The reference to the measurement in the dataset must make use of the advanced
tranformation functions because the current value has to be read for each subject from
the column that holds the data of the last hour. The column names have the format
WertHH, where HH is a two-character number for the hour in which the measurement
was taken.

The dataset is updated hourly, however, entries are only available each hour from two
hours before. The dataset must thus be retrieved each hour and the column with the
data of two hours before must be mapped to RDF and published. I thus set the cron
job to the same configuration as for the dataset HAQMZH (2 * * * *).

2https:// www.data.gv.at/ katalog/ dataset/ 8b057f32-1312-40ae-ae51-9aa0a0d372ca (accessed
12.07.2018)

3https:// www.auto.tuwien.ac.at/ downloads/ thinkhome/ ontology/ WeatherOntology.owl#hasValue
(accessed 18.07.2018)

55

http://streamreasoning.org/{dataset name}/
http://streamreasoning.org/wwau/
http://www.w3.org/2006/time#
https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl#hasValue

56 CHAPTER 6. DEPLOYMENT

Subject Predicate Object

air:observation/AU{timestamp}#{station} air:schema/
station

srfau:{station}

air:observation/AU{timestamp}#{station} air:schema/pm10 {measurement}
ˆˆxsd:decimal

Table 6.2: The mapping of the FAU dataset. The prefix srfau: refers to the namespace
http:// streamreasoning.org/ fau/ , the prefix air: to the namespace http://
qweb.cs.aau.dk/ airbase/ data/ .

6.4 The HAQMZH dataset

The HAQMZH dataset holds hourly updated measurements of the air quality of the last
seven days at the stations Stampfenbachstrasse, Schimmelstrasse, Rosengartenstrasse
and Heubeeribüel in Zürich.4

Out of the five datasets for deployment, the HAQMZH dataset needs the most special
treatment (see Section 5.2.7 on TAQMZH). TAQMZH and HAQMZH have the same
layout and bring therefore the same problems.

The dataset is published in the encoding latin1 which I can set through the encoding
property in the logicalSource of the JRML mapping. As the dataset is updated each
hour (ten minutes after the full hour), the cron job for the scheduler must be set to a
value right after. I choose every hour 11 minutes after the full hour: 11 * * * * (in cron
job notation).

Following the discussion in Section 5.2.7 about the TAQMZH dataset, the datset
HAQMZH needs a full source transform which is defined through the transform property
in the logicalSource that maps the source such that the first row in the new source is the
header and the rows are the data that conform to the columns defined in the header.

I choose the same strategy as for the FAU dataset to map the values of the dataset to
RDF. The mappings are listed in the Table 6.3.

4https:// data.stadt-zuerich.ch/ dataset/ luftqualitaet-stunden-aktuelle-messungen (accessed
12.07.2018)

56

http://streamreasoning.org/fau/
http://qweb.cs.aau.dk/airbase/data/
http://qweb.cs.aau.dk/airbase/data/
https://data.stadt-zuerich.ch/dataset/luftqualitaet-stunden-aktuelle-messungen

6.5. THE NTAU DATASET 57

Subject Predicate Object

srhaqmzh:observation/AU{timestamp}#{station} srhaqmzh:
place

srhaqmzh:
{place of
measurement}

srhaqmzh:observation/AU{timestamp}#{station} srhaqmzh:
description

{description}

srhaqmzh:observation/AU{timestamp}#{station} srhaqmzh:
measuremen-
tUnit

{measurement
unit}

srhaqmzh:observation/AU{timestamp}#{station} srhaqmzh:
molecule

{measured
molecule}

srhaqmzh:observation/AU{timestamp}#{station}
srhaqmzh:value

{value}

Table 6.3: The mapping of the HAQMZH dataset. The prefix srhaqmzh: refers to
the namespace http:// streamreasoning.org/ haqmzh/ , the prefix air: to the
namespace http:// qweb.cs.aau.dk/ airbase/ data/ .

6.5 The NTAU dataset

The dataset NTAU holds hourly measurements of the hydrographic service of Tirol. The
measurements include waternames, position information and height reference.5 This
dataset must be retrieved after the full hour to get the latest measurements. I choose 2
* * * * * like for the dataset FAU.

There are two specialities regarding the dataset NTAU. The first speciality is that it
has a structural error. The first linebreak in the document is missing which makes the
first row with data end up on the same line with the header. Through this error, the
dataset cannot be parsed without a full source transform applied with the transform
property on the logicalSource which automatically inserts the missing linebreak before
parsing.

The second speciality is the addition of new entries to the dataset at various places in
the document. For each station/water for which the dataset shows the water level exist
measurements from different times during the last two days. The stations are organized
in groups and the newest entries are inserted at the top of the entries which group they
belong to.

