
Design and Implementation of a
Blockchain-based Trusted VNF

Package Repository

Manuel Keller
Zürich, Switzerland

Student ID: 13-795-125

Supervisor: Eder John Scheid, Muriel Franco
Date of Submission: May 2, 2019

University of Zürich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Network operators are under much pressure to improve their services: On the one side,
they need to lower prices for customers, on the other side they have to invest in technologies
and at the same time provide their services with great stability. For this reason, operators
are turning to Network Function Virtualization (NFV).

In this thesis, first, the current works of using blockchain technology to enhance the
security of NFV environments are provided. So far, there have been efforts to create
blockchain-secured NFV Management and Orchestration systems as well as to set up
trusted computing environments. These projects so far did not include the Virtualized
Network Functions repository (VNF repository). However, the blockchain’s properties
could enhance the security in this area by allowing to verify a package’s integrity without
relying on a trusted third-party for remote attestation or a secure database. Thus, a design
of a trusted VNF repository using blockchain technology is proposed. The smart-contract
back end offers a package repository as well as a repository manager and is supplemented
by a front end comprised of four distinct systems.

The proposed design is then implemented in the Ethereum network as a proof-of-concept.
The smart contract is written in Solidity. The front end is based on the truffle and react
framework. The solution design relies on an external NFV environment to deploy, manage
and run the network functions.

The resulting implementation succeeds in enhancing the security of the VNF repository
without relying on external parties. The system is without access control and thus rep-
resents an open market for VNFs that all interested parties can access. The transaction
costs associated with the contract are reasonable and within useful boundaries. However,
the open design requires well-designed incentives. Otherwise, malicious participants could
abuse the system for financial benefit.

This work shows that a blockchain-based trusted repository for VNF packages is feasible
and offers advantages over traditional techniques. Even though there are still challenges
connected to it, it resolves a weak point in existing NFV systems and shows promise to
be integrated in already blockchain-based NFV systems.

i

ii

Zusammenfassung

Netzbetreiber stehen unter großem Druck, ihre Dienste zu verbessern: Auf der Kundenseite
müssen sie die Preise tief halten, auf der anderen Seite sollten sie in neue Technologien
investieren und ihre Dienstleistungen mit hoher Stabilität erbringen. Aus diesem Grund
setzen Betreiber vermehrt auf Network Function Virtualization (NFV).

In dieser Arbeit werden zunächst die aktuellen Forschungsergebnisse zur Verwendung der
Blockchain-Technologie zur Erhöhung der Sicherheit von NFV-Umgebungen vorgestellt.
Es gab bereits Bestrebungen, Blockchain-geschützte NFV-Management- und Orchestrie-
rungssysteme zu entwickeln und vertrauenswürdige Computerumgebungen einzurichten.
Diese Projekte lassen allerdings das Thema des Repositorys der Virtualized Network Func-
tions (VNF) aus. Die Eigenschaften der Blockchain könnten jedoch auch die Sicherheit in
diesem Bereich erhöhen, indem sie es ermöglichen, die Integrität eines Pakets zu überprü-
fen, ohne sich auf einen vertrauenswürdigen Drittanbieter für remote attestation oder eine
zentrale Datenbank verlassen zu müssen. Deshalb wird ein Design eines Trusted VNF-
Repositorys auf Basis einer Blockchain vorgeschlagen. Das Repository-Backend basiert
dabei auf einem Smart Contract, auf den die vier Systeme des Frontends zugreifen.

Das vorgeschlagene Design wurde im Anschluss im Ethereum-Netzwerk als Proof-of-
Concept umgesetzt. Der Smart Contract wurde in Solidity geschrieben, das Frontend
basiert auf dem Truffle Framework. Die Implementierung basiert auf einer externen NFV-
Umgebung zur Bereitstellung, Verwaltung und Ausführung der Netzwerkfunktionen.

Mit der resultierenden Implementierung gelingt es, die Sicherheit des VNF-Repositorys zu
erhöhen, ohne auf externe Parteien angewiesen zu sein. Das System ist ohne Zugangskon-
trolle und stellt damit einen offenen Markt für VNFs dar, auf den jeder zugreifen kann.
Die mit dem Vertrag verbundenen Transaktionskosten sind angemessen und in sinnvollen
Grenzen. Das offene Design erfordert jedoch gut gestaltete Anreize. Andernfalls könnten
böswillige Teilnehmer das System zum finanziellen Vorteil missbrauchen.

Diese Arbeit zeigt, dass ein blockchain-basiertes Trusted Repository für VNF-Pakete
machbar ist und Vorteile gegenüber herkömmlichen Techniken bietet. Auch wenn es immer
noch Herausforderungen gibt, löst es einen Schwachpunkt in bestehenden NFV-Systemen
und zeigt ein Potenzial für die Integration in bereits Blockchain-basierte NFV-Systeme.

iii

iv

Acknowledgments

I want to thank the Communication Systems Group team and Prof. Dr. Burkhard Stiller
for giving me the opportunity to write my master thesis about such a fascinating topic.
Special thanks go to Eder Scheid, who not only was my supervisor for this thesis but
also in the Communication Systems Seminar, which was the point in time when I got
interested in this topic. Also I thank my second supervisor Muriel Franco for his insights
into NFV systems through his background with the FENDE project.

Lastly, I thank Claudia Vogel for helping me write this thesis as well as Florian Fuchs for
proofreading.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Theoretical Background 3

2.1 Network Function Virtualization . 3

2.2 VNF Packages . 4

2.3 Blockchain and Smart Contracts . 5

2.4 Solidity . 6

3 Related Work 9

3.1 Marketplaces for Virtualized Network Functions 9

3.2 Trusted NFV Environment . 11

3.3 Blockchain-based NFV Management and Orchestration 12

3.4 Discussion . 13

vii

viii CONTENTS

4 Blockchain-based Trusted VNF Repository 15

4.1 Solution Design . 15

4.1.1 Registration and Update System 18

4.1.2 Licensing System . 18

4.1.3 Verification System . 19

4.1.4 Rating System . 19

4.1.5 Blockchain-based Repository Manager 19

4.1.6 Blockchain-based Package Repository 20

4.1.7 Data Storage . 21

4.1.8 NFV Back End . 21

4.2 Implementation . 22

4.2.1 Blockchain-based Repository Backend 22

4.2.2 Graphical User Interface . 27

5 Evaluation and Discussion 33

5.1 Management and Security . 33

5.2 Economical Aspect . 34

5.3 Cost Analysis . 35

5.4 Discussion . 35

6 Conclusion 37

6.1 Future Work . 38

Abbreviations 43

Glossary 45

List of Figures 45

List of Tables 47

List of Listings 49

CONTENTS ix

A Installation Guidelines 53

B Contents of the CD 57

x CONTENTS

Chapter 1

Introduction

The concept of Network Functions Virtualization (NFV), introduced in 2012 by the Euro-
pean Telecommunications Standards Institute (ETSI) [19], proposes to decouple network
functions such as firewalls, Deep Packet Inspection (DPI), Intrusion Prevention Systems
(IPS), and load balancers from their specialized physical hardware. With NFV, these
functions are provided in a virtualized way and realized using generic Commercial Off-
The-Shelf (COTS) hardware that can be deployed in any location, not just the Service
Provider’s (SP) premises. This virtualization approach offers the SP several advantages,
such as increased scalability, flexibility, security, cost reduction, and a faster product life-
cycle [16], because the Virtualized Network Functions (VNFs) are no longer physically
bound to a vendor-specific hardware. Thus, VNFs can be developed by third-party de-
velopers with a low entry-barrier, fostering competition and the creation of innovative
network services.

Blockchain is a recent technology, first described in 2009 in the Bitcoin white paper [17].
A blockchain is a data structure which allows for data to be stored in a distributed ledger.
Depending on the implementation and the configuration of a blockchain-based distributed
ledger system, different properties can be reached. Blockchains without access control
(i.e., public blockchains) operate on an incentive-basis. By design, any user can verify
the state of the system. The incentives are designed in such a way that the nodes (users)
verify the correctness of any new data that is added to the system. Such a blockchain’s
most important properties are immutability, and the decentralization of the data [31].
The former ensures that once the data is included in the blockchain it cannot be altered
or removed; while the latter provides a high availability of the data, i.e., the data will be
available if there is at least one peer holding a copy of the blockchain.

The properties of blockchain form the perfect environment for the execution of Smart
Contracts (SC). In the Bitcoin network [17], SCs facilitate the transfer of funds between
untrusted entities. In the Ethereum network [8], SCs are written in a Turing-complete
programming language, called Solidity [12]. This allows more functionality and helps
to enforce a variety of contracts through crytographic principles [4]. SCs deployed in
blockchains that provide Turing-complete languages can be used to facilitate trusted ex-
changes between untrusted entities and the trusted and correct execution of programmed

1

2 CHAPTER 1. INTRODUCTION

SC code. These properties can be used in the context of NFV solutions to address the
security issues regarding central databases for package integrity verification.

1.1 Motivation

The deployment of NFV solutions faces a major challenge regarding incorporating trust
to stakeholders. Research has been conducted in how to address this issue in the NFV
computing environment with the introduction of Trusted Platform Modules (TPM) and
remote attestation services [23]. Although these systems work well to verify the state of
the NFV environment, they rely on a central database to verify package integrity. This
thesis proposes to improve VNF package verification by introducing a blockchain-based
trusted repository. This can then be used to provide trusted information concerning the
VNF packages acquired by stakeholders. In this sense, stakeholders are not bound to rely
on central trusted authority, but rather on a distributed and highly available data source.

1.2 Description of Work

In this thesis, a survey on existing NFV marketplaces as well as repository solutions is
given. The focus lies on solutions which already implement one or more elements through
a blockchain-based distributed ledger. Then, a blockchain-based trusted repository is
designed and implemented as a Proof-of-Concept (PoC). The repository is intended to
later be integrated with traditional database-based package verification environments;
thus acting as a trusted database containing VNF package information. Moreover, the
repository allows users to acquire VNFs without the need of a Trusted Third Party (TTP)
using an SC deployed on the Ethereum network. The SC automatically transfers any
license fees to the vendor once a VNF is acquired, and sends the VNF package link to
the buyer before verifying package integrity. Furthermore, to assess the feasibility of
implementation, a front end was implemented that allows interaction with the repository.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides the theoretical
background of the thesis. It explains the underlying concepts of NFV, details VNF pack-
ages, and explains the blockchain technology and SCs. The subsequent chapter 3 provides
related works to the thesis by describing existing VNF marketplaces and existing uses of
the blockchain technology for management and orchestration in the NFV environment. In
Chapter 4, the solution’s architecture and design is explained. It is followed by implemen-
tation details including the user interface, and its functions. In Chapter 5, the design and
implementation are evaluated against the thesis’ goals and requirements. For this purpose
feasibility, management and security as well as economical aspects are considered. Lastly,
Chapter 6 concludes the thesis with a summary and future work.

