
Processing Bitcoin Blockchain Data
using a Big Data-specific

Framework

Dominik Sommer
Zürich, Switzerland

Student ID: 13-927-454

Supervisor: Eder Scheid, Prof. Dr. Claudio Tessone
Date of Submission: May 2, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Die Analyse von Bitcoin Blockchain-Daten, wie zum Beispiel die Aggregation von Bitcoin-
Adressen, ist interessant für Blockchain- sowie Wirtschafts- Forscher. Mit wachsender
Grösse der Bitcoin Blockchain sind solche Analysen jedoch schwieriger geworden, weil die
Laufzeiten der dafür benötigten Programme sehr lang sind. Im Gegensatz zu Lösungen,
die in früheren Arbeiten erwähnt werden, zielt der in dieser Arbeit präsentierte Ansatz
nicht nur darauf ab, die Laufzeit zu reduzieren, sondern (i) dies auf handelsüblicher Hard-
ware zu bewerkstelligen, als auch (ii) zukünftigen Nutzern die Möglichkeit zu bieten, neue
Heuristiken in einer einfachen Art und Weise zu implementieren. Dieser Ansatz beinhal-
tet die Bildung eines Transaktionsgraphen in der Graphendatenbank Neo4j aus den rohen
Bitcoin-Blöcken. Auf diesem Transaktionsgraphen können dann in der Abfragesprache
Cypher verfasste Heursitiken in einem Spark Cluster mit Hilfe von Cypher for Apache
Spark (CAPS) angewendet werden. Die Nutzung von Cypher für die Implementierung
der Heuristiken erlaubt es zukünftigen Nutzern eigene Heuristiken zu entwickeln, die die
Graphstruktur der Blockchain-Daten nutzen. Auswertungen haben gezeigt, dass es prak-
tikabel ist, die Bitcoin Blockchain-Daten zu parsen, einen Neo4j Transaktionsgraphen
zu erstellen und diesen in die Neo4j Graphendatenbank zu importieren. Wegen eines Pro-
grammfehlers in CAPS konnte die in Cypher implementierte Multi-Input-Heuristik jedoch
noch nicht in einem Spark Cluster angewandt werden. Ausserdem zeigt die vorliegende
Untersuchung auf, dass die Anwendung der Heuristik direkt in Neo4j auf einem lokalen
Rechner wegen zu langer Laufzeiten nicht praxistauglich ist. Zudem lieferte dieser Versuch
den Nachweis, dass die Multi-Input-Heuristik viele Duplikate erzeugt, die wieder entfernt
werden müssen. Dieser Umstand führte zu der Erkenntnis, dass, falls beim Entfernen von
Duplikaten in einem verteilten System wie Apache Spark das Rechner Cluster nicht richtig
genutzt werden kann, eine hochgradig optimierte lokale Lösung in Erwägung zu ziehen
wäre. Gleichwohl ist der in dieser Arbeit präsentierte Ansatz, der Heuristiken in CAPS
anwendet, vielversprechend, um Bitcoin Blockchain-Daten zu verarbeiten.

The analysis of Bitcoin blockchain data using heuristics, such as address clustering, is
attractive for blockchain researchers and economics researchers because of the economical
insights it can provide. Such analysis has become more challenging with increasing size
of the Bitcoin blockchain because of its long processing times. In contrast to solutions
mentioned in previous work, the approach presented in this thesis aims to reduce not
only processing times but also (i) perform it on commodity hardware, and (ii) provide
the possibility for users to implement new heuristics quickly. This approach includes the
creation of a Transaction Graph in the graph database Neo4j from raw Bitcoin blocks, on
which clustering heuristics written in the query language Cypher can be applied on a Spark
cluster using Cypher for Apache Spark (CAPS). Employing Cypher for the implementation

i

ii

of the heuristics allows users to write their heuristics that exploit the graph nature of the
blockchain data. Evaluations have shown, that it is practicable to parse the Bitcoin
blockchain, create a Neo4j Transaction Graph, and import it into Neo4j. However, due
to software errors encountered during the employment of CAPS, the implemented Multi-
Input heuristic in Cypher could not yet be applied on a Spark Cluster. Moreover, the
application of the heuristic on a local machine directly in Neo4j has been proven to be
not feasible for the complete blockchain because of long processing time. It could also be
shown that the Multi-Input heuristic produces a considerable amount of duplicates which
need to be removed. Thus, this lead to the conclusion that, if removing duplicates in a
distributed system, e.g., Apache Spark, cannot exploit the computing cluster, it might be
worth considering a highly optimised local solution. Nevertheless, the approach presented
in this thesis is promising to address the processing of this type of data, i.e., Bitcoin
transactions, with the employment of heuristics in CAPS.