To iterate only the newest entries in the dataset, the iterator must be a function
which groups the entries belonging to one station together and gets the newest entry for
each group. The found elements must be returned by the iterator for that the iteration
process iterates only those items.

I could not find any existing vocabulary matching the requirements for describing the

5https:// www.data.gv.at/ katalog/ dataset/ 44720e90-c2de-497b-8162-3810206dd011 (accessed
12.07.2018)

57

http://streamreasoning.org/haqmzh/
http://qweb.cs.aau.dk/airbase/data/
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011

58 CHAPTER 6. DEPLOYMENT

NTAU dataset.

Table 6.4 shows the output triple layout of the mapping.

I choose to use the same strategy as for FAU and denote an observation as the subject
to which the measurement value and metadata are linked.

Subject Predicate Object

srntau:observation/AU{timestamp}#{station} srntau:water srntau:{water}
srntau:observation/AU{timestamp}#{station} srntau:rainfall {rainfall}

ˆˆxsd:decimal

srntau:observation/AU{timestamp}#{station} srntau: mea-
surementUnit

{unit}

srntau:observation/AU{timestamp}#{station} srntau:seaLevel {sea level}
ˆˆxsd:positive-
Integer

srntau:observation/AU{timestamp}#{station} srntau:station srntau:{station}
srntau:observation/AU{timestamp}#{station} srntau:easting {easting}

ˆˆxsd:decimal

srntau:observation/AU{timestamp}#{station} srntau:northing {northing}
ˆˆxsd:decimal

srntau:observation/AU{timestamp}#{station} srntau:
EPSGCode

{epsg code}

Table 6.4: The mapping of the NTAU dataset. The prefix srntau: refers to the names-
pace http:// streamreasoning.org/ ntau/ .

6.6 The PKDE dataset

The PKDE dataset shows the current occupancy of the parking lots in the city area of
Kleve (DE). It is continuously published, so I choose an interval of two seconds for the
retrieval to get the updates fast without putting too much load on the network.

The PKDE dataset has itself no speciality but it is the only dataset published as
XML. The data queries for the dataset PKDE are XPath expressions. No advanced
transformations have to be applied to map the dataset PKDE with the exception of
the timestamp. The timestamp is not in ISO 8601 format and therefore needs to be
transformed. An interesting note is when using an advanced transform function, the
query function returns XML DOM nodes. A selected textnode has to be transformed to
a Javascript string through .toString(). The same applies to the transformation of
the timestamp.

A vocabulary for describing parking lots exists and is described at http:// vocab.datex.
org/ terms/ #. I use it for mapping the information of the dataset PKDE as shown in
Table 6.5

58

http://streamreasoning.org/ntau/
http://vocab.datex.org/terms/#
http://vocab.datex.org/terms/#

6.6. THE PKDE DATASET 59

Subject Predicate Object

srpkde:{parking name} dtx:parkingName {parking name}
srpkde:{parking name} dtx:parking-

NumberOfSpaces
{max parking spaces}
ˆˆxsd:positiveInteger

srpkde:{parking name} dtx:parking-
NumberOfVacantSpaces

{number of free parking
spaces}
ˆˆxsd:positiveInteger

srpkde:{parking name} dtx:parking-
SiteOpeningStatus

{parking open state}

Table 6.5: The mapping of the PKDE dataset. The prefix srpkde: refers to the names-
pace http:// streamreasoning.org/ pkde/ , the prefix dtx: to the namespace
http:// vocab.datex.org/ terms/ #.

59

http://streamreasoning.org/pkde/
http://vocab.datex.org/terms/#

7

Conclusions

This thesis builds on the research of Muntwyler (2017) and targets the transformation
of 3-star datasets to RDF for their publication as data streams on the web. My focus
is on OGD datasets: I examined a list of 16 datasets in addition to the datasets found
by Muntwyler (2017). As Muntwyler (2017) focused on the Swiss OGD portal, I extend
the list of datasets of the Austrian and German OGD portals.

For making the publication of Linked Data as data streams on the web more accessible
and to provide a streamlined solution, I changed the TripleWave configuration from using
.properties files to using .js files and prepared TripleWave for global installations through
yarn and npm. It is now possible to run multiple TripleWave instances in parallel through
the definition of an array of configurations in the TripleWave configuration file.

I extend TripleWave such that 3-star datasets can be defined as source together with a
mapping declaration which maps values from the source to an RDF output. TripleWave
receives an integrated solution for publishing Linked Data as data streams through this
extension.