Chapter 2

Theoretical Background

Technology is changing rapidly and continuously. Thus, it is crucial to establish a common
background and overview before delving into the technical details of this thesis. This
chapter aims to provide this overview and explains technologies and concepts later used
in the solution’s design and implementation.

2.1 Network Function Virtualization

Network functions, such as firewalls, load balancers, switches, and routers, generally re-
quire specialized physical hardware. Network Function Virtualization (NFV) is a proposal
to decouple the functions from their hardware such that they can be supplied via soft-
ware on generic server hardware. These Virtualized Network Functions (VNF) have great
potential to change operations of Service Providers (SP). The European Telecommuni-
cations Standards Institute (ETSI) has lead, since 2012, the development and standard-
ization of NFV. It has released the ETSI Management and Operation (ETSI MANO)
[19] architectural framework which is considered to be the de-facto industry standard for
the implementation of NFV solutions. The main components of the MANO framework
(Figure 2.1) are:

• NFV Orchestrator : Acts as a coordinator that connects all VNFs into the required
structure to offer network services. It manages the resource requirements of VNFs
and is responsible for authentication and authorization of network requests.

• VNF : A functional block with defined interfaces and functional behaviour that per-
form a network service.

• VNF Manager : Each VNF instance has an associated VNF manager which works in
coordination with the NFV Orchestrator and manages the VNF instances in terms
of instantiation, configuration and termination.

• NFV Infrastructure (NFVI): The generic server infrastructure on which the VNFs
are deployed.

3

4 CHAPTER 2. THEORETICAL BACKGROUND

• Virtualized Infrastructure Manager (VIM): Manages the virtualized NFV infrastruc-
ture and allocates virtual to physical resources.

Figure 2.1: ETSI NFV MANO Architectural Framework [19]

The ETSI MANO architectural framework was created by an Industry Specification Group
(ISG) NFV consisting of ETSI members. These industry partners have created this stan-
dard to improve compatibility between vendors which in turn means more freedom of
choice and flexibility. This is a core requirement of the creators of the standard. As seen
in the architecture model, depicted in Figure 2.1, the standard does not include specifica-
tions about the design of VNF, but rather represents a specification on how the services
are incorporated in an NFV environment [19].

2.2 VNF Packages

VNFs are typically shared and deployed in form of packages which can be used on virtual-
ization infrastructure. Such a package contains all relevant code and interface definitions
necessary for the operation of a network function and is deployed on the NFVI using one
or more Virtual Machines (VM). For configuration, management and orchestration, it is
then integrated into an NFV environment (refer to Section 2.1) which links the services
to create the desired network function chains [19]. Each package needs to include detailed
specifications for operation and deployment in order to work in the context of the NFV

2.3. BLOCKCHAIN AND SMART CONTRACTS 5

environment. This challenge is tackled by ETSI’s introduction of a package template
called Virtualized Network Function Descriptor (VNFD). This defines the deployment
and behaviour through three key components [21]:

• Topology : All necessary nodes (i.e., VMs) are specified including their connectivity
and relationships. Virtual Deployment Units (VDU) are used to describe capabilities
and requirements, such as disk size, memory size, and required CPUs.

• Deployment aspects : This section describes aspects such as deployment parameters,
instantiation constraints, scaling, among others. Additionally, deployment flavours
are used to describe differing requirements and constraints depending on the de-
ployment type. For example, this part would specify that a large scale deployment
may need an additional node for supervision.

• VNF Lifecycle Management (LCM) operations : Provides a description of manage-
ment operations with their input parameters.

Based on the VNFD, the industry group OASIS created the Topology and Orchestration
Specification for Cloud Applications (TOSCA) data model standard which implements
ETSI’s specifications. This model is written in YAML [21]. Listing 2.1 presents an
excerpt from a TOSCA descriptor.

ETSI’s VNFD and its implementations such as TOSCA mean that a VNF’s specifications
are stored in a single file. Thus, the NFV solutions can rely on those specifications to verify
compatibility, set up the required environment and also access lifecycle methods. This
leads to better cross-compatibility and reduces the complexity of the NFV environment.

1 topo logy template :
2 node templates :
3 VDU1:
4 type : t o s c a . n o d e s . n f v . VDU . T a c k e r
5 p r o p e r t i e s :
6 image : c i r r o s −0 .4 . 0 − x 8 6 6 4 −d i s k
7 a v a i l a b i l i t y z o n e : nova
8 c a p a b i l i t i e s :
9 nfv compute :

10 p r o p e r t i e s :
11 d i s k s i z e : 10 GB
12 mem size : 2 0 4 8 MB
13 num cpus: 2

Listing 2.1: Excerpt of a TOSCA Descriptor for a Tracker running on CirrOS [22]

2.3 Blockchain and Smart Contracts

Blockchain is the underlying technology of Bitcoin first introduced in 2009 [17]. Since then,
it quickly became popular for its novel way of storing transaction data in a distributed

6 CHAPTER 2. THEORETICAL BACKGROUND

ledger. First mostly used for cryptocurrencies and other transaction-based applications,
it is now seen as a tool applicable to a variety of problem sets. The blockchain’s ledger is
comprised of blocks of data. Each block is cryptographically sealed using hashing. As each
block contains the hash of the previous block, this chain of blocks guarantees practical
integrity: Data in sealed blocks cannot be changed, otherwise all following blocks would
become invalid. A block is chosen by a consensus mechanism which is based on economic
incentives. If there is an accidental split in the blockchain, it is the longest chain that is
chosen for the same economic incentives. In practice, this means that the more follow-up
blocks there are to a sealed block, the more secure data stored in it becomes.

SC rely on blockchains to “facilitate, execute and enforce the terms of an agreement
between untrusted parties” [1]. In contrast to traditional contracts, SCs do not rely
on trust or third-parties such as banks to enforce an agreement. In Bitcoin, the smart
contracts are restricted to financial transactions only and are not Turing-complete (e.g.,
loops are not possible). Other blockchains such as Ethereum [8], introduced in 2015, do
have Turing-complete smart contract capabilities. This enables more possibilities but also
introduces new security risks. [18, 4].

The Ethereum network is account-based. This means that unlike the Bitcoin network,
funds are always in one place, there is no need to keep track of all changes and transactions
in the network as the account state is updated whenever a transaction concerning the
account occurs. SCs in Ethereum also have such a state. Nodes in the Ethereum network
always store the most recent state of each contract, which enables the storage of data.
Due to the Turing-complete nature of the network, all computing operations have to be
paid to prevent Distributed Denial of Service (DDoS) attacks. These transaction fees are
called gas. Only if an SC function is called with sufficient gas it is executed and the new
state is stored in the network. The computations themselves are done in the Ethereum
Virtual Machine (EVM) in bytecode. There exist several programming languages that
can be compiled into this bytecode, the most popular being Solidity [4].

2.4 Solidity

Solidity is the leading programming language for SCs in the Ethereum network. It became
a popular language to develop distributed applications (DApps) over the past years with
now over 2000 DApps deployed in the Ethereum network [11]. It is designed with influ-
ences of C++, JavaScript and Python with the syntax resembling JavaScript and static
typing. It was designed intentionally in a simple way to allow easy development of secure
contracts. A Solidity file can contain multiple contracts. The language also supports
inheritance and polymorphism which is for example used to create new ERC20 tokens1

that are compatible with all common wallet applications. Each contract can contain the
following elements [12]:

• State Variables: Such variables are stored in the SC’s storage and can be changed
by updating the state of the SC.

1The ERC20 token standard is a list of rules that simplify the creation of a new token, including
functions such as transfer

2.4. SOLIDITY 7

• Functions: Functions are executable code that can be called. The visibility and
accessibility of the function can be defined, i.e., there exist external, public, internal,
and private functions.

• Function Modifiers: These can be used to change the behaviour of a function, e.g.,
checking a condition before execution or control access to a function.

• Events: Events can be emitted by the contract and are stored in the transaction log.
Events can be captured in a front end via JavaScript callbacks and are a convenient
way of further processing data.

• Struct types: Structs are a class-like type structure which are composed of variables
of other types. Struct variables can be used in the definition of further structs as
well.

• Enum Types: An enum type has a defined set of possible values. A variable of this
type can take one of these values.

The Solidity language simplifies the development of SCs considerably. However, it also
comes at a cost: As it is the most used programming language for SCs in the Ethereum
network, it is also the focus of hackers and malicious participants. Any newly found
vulnerability in the programming language thus impacts the security of all previously
deployed SCs.

8 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Related Work

In this chapter, works that are related to the core topic of this thesis are described.
First, an overview of existing marketplaces for VNFs and their repository solutions are
presented. Then, previous efforts that combine the blockchain technology and NFV are
described. Finally, a discussion regarding the advantages and shortcomings of such works
is conducted.

3.1 Marketplaces for Virtualized Network Functions

The standardization approach that industry groups are pushing in the NFV environment
context fostered the research and creation of marketplaces for VNF packages. As more
and more vendors are developing solutions adapted to this standard, the competition
around such topics also grows.

FENDE [5] is a Marketplace and a Federated Ecosystem for the Distribution and Execu-
tion of VNFs. It presents the user with all compatible network functions currently listed
in its repository. Unlike previous works, it also includes management and orchestration
tools which allow users to deploy and manage licensed services in the same ecosystem.
As such it is one of the first to combine marketplace and MANO environment in one
solution. As the system is configurable for the use with both public and private NFVI
hosting, institutions that desire to run network functions on-premise can use it as well.
FENDE’s architecture (refer to Figure 3.1) is composed of three layers:

• User layer: The part of the system that is responsible for user interactions with
three types of users: customers, reviewers, and developers.

• Data layer: Acts as the backend for all user layer functions and offers a communi-
cation API. Also, it contains the catalogue of VNFs and the repository that stores
package information. The repository manager is responsible for any changes in the
repository and keeps local copies of the VNF packages.

9

10 CHAPTER 3. RELATED WORK

Figure 3.1: FENDE Architecture

• NFV layer: This is the NFV environment responsible for running and managing the
VNFs. It is an adapted version of the open-source NFV environment OpenStack.

FENDE uses a traditional database-based repository in the data layer for its VNF func-
tions. It relies on the TOSCA descriptor for deployment and lifecycle management func-
tions [5].