Acknowledgments

First of all, I want to thank my supervisor Eder Scheid for supporting me during the
process of writing the thesis with excellent feedback and suggestions. Furthermore, I
want to thank Prof. Dr. Claudio Tessone for the helpful discussions about Bitcoin and
address clustering. In addition, a thank to Kevin Primicerio who helped me a lot with
answering my questions on the use of his Bitcoin blockchain library bclib.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Description of Work . 2

1.2 Thesis Outline . 2

2 Background 3

2.1 Bitcoin . 3

2.1.1 Blockchain . 3

2.1.2 Mining . 7

2.1.3 Bitcoin Core Client . 7

2.2 Neo4j . 8

2.3 Apache Spark . 9

3 Related Work 11

3.1 Address Clustering . 11

3.2 Blockchain Analysis Tools . 11

3.3 Discussion . 13

3.3.1 Performance Evaluation . 13

3.3.2 General Remarks . 13

v

vi CONTENTS

4 Processing Bitcoin Data 15

4.1 Solution Design Decisions . 15

4.1.1 Solution Architecture . 15

4.1.2 Address Clustering Heuristics . 16

4.1.3 Address Graph . 18

4.1.4 Database . 18

4.2 Implementation . 20

4.2.1 Data Extractor . 20

4.2.2 Data Import Method . 24

4.2.3 Distributed Data Analysis . 26

5 Evaluation and Challenges Discussion 29

5.1 Evaluation . 29

5.1.1 Blockchain Parsing . 29

5.1.2 Deduplication . 32

5.1.3 Neo4j Import . 32

5.1.4 Address Clustering . 33

5.2 Challenges Discussion . 36

6 Conclusions and Future Work 39

Abbreviations 45

Glossary 47

List of Figures 47

List of Tables 49

CONTENTS vii

A Installation Guidelines 53

A.1 btc-csv . 53

A.1.1 Getting Started . 53

A.1.2 Run btc-csv . 54

A.1.3 Remove duplicate addresses from addresses.csv 54

A.1.4 Import the nodes and relationships into Neo4j 55

A.2 Distributed Data Analysis . 56

A.2.1 Getting Started . 56

B Contents of the CD 57

viii CONTENTS

Chapter 1

Introduction

The Bitcoin blockchain [1], introduced in 2009, is considered one of the first, if not the
first, blockchain implementation. From its release to the public until now, this blockchain
has reached, in size, more than 200 GB [2]. Moreover, with the increasing interest in
cryptocurrencies by the general public, the Bitcoin blockchain size continues to grow.
Thus, the size of this blockchain is becoming a challenge not only for peers to maintain
but also for researchers to perform analytical tasks on such data without systems dedicated
to process large amounts of data. Big data-specific frameworks, such as Apache Spark [3],
offer the possibility to distribute workloads on a cluster of computers in order to achieve
high performance, and hence, help reducing processing time. Therefore, the employment
of these frameworks might help researchers to process and analyse the Bitcoin blockchain
to find patterns and insights about transaction flows in the network.

There has been some effort to combine parallel processing with the Bitcoin blockchain.
The authors of [4] utilise the Apache Spark framework, which is a unified analytic engine
for big data processing, to provide an environment for researchers and developers to
query data from the Bitcoin blockchain and to build analysis tools. Unlike in [4], the
authors of [5] exploit parallel processing on a local machine and combine it with in-
memory optimisations in their solution. Furthermore, in [6] a set of analyses of the
Bitcoin blockchain is presented, including, user graphs, detection of the nodes which are
critical for the network connectivity and economic analysis. However, these works do not
rely on parallel processing to perform such analyses.

Among the different analysis topics in the Bitcoin ecosystem the aggregation of Bitcoin
addresses that are controlled by the same user, also known as address clustering, has
been a strong research topic since the beginning of the Bitcoin network. The authors of
[7] explain how heuristics help to identify which addresses belong together. The insights
gathered through address clustering can further be used to study the economics of the
Bitcoin network or to analyse user privacy.