I found that existing Linked Data mappings rely on declarative definitions which makes
them language-independant. The drawback is limited expressivity: source data can only
be mapped as-is into the target source or interpolated into new values.

The published OGD datasets I inspected in this thesis varied greatly in layout and
structure. The multitude of structures, especially in CSV datasets, complicated finding
a concensus for declarative mapping definitions to a degree that replacing a declarative
solution with a solution in a programming language became a valid and necessary option.
The OGD datasets built the basis for the requirements which a mapping solution has to
meet.

I introduce JRML, an RDF mapping solution based on RML. JRML uses the same
definitions as RML and makes slight changes to the structure. Instead of using the
declarative RDF syntax Turtle, JRML is written in Javascript which allows for the
application of advanced transformations.

Opposed to RML, the output of JRML is a data stream which is controlled by an
integrated scheduler. JRML mapping definitions include a scheduler definition which
configures the scheduling mechanism. The source encoding can be defined through a
new encoding definition, subject aggregation is made possible through an aggregation
definition. Multiple subjects per iteration can be defined due to using an array of subjects

62 CHAPTER 7. CONCLUSIONS

with their predicate-object mappings. The additional property transform allows source
text transforms before the internal parsing takes place.

The main feature of JRML is the possibility to define a Javascript function in place
of a query definition with which advanced transformations can be applied. The exact
layout of the output values can be controlled through using transformation functions
where RML allowed only string interpolation through embedding queries into a string.

The use of JRML is limited to 3-star data. Data which is not available as structured
text cannot be parsed and currently, only JSON, CSV and XML are supported. Not
supported are data joins as specified in RML due to the usage of JRML in data streams.
Data items in data streams are bound to time which makes joining datasets with differ-
ent expansion in time unnecessary. Further, linking different datasets together is only
possible by applying identifying URIs.

JRML meets the requirements and provides a tool for mapping even the most challeng-
ing datasets. Even though it cannot be implemented the same way in other programming
languages, it serves the use-case better than a declarative mapping like RML. The us-
age of a self-contained mapping declaration instead of a declarative mapping together
with external transformation hooks through the programming language prevents from
unexpected side-effects and improves the readers interpretation of the mapping.

I deployed five datasets with JRML through TripleWave, all with different character-
istics and challenges concerning the mapping solution. An interesting observation is that
the publishers of the OGD datasets do not have guidelines on the presentation of their
data which makes it possible that datasets have various structures. In one instance, I
even encountered a structural error in the CSV file of the dataset NTAU which could
only be fixed with a full, textual source transform.

With JRML and its integration into TripleWave, more Open Data datasets can be
published with much less effort and with the first dedicated solution for mapping fre-
quently updated datasets to an RDF data stream. With the deployment of five OGD
datasets, I increased the number of datasets on the web and more datasets can be added.

In the future, JRML can be extended to support more query languages for the sup-
ported data types, for example JMESPath for JSON.1 I created JRML for mapping
frequently updating datasets to RDF data streams. Further work could test a usage
of JRML outside of the field of data streams, for example for the mapping of static
3-star datasets. The JRML processor can be used in place of RML with an extension
to JRML which implements RML-like data joins and the integration of SQL as query
engine. The advanced transformations of JRML can allow more expressive mappings
than RML not only in the field of data streams but also for non-continuous mappings of
3-star datasets. An integration of JRML on top of TripleWave into deployment pipelines
of software systems as an intermediate mapping transformer could leverage the publica-
tion of Linked Data as part of automated deployments. The addition of a file-watcher
and stream subscriptions to complement the scheduler would allow the integration into
enterprise systems.

1http:// jmespath.org (accessed 21.07.2018)

62

http://jmespath.org

References

Barbieri, D. F. and Valle, E. (2010). A Proposal for Publishing Data Streams as Linked
Data. In Linked Data on the Web Workshop.

Berners-Lee, T. (2006). Design Issues: Linked Data.
http://www.w3.org/DesignIssues/LinkedData.html.

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked Data – the Story so Far.
International journal on semantic web and information systems, 5(3):1–22.

Bizer, C. and Seaborne, A. (2004). D2RQ-Treating Non-RDF Databases as Virtual RDF
Graphs. In Proceedings of the 3rd international semantic web conference (ISWC2004),
volume 2004. Proceedings of ISWC2004.

Brickley, D. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named Graphs, Provenance
and Trust. In Proceedings of the 14th international conference on World Wide Web,
pages 613–622. ACM.

Das, S., Sundara, S., and Cyganiak, R. (2012). R2RML: RDB to RDF Mapping Lan-
guage, W3C Recommendation 27 september 2012. Cambridge, MA: World Wide Web
Consortium (W3C)(www. w3. org/TR/r2rml).