In [6], the authors discuss the challenges that arise in the FENDE ecosystem: (i) Business
model: The FENDE ecosystem needs to support all business models of VNF vendors.
This includes fixed-price and pay-as-you-go pricing as well as newly proposed methods
of pricing such as auction-based and custom-built (e.g., a specific VNF is implemented
according to specifications negotiated between client and vendor). (ii) Auditing: Clients
need the possibility to verify that a VNF is providing network functions as promised.
(iii) VNF recommendation: In a growing market for VNFs, it is important to help the
clients choose the right offer according to their requirements. Classification and clustering
techniques may need to be explored to solve this challenge. (iv) Security: As the VNFs
are developed by third-parties and used in different NFV environments, security is a key
challenge. Customers need ways of ensuring the integrity of VNF packages and secure
ways of sending commands to the management and orchestration modules of the NFV
solutions.

T-Nova [31] is an architecture proposal intended for network operators’ services. It would
enable them to virtualize their own network functions as well as offer them to their clients
in an on-demand, per-customer way. This lets them provide network services to their
customers without having to deploy specialized hardware on each customer’s premises.
A marketplace is put in place for customers to acquire and instantiate their required
network services on-demand. This greatly improves the speed and efficiency of service
rollouts, utilizes hardware in a more efficient manner, introduces improved monitoring
capabilities and is much easier to maintain and upgrade. With industry participants
that are actively involved in the development of the ETSI NFV standard and support
of researchers the aim is to create an integrated ecosystem that is capable of handling
the industry’s requirements. The T-Nova platform is deployed on network operators
premises and access-controlled by the network operator. Thus, the users have to rely

3.2. TRUSTED NFV ENVIRONMENT 11

on the operator’s choice of VNF offers. The repository itself is based on a traditional
database, specifically MongoDB [31].

3.2 Trusted NFV Environment

ETSI has released a whitepaper on security and trust guidance [20] in which they analyze
and discuss the challenges on those topics. Trust is identified as a key issue regarding the
NFV environment which should be validated before and during the runtime of any VNF.
As use cases, among others, the following were constituted:

• Establishing a trusted execution platform on which NFV system and VNFs are
executed as expected.

• Establishing trusted entities in the NFV environment by verifying all software, ser-
vices, processes and policies to protect, e.g., from maliciously injected VNF code.

• Establish trusted relationships between the NFV Orchestrator, the NFV Manager
and the VIM (refer to Figure 2.1) to manage and orchestrate effectively and safely.
Additionally, these entities should not be virtualized using the NFVI to create a
barrier between MANO and VNF execution.

• Establish trusted VNF lifecycle management to operate as well as configure services
in a trusted way from instantiation, to operation and termination.

Establishing trusted components is especially important, as a compromised VNF may
influence the correct execution of related VNFs (i.e., down- or upstream in the network
function chain) [20, 23].

In [23], the authors further discuss the incorporation of trust in NFV environments as one
of the challenges of NFV. A lack of trust leads to negative implications: NFV solutions
are security-relevant for clients, therefore the environment and the VNFs themselves need
to be secure and trusted. Two common methods of addressing trust are identified:

• Trusted Module Platform (TPM): A hardware-based root-of-trust module that is
being used to create a chain-of-trust to establish a trusted runtime environment for
VNF packages.

• Remote attestation server: The platform is verified during the runtime. This enables
providers to verify platform trust e.g., before launching new instances of VNFs.

Specifically, in terms of NFVI security, boot time verification using a TPM’s launch con-
trol policy (LCP) as well as a run time verification by an attestation server is proposed.
To determine VNF security before any launch, a VNF package integrity check is con-
ducted via a remote trusted server called TSecO (external trusted security orchestrator).
It compares the hashes of the images stored in the NFVI image database with the hashes

12 CHAPTER 3. RELATED WORK

Figure 3.2: Security in VNF Lifecycle States [23]

that have previously been signed by a signing authority and stored by the TSecO. Addi-
tionally, VNF binding is proposed to be used during all stages, where VNFs are bound to
certain virualized hardware. This aims to guarantee the execution of VNFs in a certain
geographical area, e.g., to adhere to privacy laws [23]. Figure 3.2 shows these security
measures for each state of VNF execution and NFVI state.

3.3 Blockchain-based NFV Management and Orches-

tration

As blockchain is independent of any authorization entity and can create trust between
untrusted network participants, it is also useful for areas other than financial transactions
where trust needs to be established. Also, the practical immutability of public blockchains
is a useful tool for areas where auditability is crucial. The combined properties lead to
research about using blockchain in the NFV Management and Orchestration environment.
Two such approaches are detailed below.

VMOA [7] is an authentication model that establishes a trustful VM environment. Instead
of having an internal or external trusted authenticator, the authors propose to establish
a VMOA blockchain to offload the authentication responsibility to a distributed ledger.
In this system, each orchestration request is sent to a blockchain, authenticated and only
then sent to the virtualization server. If successful, the VM manager reports the success to
the blockchain. Each step is stored in the blockchain and is thus auditable. The authors

3.4. DISCUSSION 13

propose an implementation of a private blockchain based on the Hyperledger framework
[29].

In [26], the authors propose a blockchain-based NFV MANO solution. SINFONIA stands
for Secure vIrtual Network Function Orchestrator for Non-repudiation, Integrity, and Au-
ditability and is designed for datacenters in which multiple network services from different
clients are deployed. The authors identify that each VNF configuration update must be:

• Confidential : Ensures that no vulnerabilities are exposed.

• Anonymous : The tenant identity must not be exposed.

• Authenticated : Only verified requests must be forwarded.

• Traceable: To ensure auditability of past configuration states.

• Accountable: To ensure identity verification.

• Permanent : To have the configuration history accessible.

Figure 3.3: SINFONIA Architecture [25]

The authors have designed a blockchain-based NFV architecture which addresses all re-
quirements (see Figure 3.3). The prototype implementation shows that the proposed
architecture ensures high availability and eliminates a single point-of-failure [26, 25]. How-
ever, it is not clear of where the blockchain nodes are located, and which are the incentives
for peers to maintain these blockchain nodes.

3.4 Discussion

As seen in Section 3.1 there have been efforts in developing marketplaces for VNF pack-
ages. These lead to the creation of systems where users can access a VNF repository

14 CHAPTER 3. RELATED WORK

containing various packages that can be deployed quickly and easily. By integrating the
marketplace into NFV solutions such as NFV OpenStack, they offer all the base solution’s
advantages while also offering easy access to a great number of packages which increases
competition.

A common challenge of such marketplace-based and traditional NFV solutions is estab-
lishing a trusted computing environment. The solutions of the current research presented
in Section 3.2 are based on hardware sources of trust or use remote attestation. However,
both systems are reliant on a trusted entity: In the case of TPM, the producer of the chip
has to be trusted to secure the system. With remote attestation, the external provider of
trust has to be trusted. Here, a blockchain-based system may offer advantages over these
centralized systems.

With VMOA and SINFONIA (see Section 3.3), the authors addressed the trust challenge
by incorporating blockchain technology into the management and orchestration of NFV
platforms. This way, they secure the computing environment and the solution’s config-
uration. However, they do not extend to the VNF repository. This leads to a security
flaw: Malicious actors can potentially gain access to the central VNF repository to inject
malicious code. Even though run in a secure environment, this compromises the security
of the whole system. ETSI has identified this challenge and lists the VNF package ver-
ification in their Trust and Security Guidance specification as a requirement for a save
NFV environment [20]. Extending the blockchain-based system to repositories would be a
simple way of guaranteeing VNF integrity, enhancing the solution’s security considerably.

As discussed, efforts have been made in providing trust in the NFV management. Still,
there is considerable amount of research in this field yet to be done. So far, the research
has shown that a trusted NFV environment should extend to the VNF packages and could
be blockchain-based. However, current projects have yet to extend to the repositories.

Chapter 4

Blockchain-based Trusted VNF
Repository

This chapter describes the design and implementation of a solution that incorporates
trust in the VNF repository context by using blockchain technology. This solution tackles
the challenge of VNF integrity verification described in Section 3.4 by leveraging the SC’s
properties of immutability and accessibility to create a trusted VNF repository, where it is
possible for a user to verify the integrity of VNF packages running on a local virtualization
platform. Moreover, it allows the author to automatically receive any licensing payments
once a VNF is acquired. It should be mentioned that this trusted repository can be
integrated into existing platforms, such as the ones described in Chapter 3.

4.1 Solution Design

Figure 4.1 depicts the proposed architecture of the solution. It is composed of three main
systems: (i) Front end responsible for user interaction, (ii) Blockchain-based Repository
back end handling the requests, and (iii) NFV back end executing the VNFs. It is
worth mentioning that the third system was not implemented as it can be provided by
any third-party NFV solution. An overview of the architecture and the main systems
is presented below with more detailed descriptions of the components presented in the
following subsections.

As users of the system, two distinct groups were identified: (i) Customers want to acquire
VNF packages to execute in their NFV environment as well as review their acquisitions.
(ii) Developers want to offer their packages in the repository and thus need to register as
well as maintain their offers.

The first system, representing the front end, is where users and developers interact with
the solution. It includes four components:

• Registration and Upgrade System: This system is used by developers to register,
maintain, and otherwise manage their VNF packages in the repository.

15

16 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

Figure 4.1: Proposed Architecture

• Licensing System: Using this system, customers can acquire VNF package licenses.

• Rating System: Verified licensees can rate their VNF packages to help others choose
packages and increase the trust in the offers.

• Verification System: This system is in place to enable buyers to verify the integrity
of a VNF package. Also, it enables the verification of a buyer’s license for rights
management purposes.

The second system is the blockchain-based repository back end and comprises the following
components:

• Repository Manager : The manager accesses the package repository and offers the
users functions to query and maintain the repository. It controls access and authen-
ticates the user such that, depending on the function, only authorized users can
perform operations.

• Package Repository : This is the database where package details are stored.

• Data Storage: The VNF packages can be either stored using (i) Managed data
storage where a traditional server is used to host the data or (ii) Distributed data
storage, such as the InterPlanetary File System (IPFS) [2], where a Peer-to-peer
(P2P) network is used to increase availability and integrity of files.

The third system represents an existing third-party NFV solution that will set up, config-
ure and execute the VNFs after they have been acquired. This can be any NFV solution
(e.g., the NVF solutions presented in Chapter 3) that is capable of connecting to the
repository using an Application Programming Interface (API).