1

2 CHAPTER 1. INTRODUCTION

1.1 Description of Work

The goal of this thesis is to investigate how a graph database, such as Neo4j, in combina-
tion with a big data framework, such as Apache Spark, can help in the processing of data
gathered from the Bitcoin blockchain. To guide the output of the processing, heuristics
retrieved from the literature on Bitcoin blockchain analysis are employed. These heuristics
are based on different characteristics of a Bitcoin transaction, such as input transactions,
output addresses, and types of addresses.

1.2 Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2, information on the
background of this thesis is provided. This information includes an overview of the Bitcoin
blockchain focusing on details relevant for address clustering, and introduces Neo4j and
Apache Spark. Then, in Chapter 3, related work in the field of Bitcoin blockchain analysis
with a focus on address clustering and blockchain analysis tools is presented and discussed.
Next, in Chapter 4, the developed Bitcoin address clustering solution is described in two
steps. First, the solution architecture is presented and design decisions are explained. In
the second step, the implementation of the solution is presented in detail. Further, in
Chapter 5, the implementation is evaluated with regard to its performance and challenges
faced during the development phase are discussed. Finally, in Chapter 6, the thesis
is summarised presenting insights gathered throughout this work, and future research
directions are listed.

Chapter 2

Background

This chapter describes the technologies that were employed in the development of the
approach, such as the Bitcoin blockchain, Neo4j, and Apache Spark. Further sections
describe these technologies in details.

2.1 Bitcoin

Bitcoin is a decentralised digital currency developed by an anonymous person (or group)
of people under the pseudonym of Satoshi Nakamoto. This pseudonym is the author of
the white paper publication entitled “Bitcoin: A Peer-to-Peer Electronic Cash System”
released in 2008 [1]. However, the actual Bitcoin blockchain network started in 2009 with
the reference implementation published by Nakamoto.

The following section explains the technical background of Bitcoin necessary to understand
the later chapters of this thesis. The information presented in this section is based on the
book “Mastering Bitcoin” [8].

2.1.1 Blockchain

The Bitcoin blockchain is the distributed ledger that holds all the verified Bitcoin trans-
actions. It is an ordered list of blocks containing transactions. Each block in the list is
linked to the previous block by including the identifier (e.g., the block hash) of the previ-
ous block in its block header. The block hash of the previous block affects therefore the
block hash of the current block. This inclusion of block hashes ensures that blocks cannot
be changed. Because, to change one block, it is required to change all the following blocks
in the blockchain, and convince all the peers in the network to accept the changes, which
is a difficult task. Thus, by employing this concept, the blockchain provides immutability
of the data.

3

4 CHAPTER 2. BACKGROUND
3/8/2019 blocks.xml

1/1

Block Header

Version

Prev. Block Hash

Merkle Root

Timestamp

Difficulty Target

Nonce

Block

Block Size

Transaction Counter

Transactions

4 bytes

4 bytes

32 bytes

32 bytes

4 bytes

4 bytes

4 bytes

1-9 bytes

Variable

Figure 2.1: Bitcoin Block Example

Block

Figure 2.1 depicts the structure of a block in the Bitcoin blockchain. The Block Size field
corresponds to the size, in bytes, of the whole block. The Block Header itself contains
the metadata of the block. Its fields, such as Version, Merkle Root, and Nonce, are used
to calculate the block hash. The calculation of this hash is performed by hashing the
the Block Header twice using the SHA-256 algorithm. The result of this algorithm is a
32 byte block hash that uniquely identifies a certain block in the blockchain. Moreover,
each block has a block height which indicates the distance of the block to the first block in
the chain (i.e., genesis block). However, the block height is not unique since two or more
blocks can compete for a single position in the block chain during a fork in the chain.
A detailed explanation of blockchain forks can be found in the “Mastering Bitcoin” book
chapter “Blockchain Forks” [8].

Addresses

An address in the Bitcoin blockchain is a string of digits and characters that functions
similarly to a bank account number. It can be shared with people to allow them to transfer
an amount of Bitcoin to it. In contrast to a bank account numbers, Bitcoin addresses can
be created autonomously and as many as desired. The Bitcoin Wiki even advises to use
a unique address for each transaction [9]. In the Bitcoin Mainnet there are currently the
following three address formats in use:

2.1. BITCOIN 5

• Pay-to-PubkeyHash (P2PKH) which begins with the number 1. For example,
1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2. This type of address is the most common
in the Bitcoin blockchain, they include a script that is resolved sending the public
key and signature generated with a private key [10].