Dell’Aglio, D., Le Phuoc, D., Le-Tuan, A., Ali, M., and Calbimonte, J.-P. (2017). On a
Web of Data Streams. In Proceedings of the ISWC2017 workshop on Decentralizing
the Semantic Web, Vienna, Austria, pages 21–22.

Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., and Van de
Walle, R. (2014). RML: A Generic Language for Integrated RDF Mappings of Het-
erogeneous Data. In Proceedings of the 7th Workshop on Linked Data on the Web.

Galárraga, L., Mathiassen, K. A. M., and Hose, K. (2017). QBOAirbase: The European
Air Quality Database as an RDF Cube. In International Semantic Web Conference
(Posters, Demos & Industry Tracks).

64 References

Klyne, G. and Newman, C. (2002). Date and Time on the Internet: Timestamps.
Technical report.

Mauri, A., Calbimonte, J.-P., Dell’Aglio, D., Balduini, M., Brambilla, M., Della Valle,
E., and Aberer, K. (2016). Triplewave: Spreading RDF Streams on the Web. In
Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., and
Gil, Y., editors, The Semantic Web – ISWC 2016, pages 140–149, Cham. Springer
International Publishing.

McGuinness, D. L., Van Harmelen, F., et al. (2004). OWL Web Ontology Language
Overview. W3C recommendation, 10(10):2004.

Muntwyler, P. (2017). Increasing the Number of Open Data Streams on the Web.

Sedira, Y. A., Tommasini, R., and Della Valle, E. (2017). Towards VoIS: a Vocabulary
of Interlinked Streams.

Sequeda, J. F. and Corcho, O. (2009). Linked Stream Data: a Position Paper. In
Proceedings of the 2nd International Workshop on Semantic Sensor Networks, SSN
09. CEUR-WS.

Taelman, R., Heyvaert, P., Verborgh, R., and Mannens, E. (2016). Querying Dynamic
Datasources with Continuously Mapped Sensor Data. In Proceedings of the ISWC
2016 Posters & Demonstrations Track co-located with 15th International Semantic
Web Conference (ISWC 2016).

Vandenbussche, P.-Y., Atemezing, G. A., Poveda-Villalón, M., and Vatant, B. (2017).
Linked Open Vocabularies (LOV): a Gateway to Reusable Semantic Vocabularies on
the Web. Semantic Web, 8(3):437–452.

64

A

Appendix

A.1 Run instructions

In this section, I explain how to run TripleWave with JRML as input source and
mosquitto as target of the output stream. The instructions are targeted mainly to
linux systems. The tools/packages that are required to be installed are:

• NodeJS version >= 8.3.0

• npm

• mosquitto1

• python (For building dependencies installed by npm install)

• build-essential (For building dependencies installed by npm install)

• mosquitto-clients (For testing / subscribing to the deployed datasets)

Following I line out all steps to get a running TripleWave:

1. cd into the folder TripleWave and run either npm install or yarn depending
on the package management tool of choice to go sure that all dependencies of
TripleWave are installed.

2. Repeat (1) for the folders TripleWaveConfig and JRML.

3. cd into the folder jrml and run npm link

4. cd into the folder TripleWave and run npm link to make TripleWave available
globally on the system. The linking is, like for step (4), necessary as long as
TripleWave is not yet published on the NPM registry.

1Find the installation instructions for your system at https:// mosquitto.org/ download/ (accessed
14.07.2018).

https://mosquitto.org/download/

66 APPENDIX A. APPENDIX

5. cd into the folder TripleWave and run npm link jrml. The linking is important
for establishing the dependency as long as JRML is not yet published on the NPM
registry2

6. Startup mosquitto if it is not yet running. On a Linux system with systemd,
mosquitto can be started with sudo service mosquitto start.

7. cd into the folder TripleWaveConfig and run triplewave.

If an error appears saying that the module jrml was not found, linking JRML to Triple-
Wave has failed. In this case try to repeat steps three to five. If the command triplewave
is not found on your system, running npm link from the directory TripleWave has
failed. Try to repeat step five.

A TripleWave instance should be running by now. The mosquitto topic to which
TripleWave publishes the streams, moquitto can be subscribed to with the command
mosquitto sub -t ’pkde’ from the package mosquitto-clients. In the command
shown before, ’pkde’ is the topic to which the subscription applies. The deployed datasets
are available by subscribing to the topic with the short name of the dataset.