4.1. SOLUTION DESIGN 17

A
tt

ri
b
u
te

D
es

cr
ip

ti
on

U
se

E
x
a
m

p
le

N
am

e
N

am
e

of
im

ag
e

M
a
rk

et
p
la

ce
ti

tl
e

N
ex

tG
en

er
a
ti

o
n

F
ir

ew
a
ll

D
es

cr
ip

ti
on

D
es

cr
ip

ti
on

of
fu

n
ct

io
n

al
it

y,
se

ll
in

g
p

oi
n
ts

,
ad

va
n
ta

ge
s

M
a
rk

et
p
la

ce
d

es
cr

ip
ti

o
n

T
h
e

n
ex

t
G

en
er

at
io

n
F

ir
ew

a
ll

is
th

e
n
ex

t
b
ig

th
in

g
in

N
F

V
te

ch
n
o
lo

g
y

D
es

cr
ip

ti
on

iF
ra

m
e

iF
ra

m
e

fo
r

fu
rt

h
er

cu
st

om
iz

ed
d
es

cr
ip

ti
on

in
m

ar
k
et

p
la

ce
M

a
rk

et
p
la

ce
d

es
cr

ip
ti

o
n

h
tt

p
s:

/
/
w

w
w

.c
is

co
.c

o
m

/
m

a
rk

et
p
la

ce
/

N
G

F
W

iF
ra

m
e.

h
tm

l

Im
ag

e
li
n
k

C
u
st

om
iz

ed
m

ar
ke

tp
la

ce
co

ve
r

ar
t

lo
ca

ti
on

M
a
rk

et
p
la

ce
d

es
cr

ip
ti

o
n

h
tt

p
s:

/
/
w

w
w

.c
is

co
.c

o
m

/
m

a
rk

et
p
la

ce
/
N

G
F

W
.j

p
g

V
en

d
or

V
en

d
or

n
am

e
M

a
rk

et
p

la
ce

d
es

cr
ip

ti
o
n

C
is

co

F
am

il
y

P
ac

ka
ge

fa
m

il
y

n
am

e
M

a
rk

et
p
la

ce
d
es

cr
ip

ti
o
n

V
N

F
X

2
0
0
0

V
N

F
ca

te
go

ry
C

at
eg

or
iz

at
io

n
of

V
N

F
p
ac

ka
ge

M
a
rk

et
p
la

ce
ca

te
g
o
ri

za
ti

o
n

F
ir

ew
a
ll

S
u

p
p

or
te

d
P

la
tf

or
m

S
u

p
p

or
te

d
p
la

tf
or

m
s

to
ru

n
p
ac

ka
ge

C
o
m

p
a
ti

b
il
it

y,
m

a
rk

et
p
la

ce
fi
lt

er
in

g
{[

O
p

en
st

a
ck

:
v
er

si
o
n

:
”>

1
.2

”,
te

st
ed

O
n
:

[”
1
.2

”,
”1

.3
”]

,
G

T
-F

E
N

D
E

:
ve

rs
io

n
:

”>
1
.2

”,
te

st
ed

O
n
:

[”
1
.2

”,
”1

.3
”]

]

T
O

S
C

A
d
es

cr
ip

to
r

T
O

S
C

A
J
S

O
N

d
es

cr
ib

in
g

n
o
d
es

,
se

rv
ic

es
,

re
la

ti
on

sh
ip

s
of

p
ac

ka
ge

C
o
m

p
a
ti

b
il
it

y
a
n

d
d

ep
lo

y
m

en
t
{”

v
n

fd
”:
{

”n
a
m

e”
:

”v
n
fd

2
”,

”d
es

cr
ip

ti
o
n
”:

”C
li
ck

o
n

O
S
v

T
em

p
la

te
”,

”s
er

v
ic

e t
y
p
es

”
:

[.
..

L
ic

en
ci

n
g

op
ti

on
s

L
ic

en
si

n
g

op
ti

on
s

se
le

ct
ab

le
b
y

b
u

ye
r

L
ic

en
si

n
g

[C
re

a
ti

ve
C

o
m

m
o
n

B
Y

N
C

N
D

:
co

st
:

”0
.0

0
”,

d
u
ra

ti
o
n
:

”-
1
”,

C
o
m

m
er

ci
a
l

L
ic

en
se

:
co

st
:

”1
5
0
.0

0
”,

d
u

ra
ti

o
n

:”
3
0
”]

V
en

d
or

ad
d
re

ss
L

ic
en

si
n

g
p
ay

m
en

ts
d
es

ti
n

at
io

n
ad

d
re

ss
L

ic
en

si
n
g

0
x
3
2
7
3
c0

4
F

C
d
0
8
8
3
6
5
7
3
0
B

2
a
8
3
4
4
8
1
0
0
8
6
2
a
F

5
3
5
D

E

R
ep

os
it

or
y

li
n
k

L
in

k
to

p
ac

ka
ge

re
p

os
it

or
y

(p
ac

ka
ge

lo
ca

ti
on

)
R

et
ri

ev
a
l

o
f

V
N

F
im

a
g
e

h
tt

p
s:

/
/
g
et

.c
is

co
.c

o
m

/
V

N
F

X
2
0
0
0
/

N
ex

tG
en

er
a
ti

o
n

F
W

.q
co

w
2

R
el

ea
se

d
at

e
R

el
ea

se
d

at
e

of
p
ac

ka
ge

M
et

a
d

a
ta

2
2
.0

1
.1

8

B
u
il
d

n
am

e
b
u
il
d

n
am

e
/

n
u

m
b

er
of

p
ac

ka
ge

M
a
rk

et
p

la
ce

,
u

p
d
a
te

h
is

to
ry

N
G

F
W

-q
co

w
2
-r

el
ea

se
1
.5

.2
.2

-d
efi

n
it

iv
e-

2
2
0
1
2
0
1
8
-C

e3
B

d
7

V
er

si
on

n
u
m

b
er

V
er

si
on

n
u

m
b

er
of

p
ac

ka
ge

M
a
rk

et
p

la
ce

,
ra

ti
n
g
s

1
.5

.2
.2

S
iz

e
F

il
e

si
ze

of
V

N
F

p
ac

ka
ge

M
a
rk

et
p
la

ce
d

es
cr

ip
ti

o
n
,

va
li
d
a
ti

o
n

1
2
5
3
.4

3
M

b

H
as

h
K

ec
ca

k
-2

56
h
as

h
of

p
ac

ka
ge

P
a
ck

a
g
e

in
te

g
ri

ty
va

li
d
a
ti

o
n

0
x
5
7
b

b
9
4
d
9
6
ea

b
1
4
9
4
4
7
ff

1
0
9
ff

9
4
1
fe

8
f9

1
1
7
f2

ca
e8

0
e3

f0
d
fc

fe
4

T
ab

le
4.

1:
V

N
F

P
ac

ka
ge

D
efi

n
it

io
n

18 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

4.1.1 Registration and Update System

The registration and update system is used by developers to submit new VNF packages
to the repository. Also, it is where developers can maintain their existing packages, e.g.,
to update the package to a new version or to update information that is stored in the
repository. Table 4.1 shows all relevant attributes and metadata of VNF packages that can
be stored in the repository. The table contains each attribute’s name, short descriptions,
the intended usage in the system, as well as an example. This component allows vendors
to change any of these attributes and the possibility to remove the offering from the
repository.

4.1.2 Licensing System

This system is responsible for handling the customer request to acquire a VNF package.
It collects the licensing fees from the customer and enables the customer to access the
package after the funds have successfully been transferred. Figure 4.2 shows the process of
acquiring a package: First, the user requests a license of a VNF package through the front
end. With the request, the customer sends the licensing fee as well as any transaction fees
that occur. The Smart Contract checks if sufficient funds were included in the request
and if so, transfers the licensing fee to the vendor. Then, it reads the package data from
the repository. Afterwards, a licensing event with all necessary information to retrieve
the VNF and to execute it in the NFV environment is emitted. The front end captures
this event and proceeds to retrieve the package data from the external data storage. The
package can now be deployed and used in the NFV environment.

Figure 4.2: Data Flow of Acquiring a VNF Package

4.1. SOLUTION DESIGN 19

4.1.3 Verification System

Verifying the integrity of the VNF package before deployment and execution is crucial
as it ensures that no tampering with the code or file corruption has happened after a
package has been retrieved from the repository. For this reason, a verification system is
included in the solution. It allows image integrity verification by comparing the hash of
the downloaded package with the hash previously generated when the package was added
to the repository. Such a verification can happen in two stages of the deployment:

• Before deployment: When a new VNF package is acquired, the system retrieves the
package and verifies it against the information stored in the trusted repository.

• During runtime: The system offers capabilities to re-retrieve the hash and to re-
verify the package integrity. This is useful before lifecycle operations such as up-
scaling to more instances. Also, it allows to re-retrieve the VNFD to verify the
correctness of configuration and lifecycle operations.

4.1.4 Rating System

The package repository has no access control, so any interested party can register new
VNF packages. Also, there is no curation of the repository’s offerings. This leads to a trust
issue, as malicious parties may register packages that do not adhere to their specifications.
Thus, the customers need another way to assess the quality of an offering. For this reason,
a rating system was included: It allows licensees to give a rating which will be presented
to future customers. In Table 4.2, all relevant attributes of such ratings are listed. It
contains name, description, usage and an example for each attribute. It is worth noting
that these attributes offer the possibility to write a in-depth rating text. However, for
easier classification, there is a summary as well as a rating score which reflect the overall
satisfaction with the package.

4.1.5 Blockchain-based Repository Manager

The repository manager is the only component that is accessing the repository and as
such, is responsible for creating, managing and maintaining repository entries. It precedes
the repository and acts as an intermediate party between user and repository, receiving
all requests to the blockchain-based repository back end and accessing the repository as
necessary. Therefore, this component offers an API for all functions needed in the front
end . When a function is called, the repository manager authenticates the user and if
authorized, executes the function call and returns the result.

The repository manager is based on a smart contract. If one of the functions is called by
the front end, it is thus executed on a blockchain VM (refer to Section 2.3). This means
the code is running in a trusted environment and is capable of handling secure data such
as authentication of the request. Additionally, it can be used to perform access control
and data validation before it is stored in the repository.

20 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

Attribute Description Use Example

Package ID Identifier of rated package Show target VNF
package, rating filtering

3fsdf4e-34rgs

Package
version

Rated package version Show target VNF
package, rating filtering

1.3.1.0

Rating score Rating score on scale Rating summary 9 of 10

Summary Summary of rating Rating title Works as intended

Description Rating full text Rating details [...]

Advantages List of advantages Rating details performance; quick
deployment

Disadvantages List of disadvantages Rating details few customization
options

Platform Platform used by rater Rating details OpenStack 1.3.5

Rater Name of rater Rating metadata Paul Simon

Table 4.2: VNF Package Rating Definition

4.1.6 Blockchain-based Package Repository

The package repository stores all relevant VNF package details (refer to the VNF package
definition in Table 4.1) together with acquired licenses, ratings and verification informa-
tion. The repository is only accessible through the repository manager as described in
Subsection 4.1.5. As it is based on an SC, all information stored in the repository will
subsequently be stored in the underlying blockchain network. This incurs cost; thus grow-
ing with increasing amount of data. In practice, this means that storing large amounts
of data should be omitted and the repository data should be downsized as much as pos-
sible. In the package repository context, the most amount of data is used on the VNF
package. To decrease cost, only a link to the VNF package location is to be stored in
the blockchain. The package data itself should be hosted on external data storage, even
though this introduces a new problem in that the external data storage cannot be trusted.
However, the verification system included in the solution allows to verify the integrity of
the packages such that this challenge is tackled.