• Pay-to-Script-Hash (P2SH) which begin with the number 3. For example,
3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy. These addresses allow transactions to be
sent to a script, and are only spent if the recipient provides a script that matches
with the script hash and data which when input to the script evaluates to true [11].

• Bech32 which begins with the bc1 pattern. An example of such an address is
bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq. Those are segwit addresses, the
most recent Bitcoin address format [12].

All addresses that do not have one of the above mentioned formats are either:

• Coinbase is the input of the first transaction of each block. This input might
contain arbitrary data, since these transactions only pay the block reward to the
miner that created the block. It does not need an input transaction because, the
Bitcoins used to pay the block reward are generated from nothing.

• Invalid formats have unspendable outputs which are called OP RETURN outputs.
These outputs can be used to burn Bitcoins or to store arbitrary data, e.g., a
string [13].

Transactions

Transaction
txid 32 bytes

List of Inputs List of Outputs

txid 32 bytes
vout 4 bytes

address 32 bytes
value 8 bytes

Input 0 Output 0

txid 32 bytes
vout 4 bytes

Input 1

address 32 bytes
value 8 bytes

Output 1

Figure 2.2: Simplified Bitcoin Transaction Example

6 CHAPTER 2. BACKGROUND

Transactions are the data structures that hold the information about the transfer of
Bitcoins from one or more addresses to one or more addresses. They are a core part of
the Bitcoin blockchain. Figure 2.2 depicts a simplified transaction that contains only the
data relevant for this thesis. However, there are more fields that should be included in a
real-world Bitcoin transaction.

• txid identifies a transaction. It is generated by hashing the complete transaction
data twice using the SHA-256 algorithm.

• UTXO is an unspent transaction output.

• List of Inputs contains the information about which UTXOs should be used as
input in the transaction.

• Each Input references an UTXO by the corresponding txid and vout which indicates
the index of the output in that transaction. Additionally, it includes an Unlocking
Script (scriptSig) that satisfies the conditions set in the Locking Script of the
UTXO and hence unlocking it.

• List of Outputs contains the information about how many Bitcoins are sent to
which address.

• Each Output contains

– Locking Script (scriptPubKey) from which the address mentioned in Fig-
ure 2.2 can be extracted.

– Value which indicates how many Bitcoins, in satoshis (i.e., smallest Bitcoin
unit), are sent to the address in the Locking Script.

Transaction
txid: d67a22ce2a1c7c026053e10b2695080bc68d4b3e811c3edce9d701b6daec8c4a

List of Inputs List of Outputs

txid f7ac15...17ccd9
vout 0

address 14ME43...g3Gzma
value 2.0 BTC

Input 0 Output 0

txid 27b458…168a76
vout 1

Input 1
address 1Hviaj…czLy1o
value 0.1 BTC

Output 1

(1.5 BTC)

(0.7 BTC)

Figure 2.3: Transaction Example with Combination of Two Inputs

2.1. BITCOIN 7

It is important to mention that an UTXO cannot be partially spent. Figure 2.3 depicts
an example of a transaction where user A wants to send 2.0 BTC to user B. Since A does
not have an UTXO with exactly 2.0 BTC, she uses two UTXOs that sum up to 2.2 BTC
as transaction input and adds an output (e.g., Output 1) for the change. The sum of
both outputs in this example is 2.1 BTC and the difference between the sum of inputs
and the sum of outputs — in this example 0.1 BTC — is called the Transaction Fee.
This fee is used to compensate the miner for his/her work of including the transaction in
the block and later the block in the blockchain.

2.1.2 Mining

Mining refers to the process of adding transactions to blocks and later blocks to the
Bitcoin blockchain. In this process miners validate and include new transactions, which
were propagated on the Bitcoin network, into new blocks independently. Then they solve
a computationally intensive cryptographic problem to demonstrate the work that they
have done — this is called the Proof-of-Work (PoW). If a miner has found a solution
she propagates the newly created block on the Bitcoin network. If, however, a new block
reaches the miner while she is working on a block, she will stop her work on the current
block and start creating a new one [14].