A.1.1 The command TripleWave

The global command triplewave can be called with additional flags. Available flags
are:

• --configuration or -c
Specifies the configuration file which should be chosen.
Defaults to ./tw config.js

• --print or -p
If set, TripleWave prints the stream output to the console

• --index or -i
Specifies the index of the configuration with which TripleWave should be started.
It refers to the index of the configuration in the array exported by the configuration
file.
If not specified, TripleWave starts all configurations in child processes.

2https:// www.npmjs.com (accessed 14.07.2018)

66

https://www.npmjs.com

List of Figures

2.1 Example RDF triples (Bizer et al., 2009) 5
2.2 The 5 stars of Linked Open Data (source: http://5stardata.info) 6

4.1 A basic configuration layout in (a) Javascript and (b) JSON 23

4.2 The bin entry for TripleWave . 28

5.1 Two possible designs for the scheduler integration 33
5.2 The dataset WWAU as an example source 33
5.3 The two different possible outputs for the WWAU dataset 35
5.4 An example direct mapping from RML to JRML (note: this is not final

the final JRML version) . 41
5.5 The graphMap template mapping of the WWAU dataset 44
5.6 The architecture of the JRML processor as sequence diagram. 46
5.7 The collector in typescript notation . 47
5.8 The scheduler in typescript notation . 48
5.9 The dataflow in the current version of TripleWave 50
5.10 The anticipated dataflow after the implementation 50

List of Tables

3.1 Obtained datasets with their metadata. Part 1 14
3.2 Obtained datasets with their metadata. Part 2 15
3.3 Obtained datasets with their metadata. Part 3 16
3.4 Obtained datasets with their metadata. Part 4 17
3.5 The datatypes of the datasets ordered for the amount of their occurrence 20

4.1 A list of all possible configuration properties for TripleWave 24
4.2 The property mappings of the TripleWave configuration from .properties

to .js . 27

5.1 An extract of the TAQMZH dataset . 38

6.1 The mapping of the WWAU dataset. The prefix srwwau: refers to the
namespace http:// streamreasoning.org/ wwau/ , the prefix time: to the
namespace http:// www.w3.org/ 2006/ time#. 55

6.2 The mapping of the FAU dataset. The prefix srfau: refers to the names-
pace http:// streamreasoning.org/ fau/ , the prefix air: to the namespace
http:// qweb.cs.aau.dk/ airbase/ data/ . 56

6.3 The mapping of the HAQMZH dataset. The prefix srhaqmzh: refers to
the namespace http:// streamreasoning.org/ haqmzh/ , the prefix air: to
the namespace http:// qweb.cs.aau.dk/ airbase/ data/ 57

6.4 The mapping of the NTAU dataset. The prefix srntau: refers to the
namespace http:// streamreasoning.org/ ntau/ 58

6.5 The mapping of the PKDE dataset. The prefix srpkde: refers to the
namespace http:// streamreasoning.org/ pkde/ , the prefix dtx: to the names-
pace http:// vocab.datex.org/ terms/ #. 59

http://streamreasoning.org/wwau/
http://www.w3.org/2006/time#
http://streamreasoning.org/fau/
http://qweb.cs.aau.dk/airbase/data/
http://streamreasoning.org/haqmzh/
http://qweb.cs.aau.dk/airbase/data/
http://streamreasoning.org/ntau/
http://streamreasoning.org/pkde/
http://vocab.datex.org/terms/#

	Introduction
	Related Work
	Open Data
	Linked Data
	Linked Data mappings for existing datasets
	Stream Publishing

	Problem analysis
	The current state of TripleWave
	Approaching a consensus for publication
	A survey on OGD datasets
	Procedure
	Results
	Obtained datasets

	Requirements
	Configuration of TripleWave
	Startup of TripleWave
	Supported Data Formats
	Input source
	A new way of transformation

	Changes to TripleWave
	The configuration
	Choosing the right representation
	Choosing the layout

	Startup

	Transforming 3-star data to RDF
	Choosing a mapping language
	Encoding
	Scheduling
	Subject aggregation
	Multiple subjects per iteration
	Advanced transformations
	Full source transform before mapping
	The solution space

	JRML
	General RML to JRML mapping
	Encoding
	Scheduling
	Subject aggregation
	Multiple subjects per iteration
	Advanced transformations
	Full source transform

	Implementation of JRML and design decisions
	Setup and interface
	Architecture and code style
	The collector
	The Scheduler
	The datasource service
	The query mechanism
	The iterator

	Integration of JRML into TripleWave

	Deployment
	Choosing datasets for deployment
	The WWAU dataset
	The FAU dataset
	The HAQMZH dataset
	The NTAU dataset
	The PKDE dataset

	Conclusions
	Appendix
	Run instructions
	The command TripleWave