As this solution only represents a PoC, not all attributes of the VNF package definition
(refer to Table 4.1) were included. Instead, they were reduced to include only the most
relevant attributes that can be divided into four areas of usage:

• Marketplace descriptions: name, description, version,

• Marketplace Categorization: service type, resources, requirements, ratings

• License payments: author, price

• Package verification: repository link, repository hash

4.1. SOLUTION DESIGN 21

4.1.7 Data Storage

The SC-based package repository does not offer storage for the VNF package image.
Instead, it is stored externally and can follow two different approaches: (i) Managed data
storage, or (ii) Distributed data storage.

Managed Data Storage

Managed data storage was chosen as an option as it is the most straightforward approach
to storing data. Another advantage is that it could perform access control if necessary,
based on licensing information in the SC. In this approach, the files are stored on a
centralized server. In the context of VNF packages, this means that the packages are
stored in a source code repository, e.g., GitHub or GitLab. Alternatively, the VNF code
can be stored on a dedicated server controlled by the package author.

This approach to data storage represents an untrusted data source, as a central manage-
ment of the server can tamper with the link’s target files unnoticed. Thus, if this method
is used, it is crucial to verify the integrity of the package before it is used in a production
environment.

Distributed Data Storage

In a distributed data storage environment, the package data is registered in a P2P file
sharing network and accessible through a network protocol. For example, IPFS could be
used [2]. In this protocol, data can be registered in the network and is then accessible
through the data’s hash, which is used as key. To keep a local copy of a file, they have
to be pinned. If one or more users have pinned a file (i.e., possess a local copy), the files
can be queried through the hash (i.e., file key). Figure 4.3 shows both the process of file
registration as well as retrieval.

Any change in the file would result in a new hash, thus in a new key. In this sense, the
user querying for a file can be certain that if accessible, the file is in its original state.
Thus, this form of data storage represents a trusted data source.

4.1.8 NFV Back End

As mentioned in Section 4.1, the NFV back end can be provided by any NFV solution and
was not implemented in this work. This system is responsible for downloading the VNF
images acquired from the blockchain-based repository, verifying them and subsequently
deploying them on an NFV stack.

22 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

Figure 4.3: IPFS Data Registration (top) and IPFS Data Retrieval (bottom)

4.2 Implementation

To assess the solution feasibility, a PoC that does not include all functionality mentioned
in Section 4.1 was implemented. This work focused on the blockchain-based repository
back end, described in the following Section 4.2.1. This part was implemented as an
SC on the Ethereum network, written in Solidity. This SC includes both the package
repository as well as the repository manager and provides links to the external data
storage. Afterwards, a minimum Graphical User Interface (GUI) was implemented to
provide access to the back-end API’s functions. This is detailed in the Subsection 4.2.2.

4.2.1 Blockchain-based Repository Backend

The solution was implemented as a SC on the Ethereum network using the Solidity pro-
gramming language. This means that the SC’s code will be executed in a trusted envi-
ronment. Refer to Section 2.3 for more details on Ethereum and Solidity. The Ethereum
network offers the following advantages over other blockchain networks:

• Established platform: Ethereum has the second highest active addresses after Bit-
coin1. Thus, there is great developer support from the community and from the
Ethereum foundation.

• Developer tools: Development of Ethereum-based Smart Contracts has been simpli-
fied by tools such as the Truffle framework, a development environment for Smart
Contract and Ganache which emulates an Ethereum network on the local machine
[9].

• SC security: As an increasing number of SCs have been created, audits have revealed
many common security flaws in the programming code of SCs. Tools, such as
Securify [14], have been developed to identify these.

1Active addresses in the last 24h: Bitcoin: 677’099; Ethereum: 412’737 as of 2 April 2018 [3]

4.2. IMPLEMENTATION 23

Package Repository

A VNF package in the repository is defined as a custom type (struct) (see Listing 4.1
for the implementation). The first attributes name, description, image_link and ser-

vice_type are used in the marketplace. These allow the vendor to promote the package
and describe its functions. Attribute image_link is used as a cover art for the package.
The service_type allows for filtering and categorization of the packages. Attributes
version, requirements and resources are additional information available on demand.
They allow to check specifications of the package and inform potential buyers of the sys-
tem requirements and resources needed. The price is the package’s licensing fee. The
author represents the vendor’s Ethereum address to which licensing fees should be trans-
ferred. The repository_link and the repository_hash are transmitted to the licensee
after an acquisition of a package, so that the package can be retrieved and checked for
integrity. The ratings array consists of all ratings submitted for a package.

These VNF packages have to be stored in the SC storage. To do this, an VNF object
array, that represents the package repository, has been included (See line 16 of Listing
4.1).

1 struct VNF {

2 string name;

3 string description;

4 string image_link;

5 string service_type;

6 string version;

7 string requirements;

8 string resources;

9 uint price;

10 address payable author;

11 string repository_link;

12 bytes32 repository_hash;

13 int[] ratings;

14 }

15
16 VNF[] VNF_repository;

Listing 4.1: VNF Struct and Repository Array in the SC

Repository Manager

The repository manager acts as an intermediary between the repository and the users
and offers public functions for accessing the repository data. It is included in the same
SC as the package repository and includes functionality used by all four systems of the
architecture discussed in Section 4.1 an. Following is an overview of all functions offered
and their purpose in the solution. The subsequent paragraphs depict the implementations
in more details.

• Data retrieval functions: retrieve_numberOf_VNF, retrieve_VNF,
retrieve_VNF_requirements;

24 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

• Registration and update system: register_VNF, update_VNF, delete_VNF;

• Licensing system: buy_VNF;

• Rating system: rate_VNF;

• Verification system: has_VNF_license, get_licensed_VNF;

The list of VNF packages registered in the repository can be retrieved using the three
functions. As a struct array cannot be returned by a function, first, the number of
VNF packages has to be retrieved using the function retrieve_numberOf_VNF (See List-
ing 4.2, line 1). This represents the length of the repository and can be used as an
iterator to fetch details of each VNF using the two functions retrieve_VNF and re-

trieve_VNF_requirements (See Listing 4.2, line 5 and 21 respectively). The details are
given through two functions because of a further limitation in Soldidity: If too many
local variables (return parameters included) are introduced, a “Stack is too deep” error is
returned. To circumvent the problem, only 8 return parameters should be used. These
three functions are declared view, which means that they cannot alter the state of the SC
and do not require any gas to run. Therefore, all repository data can be retrieved without
transaction fees.

1 function retrieve_numberOf_VNF () public view returns (uint count) {

2 count = VNF_repository.length;

3 }

4
5 function retrieve_VNF(uint index) public view returns

6 (string memory name , string memory description ,

7 string memory image_link , string memory service_type ,

8 uint price , address author , string memory version ,

9 uint[] memory ratings) {

10
11 name = VNF_repository[index].name;

12 description = VNF_repository[index]. description;

13 image_link = VNF_repository[index]. image_link;

14 service_type = VNF_repository[index]. service_type;

15 price = VNF_repository[index].price;

16 author = VNF_repository[index]. author;

17 version = VNF_repository[index]. version;

18 ratings = VNF_repository[index]. ratings;

19 }

20
21 function retrieve_VNF_requirements(uint index) public view returns

22 (string memory requirements , string memory resources) {

23 requirements = VNF_repository[index]. requirements;

24 resources = VNF_repository[index]. resources;

25 }

Listing 4.2: Data Retrieval Functions

The register_VNF function allows developers to register new VNF packages to the repos-
itory. Listing 4.3 shows the implementation: The function takes VNF package attributes
as arguments. As the sender is the author of the VNF package, the sender’s address is
used as author address. The package details are used to create a VNF package object,
which is then pushed to the repository array.

4.2. IMPLEMENTATION 25

1 function register_VNF(string memory name ,

2 string memory description ,

3 string memory image_link ,

4 string memory service_type ,

5 string memory repository_link ,

6 uint price , string memory version ,

7 string memory requirements ,

8 string memory resources ,

9 bytes32 repository_hash) public {

10
11 address payable author = msg.sender;

12 VNF memory vnf = VNF(name , description , image_link ,

13 service_type , repository_link ,

14 price , author , version , requirements ,

15 resources , repository_hash , new uint [](0));

16
17 VNF_repository.push(vnf);

18 }

Listing 4.3: register_VNF Function

To change the package information of a VNF in the repository, the user calls the up-

date_VNF function (see Listing 4.4): Instead of creating a new VNF package entry it
takes an existing entry using its index and overwrites all attributes. The caller of the
function is required to be the author of the package. This means that only the authors
are allowed to change information of their packages.

1 function update_VNF(uint index , string memory name ,

2 string memory description ,

3 string memory image_link ,

4 string memory service_type ,

5 string memory repository_link ,

6 uint price , string memory version ,

7 string memory requirements ,

8 string memory resources ,

9 bytes32 repository_hash) public {

10
11 require(msg.sender == VNF_repository[index].author ,

12 "Only author can update VNF package");

13
14 VNF_repository[index].name = name;

15 VNF_repository[index]. description = description;

16 VNF_repository[index]. image_link = image_link;

17 VNF_repository[index]. service_type = service_type;

18 VNF_repository[index]. repository_link = repository_link;

19 VNF_repository[index].price = price;

20 VNF_repository[index]. version = version;

21 VNF_repository[index]. requirements = requirements;

22 VNF_repository[index]. resources = resources;

23 VNF_repository[index]. repository_hash = repository_hash;

24 }

Listing 4.4: update_VNF Function

The function delete_VNF (see Listing 4.5) receives a VNF package using the index and
removes it from the repository array. To do this, it overwrites the index of the package to

26 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

be removed with the last package of the array. The duplicated package is then removed.
Finally, the length of the repository array gets reduced by 1. This object shift represents
the cheapest way of deleting an object from an array in Solidity.

1 function delete_VNF(uint index) public {

2 VNF_repository[index] = VNF_repository[VNF_repository.length -1];

3 delete VNF_repository[VNF_repository.length -1];

4 VNF_repository.length --;

5 }

Listing 4.5: delete_VNF Function

If a user decides to acquire a VNF, the front end calls the buy_VNF (see Listing 4.6). A call
to this function contains the index of the package to be acquired as argument. The Smart
Contract checks that sufficient funds were included in the transaction. If so, the funds are
transferred to the author of the package. Then, a license event is emitted including the
link to the package’s repository and the repository hash to verify the integrity. This is the
data needed by the front end to start to download, verify and deploy the VNF package.