A miner who was able to add a block to the blockchain is paid a block reward and all
the transaction fees included in the block for securing the blockchain. To receive this
funds the miner includes a coinbase transaction with his address (in the list of transaction
outputs) as the first transaction in the block. Through these block rewards the mining
mechanism also serves as the money supply of the Bitcoin system [14].

Proof-of-Work

A PoW is a piece of data that is difficult to produce but easy to verify. In the Bitcoin
system the block hash serves as the PoW. The block hash is calculated by hashing all the
data in the Block Header (see Figure 2.1) through SHA-256. To provide a valid PoW a
miner calculates the block hash of his candidate block repeatedly while incrementing the
nonce field in the Block Header until the block hash is smaller or equal to the difficulty
target in the Block Header [15]. The PoW is employed as the consensus mechanism in
the Bitcoin blockchain. It ensures that all the peers can trust in the mined blocks.

2.1.3 Bitcoin Core Client

The Bitcoin Core is an open source Bitcoin client based on the original Bitcoin client
released by Satoshi Nakamoto. It consists of a software to maintain a full node, i.e.,
maintain a full copy of the blockchain, as well as a Bitcoin wallet to sign transactions and
send transactions to the blockchain [16].

8 CHAPTER 2. BACKGROUND

Bitcoin Core stores the blocks, in network format, in blk*.dat files. The blocks are
stored as soon as they are received. Thus, do not necessarily follow the order of the
blocks [17]. Figure 2.4 illustrates the first block of the Bitcoin blockchain (i.e., genesis
block) in hexadecimal data format.Genesis	block:	first	293	bytes	of	blk00000.dat

f9beb4d91d01000001000000000000000000000000000000000000000
00000000000000000000000000000003ba3edfd7a7b12b27ac72c3e67
768f617fc81bc3888a51323a9fb8aa4b1e5e4a29ab5f49ffff001d1dac2b7
c01010000000100
00000000000000000000ffffffff4d04ffff001d0104455468652054696d65
732030332f4a616e2f32303039204368616e63656c6c6f72206f6e20627
2696e6b206f66207365636f6e64206261696c6f757420666f722062616
e6b73ffffffff0100f2052a01000000434104678afdb0fe5548271967f1a67
130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f355
04e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac0000000000

Size	(of	upcoming	block) Block	Header Transaction	Count

Transaction	Data

Magic	Bytes

1Figure 2.4: First 293 bytes of blk00000.dat (Genesis Block)

• The Magic Bytes indicate to which Bitcoin network a block belongs. There are
four possibilities [18]:

– Mainnet: f9beb4d9

– Testnet: fabfb5da

– Testnet3: 0b110907

– Namecoin: f9beb4fe

• The Size of the block in number of bytes.

• The Block Header contains the concatenated byte strings of the Block Header
from Figure 2.1.

• The Transaction Counter tells the number of transactions included the block.

• Transaction Data contains the transactions included in this block. For detailed
information see Bitcoin Wiki: Protocol Documentation [18].

2.2 Neo4j

Neo4j [19] is a transactional graph database developed by Neo4j, Inc. In contrast to SQL
and NoSQL databases, Neo4j stores the data as a network of nodes and relationships
between them, which is well suited for data that shows the characteristics of a network,
such as Bitcoin transaction data. At the same time it also supports the ACID properties
for consistent and reliable data. Neo4j has its own query language called Cypher. This

2.3. APACHE SPARK 9

language allows to write complex queries in an easy way by using ASCII art to illustrate
nodes and relationships.

The Neo4j Community Edition is freely available as GPLv3 licensed open-source project.
The Neo4j Enterprise Edition that contains additional closed-source components requires
a commercial license. Amongst other differences the two versions differ in graph size
limitation. The Enterprise Edition has no graph size limitation, whereas the Community
Edition is limited to 34 billion nodes/relationships [20]. Even though the Enterprise
Edition runs under a commercial license, Neo4j provides Neo4j Desktop, that contains
the full Enterprise Edition, for developers for free with registration.

2.3 Apache Spark

Apache Spark is a general-purpose cluster computing platform that promises high per-
formance while being easy to use. Developed at UC Berkeley’s AMPLab was it later do-
nated to the Apache Software Foundation, which maintains it as an open-source project.
It makes it easy to schedule and distribute computational tasks across many worker ma-
chines, i.e., a cluster. To interact with the platform it provides APIs in Python, Java,
Scala and SQL, as well as rich built-in libraries for varies purposes [21].