1 function buy_VNF(uint index) public payable {

2 require(msg.value == VNF_repository[index].price ,

3 "price and value do not match");

4
5 address payable receiver = VNF_repository[index]. author;

6 uint amount = VNF_repository[index].price;

7 receiver.transfer(amount);

8 VNF_repository[index]. licensees[msg.sender] = true;

9
10 emit License(msg.sender , index ,

11 VNF_repository[index]. repository_link ,

12 VNF_repository[index]. repository_hash);

13 }

Listing 4.6: buy_VNF Function

Users can rate a package using a scale from 1 to 10 by calling the function rate_VNF (See
Listing 4.7 for the implementation). First, the function checks if the rating is between 1
and 10. If this requirement is fulfilled, it pushes the rating to a VNF package’s rating list.

1 function rate_VNF(uint index , uint rating) public {

2 require(rating <= 10, "Rating scale is 1-10");

3 require(rating >= 1, "Rating scale is 1-10");

4 require(VNF_repository[index]. licensees[msg.sender] == true ,

5 "Rating only possible for licensees");

6
7 VNF_repository[index]. ratings.push(rating);

8 }

Listing 4.7: rate_VNF Function

To check if a user has already acquired a license for a VNF package, the function has_VNF_license

(See Listing 4.8) can be used. It it declared as view and as such free of transaction cost.
When called, the function checks the licensees mapping for the caller’s address. If a
license was previously acquired, this has been set to true. Otherwise (i.e., when the entry
is inexistent because no license was acquired), the return value is false.

4.2. IMPLEMENTATION 27

1 function has_VNF_license(uint index) public view returns

2 (bool license) {

3 license = VNF_repository[index]. licensees[msg.sender];

4 }

Listing 4.8: has_VNF_license Function

For the re-verification of a VNF package’s integrity, the API offers the function get_licensed_VNF

(See Listing 4.9). First it checks that the caller has acquired a license for the package.
If so, it returns the values previously emitted by the license event: repository_link, as
well as repository_hash. These can be used to retrieve the package data and validate
its integrity.

1 function get_licensed_VNF(uint index) public view returns

2 (string memory repository_link , bytes32 repository_hash) {

3 require(VNF_repository[index]. licensees[msg.sender] == true ,

4 "No license acquired for specified VNF");

5 repository_link = VNF_repository[index]. repository_link;

6 repository_hash = VNF_repository[index]. repository_hash;

7 }

Listing 4.9: get_licensed_VNF Function

4.2.2 Graphical User Interface

This subsection is organized in two sections. The first section explains the technologies and
frameworks used to create the GUI. Afterwards, the GUI is presented with all functionality
explained in detail.

Technology Stack

The user interface was developed using the react framework [24], a JavaScript framework
that divides the interface into reusable pieces called components, eliminating the need
for code duplication. For this project it is used in combination with JSX, a JavaScript
syntax extension for easier readability which, together with react, allows the developer
to create interactive user interfaces in a declarative way. Components are split into two
categories: (i) stateless and (ii) stateful. Both can take inputs (called props), although
only the stateful components maintain an internal state. Furthermore, lifecycle methods
are available to allow preparation and cleanup of any component, which is useful for freeing
up unused resources or retrieving additional information from an API. To accelerate the
implementation of a clean, simple and user-friendly User Interface (UI), the Semantic UI
react [28] library of user interface components was integrated.

To allow interaction with the SC, a PoC GUI was implemented as a Distributed App
(DApp). It was developed using the Truffle development framework [9]. It aims to sim-
plify the development by providing SC interactions for the application. It takes over
compilation, automatically links the SC to the application, and offers simple deployment
and migration capabilities. The DApp is using the Web3.js JavaScript library [30] which

28 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

offers a connection to the Ethereum network and acts as gateway to the smart-contract
back end functions. The DApp requires the user to be logged in to the MetaMask browser
extension [15] or a web3-compatible browser and has to be granted privileges to access
the user’s account and addresses. When a function of the SC requires a transaction (thus
requires gas or ether to be executed), MetaMask automatically authenticates the user and
ask for confirmation. For cryptography functions, the CryptoJS library was used [10].

Functionality

The GUI is divided into three parts: (i) The Repository tab which is used by customers
seeking to acquire VNF packages or interact on the marketplace. This tab also represents
the landing page of the DApp. (ii) The Developer tab which is used by developers to
register and maintain their packages in the VNF repository. (iii) The Account tab, where
a user can access licenses and rate packages. Below, details and functionality of these tabs
are presented.

Figure 4.4: VNF Package Repository and Marketplace GUI

Figure 4.4 shows the Repository tab interface. It consists of a table presenting all
VNFs in the repository. Vertically, it is divided into three columns. The first one shows

4.2. IMPLEMENTATION 29

a cover art image of the package and allows developers to attract a user’s attention by
showcasing key functionality, icons, interfaces or other. The second column presents
the VNF’s title and description. Lastly, the third column shows information about the
package’s price and offers a way of acquiring it.

Figure 4.5: Developer Tab GUI

Figure 4.5 shows the Developer tab interface. Here, developers of VNF packages
can access functions to manage existing packages or registering new ones. The following
functions are available:

Registering new VNF packages can be done using the first option of the accordion Register
new VNF package. It requires the developer to input the following package attributes:
name, description, image link, service type, version, requirements, resources, price, and
repository link. When this is submitted, the repository hash is calculated by downloading
the package from the repository link and creating a SHA256 hash of the file. All attributes
are then sent to the back end (refer to function register_VNF in Section 4.2.1).

If a package already exists in the repository but is to be updated with new information,
developers use the second option of the accordion Update existing VNF package. The
developer needs to submit the same package attributes as when registering a new package
as well as the index of the package. With this information, the back end is called (refer
to function update_VNF in Section 4.2.1).

If a developer wishes to remove a package from the repository, the last function in the
accordion Delete VNF package from repository is used. Here, the developer specifies the
index of the package to be removed, which is then sent to the back end (refer to function
delete_VNF in Subsection 4.2.1). Only the author of a package can trigger the removal
of a package.

In the Account tab interface (refer to Figure 4.6), all acquired packages are listed. The
overview shows the same information as the repository tab. However, the third column
here is reserved for the two interaction possibilities: (i) The Rate button opens a dialog

30 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

in which the user can rate the package on a scale from 1 to 10 (refer to Figure 4.7). (ii)
The Request license button opens a dialog in which the package’s repository link and
repository hash are presented. This can be used for (re-) verification of the VNF package.

Figure 4.6: Account Tab GUI

Figure 4.7: Rating Dialog

4.2. IMPLEMENTATION 31

Figure 4.8: License Dialog

32 CHAPTER 4. BLOCKCHAIN-BASED TRUSTED VNF REPOSITORY

Chapter 5

Evaluation and Discussion

The trusted blockchain-based VNF repository solution presented in Chapter 4 aims to
address a particular gap in the security of NFV environments. In this chapter, the
blockchain-based approach to improve the security of the VNF repository is evaluated
in terms of management and security, as well as economic aspects. Furthermore, a cost
analysis of the SC is conducted. Lastly, in the discussion, the advantages and disadvan-
tages are presented and a feasibility analysis is conducted.

5.1 Management and Security

As described in [23], determining VNF package integrity is a key challenge in the setup of
a trusted NFV environment. The blockchain-based trusted VNF repository addresses this
challenge successfully without having to rely on an external trusted security orchestrator
(TSecO). This mitigates a central point of failure. The proposed solution is based on an
SC without access control and management. As such, any interested party can use the
functions provided, given that they pay the gas fee needed to update the SC’s state. This
means that the SC runs fully distributed and without the need for management. As there
is no maintenance cost, no contract fees have to be collected to keep the SC running. On
the other hand, there is a potential for spam and fake entries that do not deliver on their
promised functions or infringe on trademarks and intellectual property.

Adding access control and verification of vendors would increase the trust in the repos-
itory’s contents. To do so, the SC repository would need to be managed either by a
central authority, by a consortium or in a distributed, open manner. This management
could then verify authenticity of vendors before any package can be registered. In addi-
tion, it could curate the repository’s offerings by checking the VNF packages for malicious
code and verifying that the functionality complies with the package’s specifications. The
same management would also be responsible for pushing updates to improve user expe-
rience as well as code maintenance. The downside of management and curation is that
it introduces new challenges: A centralized management of the smart contract as well as
authorization of participants may be unreliable and against the intent of the repository’s

33

34 CHAPTER 5. EVALUATION AND DISCUSSION

distributed nature. The alternative, offloading the management to a consortium might
not mitigate the problem of malicious participants and still create conflicts of interest.
Thus, the current design without access control and an uncurated repository may hold
challenges, but it best reflects the solution’s core concept.

Security is a highly relevant topic in all areas of computing. Particularly when money is
involved, it must be assumed that malicious participants will try to find vulnerabilities
for their benefit. The solution’s SC does not hold any funds itself, shielding it from direct
attacks. However, any code potentially contains bugs, so it may be possible to exploit
a vulnerability, which would e.g., allow attackers to redirect licensing payments to other
accounts. Before deployment in a production environment it is therefore necessary to
inspect all SC code for any potential vulnerability. It is well known that there is and will
never be an algorithm that can definitively determine that code is free of vulnerabilities.
That is why such a security audit has to be done by hand by a trusted auditor that is
experienced in SC security.

The repository offers functionality to verify the integrity of a VNF package. This verifica-
tion is done in the front end after acquiring and downloading the package. A better way
would be to enable verification by the smart contract before acquisition. However, due to
the high cost of memory inside the SC, this is infeasible. Yet, a common solution to this
problem are oracles, which perform calculations off-chain for a fee. However, this means
that the oracle has to be trusted to execute code correctly.

The risk of malicious packages and malicious vendors in the repository is tackled with the
use of ratings. These give users an idea of what to expect from the package and can build
up trust. However fake reviews and wrong vendor descriptions are a challenge that needs
to be tackled.

5.2 Economical Aspect

To see adoption of a blockchain-based trusted repository in production NFV environments,
such a solution needs to support multiple business models for licensing. Companies should
be able to chose their model (e.g., fixed-price or pay-as-you-go) without restrictions [6].
The current solution only offers a fixed-price business model. Of course, the SC code can
be extended to cover additional business models. However, by themselves, SCs cannot
offer recurring payments such as a monthly subscription service. This is due to a technical
restriction: SCs cannot initiate state changes themselves (e.g., pay licensing fee after a
month), but instead can only do computations when called externally. The use of such
business models thus needs to be implemented in the VNF package instead of the contract
code in the sense of a Digital Rights Management (DRM) mechanism that verifies that
the monthly fee was paid.