Spark Core

Spark SQL Spark
Streaming

MLib
(machine
learning)

GraphX

Standalone Scheduler Mesos Yarn

Spark
Libraries

Cluster
Managers

Figure 2.5: Components of Apache Spark

Figure 2.5 depicts the components present in the Apache Spark system. Spark Core pro-
vides basic functionality, such as task scheduling, memory management, and interaction
with disk storage. On top of this component, Spark contains additional libraries, such as
Spark SQL which allows to query structured data using SQL and Hive Query Language
(HQL), Spark Streaming that enables processing of data streams, MLib that provides ma-
chine learning functionality, and GraphX, which is a graph engine that provides operators
for graph manipulations and common graph algorithms. It is possible to use Spark with
different cluster managers, e.g., Apache Mesos or Hadoop Yarn. Nonetheless, Spark itself
also features a cluster manager that allows to easily set up a cluster if there is not already
an existing Mesos or Yarn cluster available [21].

10 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Since Bitcoin started in 2009, there have been various publications on the subject of
blockchain analysis. Thus, in this chapter an overview of related work in this context is
provided. First, address clustering-related works are described. Then, tools that were
developed to analyse blockchain data and which are closely related to the present work,
are presented. Finally, a discussion is conducted on the performance evaluation and
shortcomings of such works.

3.1 Address Clustering

A considerable number of works on the topic of Bitcoin blockchain analysis rely on a
user graph that can be constructed using heuristics to cluster Bitcoin addresses, such as
[7, 22–25]. Following this approach, a scalable clustering algorithm is presented in [26].
Harrigan and Fretter [27] explain why the Multi-Input heuristic (cf. Section 4.1.2) is
effective. In contrast to the above mentioned works, [28] use off-chain data in addition
to Blockchain-based heuristics for the clustering. Moreover, Chang and Svetinovic [29]
combine the well known heuristics (i.e., Multi-Input heuristic and Change heuristic) with
heuristics based on transaction patterns characterised by [30].

3.2 Blockchain Analysis Tools

Over the last years in the topic of blockchain analysis, tools were developed to parse
the Bitcoin blockchain and cluster addresses. Reid and Harrigan [22] in 2011, as well as
Meiklejohn et al. [7] in 2013 use their own modified versions of the bitcointools Python
library developed by Gavin Anderson [31] to parse the blockchain.

However, these approaches involved manual steps, such as the labelling of address clus-
ters. Therefore, Spagnuolo et al. [32] presented BitIodine that automatically parses the
blockchain, clusters addresses, classifies addresses and users, graphs, exports, and visu-
alises information from the Bitcoin network. They use a modified version of znort987’s

11

12 CHAPTER 3. RELATED WORK

C++ blockparser [33] for performance reasons and store the blockchain data in a em-
bedded SQLite database for simplicity. To cluster addresses according to the Multi-Input
heuristic and the shadow address heuristic they use NetworkX, a Python library for com-
plex networks.

In 2015, Fleder et al. [24] state that newer Bitcoin Core clients use LevelDB for the
blockchain indices making bitcointools obsolete. Instead, they use Armory [34] with
additional wrapper classes to parse the blockchain and construct a transaction graph.
Armory is a Bitcoin client mainly written in Python with a C++/SWIG backend for fast
blockchain processing [35].

Because of the lack of open-source solutions for blockchain analysis which are able to
deal with the increasing amount of data, Jeremy Rubin presented BTCSpark in 2015 [4].
BTCSpark is a layer on top of Apache Spark that allows to query the Bitcoin blockchain
in a distributed fashion and to build distributed analysis tools.

Bartoletti et al. [36] proposed a general-purpose Scala framework for Bitcoin and Ethereum
called Blockchain analytics API [37] in 2017. The tool first parses the blockchain and stores
a view of it together with external data as desired in either a SQL (MySQL) or a NoSQL
(MongoDB) database. The blockchain analysis is performed using the query language
of the correspondent Database Management System (DBMS). The authors improved the
solution by extending it to support the Litecoin blockchain as well as additional DBMS,
e.g., PostgreSQL and Fuseki.