So far, the rating system is designed in a way as to only allow users to rate acquired
packages. This should help to mitigate fake reviews. However, as ratings require a SC
state change, the rater has to pay transaction fees (refer to Section 5.3) which might
discourage them.

5.3. COST ANALYSIS 35

5.3 Cost Analysis

As discussed in Section 2.3, the deployment of an SC to the Ethereum network and
interactions with it consume gas that has to be included in the transactions. To analyze
the feasibility of deploying and using the functions, the following Table 5.1 depict the
cost in ETH as well as fiat currencies. Gas costs of operations on the Ethereum Virtual
Machine are specified in the Ethereum yellow paper [13]. Based on those operation cost,
the gas cost for the SC’s deployment and interactions can be calculated. To estimate
the actual fees, two methods were used: First, the Remix project’s online IDE [27] was
used in addition to a local deployment using the truffle frameworks Ganache application
[9], with which an Ethereum blockchain of ten nodes was created. The gas price in the
Ethereum network varies depending on network load and required speed of confirmation.
For this analysis, the gas price was fixed to 10 Gwei (10000000000 wei) which represents
the price used as default in MetaMask1. Table 5.1 shows the resulting cost in gas and US
Dollar ($) for all SC functions that require gas.

For the creation of a Smart Contract on the Ethereum network (i.e., to deploy the SC),
the EVM requires a constant fee of 32000 gas in addition to the standard 21000 gas fee of
any transaction. In addition to that, the Ethereum Virtual Machine requires 200 gas per
Byte of contract code and 20000 gas per word that has to be stored. All other transactions
require the standard 21000 gas fee plus additional gas for every operation performed (e.g.,
3 gas for any addition or subtraction) [13].

SC Function Gas Consumed Price (USD)

SC Creation 2’926’168 5.16 $
register_VNF 372’119 0.64 $
update_VNF 369’635 0.64 $
delete_VNF 195’108 0.33 $
buy_VNF 56’137 0.10 $
rate_VNF 48’445 0.09 $

1 ETH = 171.40 USD price as of 18 April 2019

Gas consumed represents avg. of results of Remix IDE and Ganache blockchain

Table 5.1: Gas Estimation and Prices

5.4 Discussion

The proposed design of a blockchain-based trusted repository for VNF packages offers
enhanced security over a traditional database repository setup. By leveraging an SC’s
blockchain technology, the system is able to forgo external TSecO or remote attestation
which present a vulnerability in current NFV environments. It allows the creation of an
open marketplace without access control, which can help increase competition.

1gas price as of April 2019

36 CHAPTER 5. EVALUATION AND DISCUSSION

Section 5.1 presents several disadvantages to such an open solution. The repository is
unmanaged and uncurated. Thus, it is open to spam and malicious offerings. In the
approach herein presented, ratings are included to lessen the problem. However, these
also cannot be fully trusted due to fake reviews. Switching from an open design to a
curated repository with verified participants thus may prove beneficial. Yet, this change
will decrease the distributed nature of the repository and thus comes at a cost in terms
of the advantages mentioned. This challenge should be further researched.

Some disadvantages are connected to the repository’s underlying Smart Contract design:
As data storage is expensive, packages cannot be stored in it, only their hashes. This
also means that the front end is responsible for the process of integrity verification, as the
smart contract can only provide hashes. Also, state changes of SCs require transaction
fees to be paid. However, these are minor amounts for both vendors and buyers of VNF
packages and could be further reduced by researching the most efficient code structures.

In economic aspects, there are a few challenges to explore before a wider adoption could
be achieved. NFV has allowed the development of new business models which have to
be supported, such as VNF-as-a-Service offerings. In the current form of a PoC, such
business models are not yet implemented. However, a possible integration into a capable
NFV environment that already supports these models may reduce the implementation
cost.

At the moment, the solution is independent of existing blockchain-based approaches to
management and orchestration. These approaches, as discussed in Section 3.3, offer ad-
vantages by setting up a trusted execution environment but at this stage do not include
Blockchain-based VNF package integrity verification. Integrating this work’s solution
would increase the security and offer new advantages as mentioned in this chapter.

Chapter 6

Conclusion

The work of this thesis aimed to research the use of blockchain technology in the area
of NFV and VNF repositories. The first part of the thesis provides background and
related works. This is to present an overview over the topics and to classify existing
works to determine the current state of research. The second part depicted the design
and implementation of a blockchain-based repository for VNF packages.

In the current research environment, there have already been attempts to create blockchain-
based NFV management and orchestration solutions with prototype solutions available.
Even though these included approaches to create a trusted computing environment, they
did not leverage the blockchain’s advantages in the area of the VNF repository and in-
stead used a traditional database. As a result, the solution designed in the second part of
the thesis focuses on the aspect of the VNF repository and how blockchain can enhance
security and functionality. Based on the architecture’s design, a PoC was implemented. It
employs a smart-contract back end to store the repository’s information in the blockchain
and offers an API to access the VNF package repository. Users can register new VNFs,
manage or delete existing ones, retrieve the contents of the repository, as well as acquire
(i.e., license) packages and give ratings. For all these functions, the implementation de-
tails and design decisions were stated. In addition, a GUI front end was developed to
make the repository accessible.

The result were evaluated against the requirements. The blockchain-based trusted VNF
package repository system succeeds in giving users the possibility to verify package in-
tegrity without relying on external trusted operators. The solution also achieves the
requirements that developers have in registering and maintaining packages as well as user
requirements for acquisition of packages, integrity verification and post-acquisition tools,
such as ratings and requests for renewed verification.

The evaluation shows the security advantages of the solution. However, it also showcases
the limitations of the access-control free design. The repository may be insufficiently
protected against spam entries and other methods of malicious participants. The under-
lying smart contract technology of the solution also has its weaknesses: As storage is
expensive, only VNF package metadata can be kept inside the repository. The package
itself is stored in an untrusted, external data storage and thus has to be checked before

37

38 CHAPTER 6. CONCLUSION

deployment. Also, at the moment the integrity verification is done after acquisition of a
VNF package.

In short, the proposed architecture and its PoC implementation show that a blockchain-
based trusted VNF package repository is feasible and offers security advantages over tra-
ditional methods. However, there are still challenges connected to the concept which need
to be addressed before it is ready for deployment to production environments. In order
to leverage the advantages of Blockchain technology in the area of NFV, a promising
step forward would be to integrate the concept into an existing Blockchain-based MANO
framework.

6.1 Future Work

As this work only presents a prototype implementation of the proposed architecture,
the next step would be to finish the concept and further develop the functionality. To
reduce the implementation work needed, the best step forward is to integrate the solution
into an existing, blockchain-based NFV MANO framework as presented in Section 3.3.
Alternatively, it could also be incorporated into the FENDE project (refer to Section 3.1).
This way, work on the GUI could be omitted and a second feasibility analysis as part of
a production-ready environment could be conducted.

At the moment, the VNF package data is stored in an untrusted, external data storage. To
realize a fully blockchain-based repository, a distributed file storage like IPFS [2] could be
introduced. IPFS would in practice guarantee a package’s integrity before the acquisition.
Also, the smart contract could check availability of the data before the licensing fees are
transferred to prevent fraud [2].

The rating system is designed to only allow licensees to rate a package. However, the
current form is very basic and allows only for a rating of 0 to 10. This should be improved
to reflect the complexity of VNF packages. Also, users might not have an incentive to
submit a rating at all, as they have to pay a transaction fee, even though it’s a minor
amount. Lastly, vendors might use fake reviews to boost their sales as the only cost
associated with such behaviour is paying the transaction fee for acquiring a package and
submitting a rating. Thus, the rating system’s incentives should be analyzed and if
necessary redesigned to only allow legitimate ratings.

Bibliography

[1] M. Alharby and A. van Moorsel. Blockchain-based Smart Contracts: A Systematic
Mapping Study. CoRR, abs/1710.06372, 2017.

[2] J. Benet. IPFS - content addressed, versioned, P2P file system. CoRR, abs/1407.3561,
2014.

[3] BitInfoCharts. BitInfoCharts, 2019. Available at https://bitinfocharts.com/

Accessed 2 April, 2019.

[4] T. Bocek and B. Stiller. Smart Contracts – Blockchains in the Wings. In Digital
Marketplaces Unleashed, pages 169–184. Springer, 2018.

[5] L. Bondan, M. Franco, A. E. Schaeffer-Filho, L. Granville, L. Marcuzzo, C. A. D.
S. Schneider, C. R. Paula dos Santos, G. Venâncio, and E. Duarte Jr. FENDE:
Marketplace and Federated Ecosystem for the Distribution and Execution of VNFs.
pages 135–137, 08 2018.

[6] L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos, R. J. Pfitscher,
E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte, A. E. Schaeffer-Filho, C. R. P.
d. Santos, and L. Z. Granville. Fende: Marketplace-based distribution, execution,
and life cycle management of vnfs. IEEE Communications Magazine, 57(1):13–19,
January 2019.

[7] N. Bozic, G. Pujolle, and S. Secci. Securing Virtual Mchine Orchestration with
Blockchains. In 2017 1st Cyber Security in Networking Conference (CSNet), pages
1–8, Oct 2017.

[8] V. Buterin. Ethereum White Paper. Available at https://github.com/ethereum/

wiki/wiki/White-Paper Accessed 23 April, 2019.

[9] ConsenSys Inc. Truffle Suite - Sweet Tools for Smart Contracts, 2019. Available at
https://securify.chainsecurity.com/ Accessed 2 April, 2019.

[10] Crypto-js. brix/crypto-js - JavaScript library of crypto standards, 2019. Available
at https://github.com/brix/crypto-js Accessed 11 April, 2019.

[11] Duo Inc. DApp Statistiken. Available at https://www.stateofthedapps.com/de/

stats Accessed 28 April, 2019.

39

https://bitinfocharts.com/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://securify.chainsecurity.com/
https://github.com/brix/crypto-js
https://www.stateofthedapps.com/de/stats
https://www.stateofthedapps.com/de/stats

40 BIBLIOGRAPHY

[12] Ethereum Foundation. Solidity - Solidity 0.58.0 Documentation. Available at https:
//solidity.readthedocs.io/ Accessed 28 April, 2019.

[13] e. a. Gavin Wood, Nick Savers. Ethereum Yellow Paper, 2019. Available at https:

//github.com/ethereum/yellowpaper Accessed 12 April, 2019.

[14] ICE center, ETH Zurich, and ChainSecurity AG. Securify - Security Scanner for
Ethereum Smart Contracts, 2019. Available at https://securify.chainsecurity.
com/ Accessed 2 April, 2019.