In the same year Kalodner et al. [5] presented an open-source software platform for
blockchain analysis called BlockSci. BlockSci supports different blockchains such as Bit-
coin, Litecoin, Namecoin, and Zcash. According to Kalodner et al. , existing tools have
three problems: (i) poor performance, (ii) limited capabilities, and (iii) a cumbersome
programming interface. Thus, BlockSci addresses these weaknesses by being 15× to 600×
faster, providing analysis tools such address clustering and two different interfaces, i.e.,
Jupiter notebook and C++. In contrast to BTCSpark, BlockSci does not scale hori-
zontally, because commodity cloud instances offer enough memory to load the complete
Bitcoin blockchain in BlockSci’s data format and analyse it in the foreseeable future.
Moreover, the blockchain data’s graph-structured nature makes it hard to partition the
data effectively. Since parsing the blockchain needs to be sequentially to generate the
BlockSci analysis format, the blockchain parser is single-threaded and highly optimised.
To reduce analysis run-times BlockSci Analysis Library can be run multi-threaded.

Greg Walker has developed a tool called bitcoin-to-neo4j [38] that parses the Bitcoin
blockchain and writes directly to Neo4j. It creates a graph of the complete blockchain.
However, the resultant graph has 6× the size of the actual blockchain. Thus, if the Bitcoin
blockchain has a size of 200 GB, the resultant graph will have 1.2 TB, which can present
a challenge to store and process.

Peter Petkanic developed an approach in his bachelor thesis called “Bitcoin Blockchain
Analysis” [39]. In the approach, first the Bitcoin blockchain is parsed using a Go parser
that writes the whole blockchain to JSON files. Then a clustering software clusters the
addresses, and writes nodes and relationships to csv ready to import them into Neo4j.
Finally, these csv files are imported using the Neo4j import tool to be processed later on.

3.3. DISCUSSION 13

3.3 Discussion

3.3.1 Performance Evaluation

Some of the above mentioned papers [7, 22, 24] do not present information on the perfor-
mance of the used tools. [32] contains a performance evaluation section for BitIodine.
However, it does neither mention the size or height of the blockchain nor the date at which
it was parsed. Hence, it is hard to compare the evaluation with other works. Kalodner et
al. [5] compare BlockSci’s performance with previous tools. To perform a fair as possible
comparison, they utilize the same hardware for both tools whenever possible. The used
setup was configured as follows:

• AWS EC2 instance with 8 vCPU at 2.5 GHz, Intel Xeon E5-2670v2, 61 GB memory,
and 160 GB Storage Capacity.

• Blockheight 478,559, which is equal to approximately 128 GB of Bitcoin data.

On a single EC2 instance BlockSci executes the Total Output Amount Distribution
(TOAD) query in 28.3 seconds, whereas BTCSpark [4] takes 3.7 minutes with 10 AWS
EC2 m3.large(6.5 ECUs, 2 vCPUs at 2.5 GHz, Intel Xeon E5-2670v2, 7.5 GB memory,
32 GB of storage) and a blockheight of around 390,000. Thus, it can be observed that
BlockSci is substantially faster than BTCSpark.

Möser and Böhme use Neo4j for their blockchain analysis [40, 41]. Kalodner et al. execute
three queries on the Neo4j database they received from Möser and Böhme on the single
AWS EC2 instance mentioned above and compare it to the execution of the same three
queries with BlockSci in multi-threaded mode. They observe that BlockSci is 279× to
600× faster than the analysis with Neo4j.

For their comparison with blockparser [33] Kalodner et al. run its Simple Stats bench-
mark (i.e., computing average input count, average output count and average value) on
their EC2 instance and compare it with a single-threaded and a multi-threaded implemen-
tation of this benchmark for BlockSci. BlockSci’s single-threaded version is 39× faster
and the multi-threaded version is 1319× faster than blockparser.

3.3.2 General Remarks

There have been several proposed solutions to address the problem of processing the
Bitcoin blokchain data. Some of them rely on bitcointools as a basis. However, this
tool seems to be outdated if compared to recent works. Others, such as Blockchain
analytics API [37], have long query creation times (cf. [5]), which hinders its practical
employment in scientific research. There are also tools, such as znort987’s blockparser,
that do not take advantage of parallel processing, e.g., multi-threading or distributed
computing. Thus, resulting in slower processing performance. Moreover, even BlockSci,
that does not suffer from any of the above mentioned problems, has a downside, which is

14 CHAPTER 3. RELATED WORK

that to run BlockSci, nowadays and in future, it needs hardware that is equipped with a
considerable amount of RAM (e.g., 61 GB). This RAM constrain cannot be easily solved.
Therefore, it limits the employment of BlockSci in projects.