[15] MetaMask. MetaMask - Brings Ethereum to your browser, 2019. Available at https:
//metamask.io Accessed 10 April, 2019.

[16] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network
Function Virtualization: State-of-the-Art and Research Challenges. IEEE Commu-
nications Surveys Tutorials, 18(1):236–262, Firstquarter 2016.

[17] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009. Available at
https://bitcoin.org/bitcoin.pdf Accessed 22 March, 2019.

[18] NCC Group. Decentralized Application Security Project. Available at https://

dasp.co/ Accessed 23 April, 2019.

[19] Network Functions Virtualisation (NFV) ETSI Industry Specification Group (ISG).
ETSI GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Man-
agement and Orchestration, 2014. Available at https://www.etsi.org/deliver/

etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf Ac-
cessed 1 April, 2019.

[20] Network Functions Virtualisation (NFV) ETSI Industry Specification Group
(ISG). ETSI GS NFV-SEC 003 - V1.1.1 - Network Functions Virtuali-
sation (NFV); NFV Security; Security and Trust Guidance, 2014. Avail-
able at https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.

01_60/gs_nfv-man001v010101p.pdf Accessed 1 April, 2019.

[21] O. Open. TOSCA Simple Profile for Network Functions Virtualization (NFV) Ver-
sion 1.0, 2017. Available at http://docs.oasis-open.org/tosca/tosca-nfv/v1.

0/csd04/tosca-nfv-v1.0-csd04.html#_Toc482896036 Accessed 25 March, 2019.

[22] OpenStack. OpenStack Docs: VNF Descriptor Template Guide, 2019. Available
at https://docs.openstack.org/tacker/latest/contributor/vnfd_template_

description.html Accessed 15 April, 2019.

[23] S. Ravidas, S. Lal, I. Oliver, and L. Hippelainen. Incorporating trust in NFV: Ad-
dressing the challenges. In 2017 20th Conference on Innovations in Clouds, Internet
and Networks (ICIN), pages 87–91, March 2017.

[24] ReactJS. React - A JavaScript library for building user interfaces, 2019. Available
at https://reactjs.org/ Accessed 11 April, 2019.

[25] G. Rebello. sinfonia - GitHub, 2017. Available at https://github.com/gfrebello/
sinfonia/wiki Accessed 1 April, 2019.

https://solidity.readthedocs.io/
https://solidity.readthedocs.io/
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://securify.chainsecurity.com/
https://securify.chainsecurity.com/
https://metamask.io
https://metamask.io
https://bitcoin.org/bitcoin.pdf
https://dasp.co/
https://dasp.co/
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.html#_Toc482896036
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-nfv-v1.0-csd04.html#_Toc482896036
https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html
https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html
https://reactjs.org/
https://github.com/gfrebello/sinfonia/wiki
https://github.com/gfrebello/sinfonia/wiki

BIBLIOGRAPHY 41

[26] G. A. F. Rebello, I. D. Alvarenga, and G. de Teleinformatica e Automacao. SINFO-
NIA: Gerenciamento Seguro de Funcoes Virtualizadas de Rede atraves de Corrente
de Blocos. In Anais do I Workshop em Blockchain: Teoria, Tecnologias e Aplicacoes
(WBlockchain - SBRC 2018), volume 1, Porto Alegre, RS, Brasil, 2018. SBC.

[27] Remix project. Remix - Solidity IDE, 2019. Available at https://remix.ethereum.
org/ Accessed 12 April, 2019.

[28] Semantic UI. Semantic UI React, 2019. Available at https://react.semantic-ui.
com/ Accessed 30 April, 2019.

[29] The Linux Foundation. Hyperledger, 2019. Available at https://www.hyperledger.
org/ Accessed 1 April, 2019.

[30] Web3.js. web3.js - Ethereum JavaScript API, 2019. Available at https://github.

com/ethereum/web3.js Accessed 2 April, 2019.

[31] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. J. McGrath,
G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kourtis. T-NOVA:
A Marketplace for Virtualized Network Functions. In 2014 European Conference on
Networks and Communications (EuCNC), pages 1–5, June 2014.

https://remix.ethereum.org/
https://remix.ethereum.org/
https://react.semantic-ui.com/
https://react.semantic-ui.com/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js

42 BIBLIOGRAPHY

Abbreviations

API Application Programming Interface
DDoS Distributed Denial of Service
ETSI European Telecommunications Standards Institute
ETH Ether (Currency of Ethereum network)
EVM Ethereum Virtual Machine
GUI Graphical User Interface
MANO Management and Orchestration
NFV Network Function Virtualization
P2P Peer-to-peer
PoC Proof-of-Concept
SC Smart Contract
SP Service Provider
TPP Trusted Third Party
VNF Virtualized Network Function
VNFD Virtualized Network Function Descriptor
VDU Virtual Deployment Unit

43

44 ABBREVIATONS

Glossary

Access Control Restricting access to certain areas (such as access to specific functions
in an application) to a defined group of authorized entities.

Authentication The act of identifying an entity and validating its authenticity.

Authorization Authorization is the decision whether an entity is allowed to perform a
particular action or not, e.g., whether a user is allowed to attach to a network or
not.

Attestation Confirmation / verification of something such as the state of the system.

Blockchain A shared record of transaction in a distributed ledger system.

Environment (Computing) Entire set of conditions under which programs are run.

Integrity Integrity in terms of data integrity is achieved when data is complete, unaltered
from the original.

Hash Output of a one-way function.

License Permission to use something, e.g., in terms of software licensing: The right to
access, use software.

Management & Orchestration (NFV) Administration, configuration and surveillance
of components such as virtualized services, virtual machines. It includes resource
management and life-cycle operations.

Peer-to-peer network A distributed network where participants can query other par-
ticipants for objects, mostly used for file sharing.

Repository A storage location for files, especially software packages.

45

46 GLOSSARY

List of Figures

2.1 ETSI NFV MANO Architectural Framework [19] 4

3.1 FENDE Architecture . 10

3.2 Security in VNF Lifecycle States [23] . 12

3.3 SINFONIA Architecture [25] . 13

4.1 Proposed Architecture . 16

4.2 Data Flow of Acquiring a VNF Package 18

4.3 IPFS Data Registration (top) and IPFS Data Retrieval (bottom) 22

4.4 VNF Package Repository and Marketplace GUI 28

4.5 Developer Tab GUI . 29

4.6 Account Tab GUI . 30

4.7 Rating Dialog . 30

4.8 License Dialog . 31

47

48 LIST OF FIGURES

List of Tables

4.1 VNF Package Definition . 17

4.2 VNF Package Rating Definition . 20

5.1 Gas Estimation and Prices . 35

49

50 LIST OF TABLES

Listings

2.1 Excerpt of a TOSCA Descriptor for a Tracker running on CirrOS [22] . . . 5
4.1 VNF Struct and Repository Array in the SC 23
4.2 Data Retrieval Functions . 24
4.3 register_VNF Function . 25
4.4 update_VNF Function . 25
4.5 delete_VNF Function . 26
4.6 buy_VNF Function . 26
4.7 rate_VNF Function . 26
4.8 has_VNF_license Function . 27
4.9 get_licensed_VNF Function . 27

51

52 LISTINGS

Appendix A

Installation Guidelines

Browser Setup

To access the DApp, the MetaMask [15] browser extension needs to be installed. It can
be retrieved from the following URL and is compatible with all common browsers:

https://metamask.io/

In MetaMask, the user should be logged in to an account that is in possession of at least
100’000 WEI for the transaction fees in addition to the currency needed for acquiring the
VNF packages.

For testing, the use of Ganache [9] is recommended. This application sets up a test
environment of the Ethereum network and offers a quick entry into an account with 100
ETH ready to use. The Ganache application can be retrieved from the following URL
and is available for all major operating systems:

https://truffleframework.com/ganache

When Ganache is launched, MetaMask can access the accounts with the URL and mnemonic
provided in the Ganache application.

Smart Contract Setup and Deployment

The Smart Contract was developed with the truffle framework. For this framework to
run, the following is needed:

Prerequisites

• Terminal with administrator access

53

https://metamask.io/
https://truffleframework.com/ganache

54 APPENDIX A. INSTALLATION GUIDELINES

• yarn package manager

• npm package manager

Setup Instructions

First, the application source code has to be copied onto the local disc. Alternatively, it
can be retrieved from GitHub with the following link:

https://github.com/mkllr888/trusted-VNF-repository

Via terminal, the following command should be executed in the folder trusted-VNF-

repository to install all necessary dependencies for the front end:

1 $ yarn install

2 $ cd client

3 $ yarn install

The second step is to configure the deployment of the smart contract. For this, the truffle
framework is needed and can be installed using:

1 $ npm install -g truffle

Now the desired network to which the smart contract should be deployed is specified in
the file trusted-VNF-repository/truffle-config.js. For Ganache in the standard
configuration, the Ganache appplication needs to be launched and this URL should point
to http://127.0.0.1:7545 (Check Ganache application)

Deployment of Smart Contract

To deploy the SC, the following commands should be executed.

1 $ # compile the smart contract before deployment

2 $ truffle compile

3 $ # deploy to network

4 $ truffle deploy

If successful, the GUI can no be launched to access the DApp.

Launching the GUI Client

The GUI is located in the folder trusted-VNF-repository/client. As it is linked to
the SC, it is only possible to launch the GUI correctly after the instructions in section A
have been followed. To launch the GUI, the following command should be executed in
that folder:

1 $ # start GUI

2 $ yarn run start

https://github.com/mkllr888/trusted-VNF-repository
http://127.0.0.1:7545

55

Usage of GUI

After launching, the GUI should be accessible in the localhost on port 3000:

http://localhost:3000

When the URL is called, MetaMask will ask for permission to access the accounts. The
application is now ready to be used.

http://localhost:3000

56 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

• Thesis PDF

• Trusted VNF Package Repository Smart Contract Source Code

• GUI Source Code

• LATEX Source Code

• Intermediate Presentation

57

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Theoretical Background
	Network Function Virtualization
	VNF Packages
	Blockchain and Smart Contracts
	Solidity

	Related Work
	Marketplaces for Virtualized Network Functions
	Trusted NFV Environment
	Blockchain-based NFV Management and Orchestration
	Discussion

	Blockchain-based Trusted VNF Repository
	Solution Design
	Registration and Update System
	Licensing System
	Verification System
	Rating System
	Blockchain-based Repository Manager
	Blockchain-based Package Repository
	Data Storage
	NFV Back End

	Implementation
	Blockchain-based Repository Backend
	Graphical User Interface

	Evaluation and Discussion
	Management and Security
	Economical Aspect
	Cost Analysis
	Discussion

	Conclusion
	Future Work

	Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Listings
	Installation Guidelines
	Contents of the CD