Based on this discussion, there is space for a solution that not only (i) allows to process
Bitcoin data for address clustering in a distributed fashion on a cluster of commodity hard-
ware while allowing to create or change heuristics easily, but also (ii) allows to combine
different heuristics and compare different combinations of them.

Chapter 4

Processing Bitcoin Data

This chapter details the design and implementation of the proposed solution that allows
to cluster Bitcoin addresses taking advantage of distributed processing. First, in Section
4.1, the design of the complete solution is described, which includes an overview of the
architecture, an explanation of two address clustering heuristics, and design decisions
concerning the chosen database. Then, in Section 4.2, the implementation of the different
modules of the proposed solution is explained in detail.

4.1 Solution Design Decisions

4.1.1 Solution Architecture

Tr
an

sa
ct

io
ns

SolutionBitcoin
Blockchain

Data Extractor

O
ut

pu
tBig Data Processing

Framework

User
Database Structured Data

Figure 4.1: Foreseen Architecture of the Solution

Figure 4.1 depicts an overview of foreseen components of the solution architecture. The
Data Extractor obtains the necessary data, such as transactions and blocks, from the
Bitcoin blockchain and stores this information using the specific format schema of the
Database, e.g., a Neo4j graph. After all the data is stored, the Big Data Processing
Framework retrieves this structured data and applies the algorithms and heuristics (e.g.,
Multi-Input heuristic) to output useful information about the blockchain data to the user

15

16 CHAPTER 4. PROCESSING BITCOIN DATA

and store the output in the Database. A user in the architecture solution is considered to
be a blockchain or economics researcher that is interested in the output of the solution.

4.1.2 Address Clustering Heuristics

To provide valuable output for the user, address clustering heuristics, such as Multi-Input
and Change, must be applied on the imported data in the Big Data Processing Framework.
These heuristics are described in the next sections.

Multi-Input Heuristic

The Multi-Input heuristic was already described in Nakamoto’s whitepaper [1] and ex-
plained in more detail in [7] as follows:

If two (or more) addresses are inputs to the same transaction, they are controlled by the
same user; i.e., for any transaction t, all pk ∈ inputs(t) are controlled by the same user.

Figure 4.2 shows a simplified Bitcoin transaction with two addresses as input (A1 and
A2), and two addresses as output, (A3 and A4). The Multi-Input heuristic declares that
the two input addresses, A1 and A2, belong to the same user.

List of Inputs List of Outputs

A1 (2.5 BTC)

A2 (1.5 BTC)

A3 (3.0 BTC)

A4 (1.0 BTC)

Transaction

Figure 4.2: Transaction where the Multi-Input heuristic is applied

The Multi-Input heuristic does not always hold because of two reasons: The first being
that partially signed transactions are allowed since BIP174 (Bitcoin Improvement Pro-
posal 174), and also before BIP174 it was possible to give a private key to someone else
in order to create a transaction with inputs from multiple parties. And the second is that
it is possible to obfuscate payments by creating CoinJoin transactions [42].

However, the Multi-Input heuristic seems to be effective as it has been shown in an
experimental analysis that the heuristic could identify more than 69% of the addresses in
the wallets stored by lightweight clients [27].

4.1. SOLUTION DESIGN DECISIONS 17

Change Heuristic

The Change heuristic is based on the fact that several Bitcoin clients automatically gen-
erate new addresses for the change of transactions, referred to as change addresses. These
addresses are only used once to receive change and spend it later. Since this occurs inside
the wallet client, it is unlikely that a user will share a change address with other peers to
receive payments.

Because the Change heuristic relies on a programming logic of Bitcoin clients instead of
a property of the Bitcoin protocol, it application may lead to falsely linked addresses.
Therefore, it is important to carefully decide whether an output address is a change
address or not. Thus, Meiklejohn et al. proposed the following definition [7]:

DEFINITION A public key pk is a one-time change address for a transaction t if the
following conditions are met :

1. d+
addr(pk) = 1; i.e., this is the first appearance of pk.

2. The transaction t is not a coin generation.

3. There is no pk′ ∈ outputs(t) such that pk′ ∈ inputs(t); i.e., there is no self-change
address.

4. There is no pk′ ∈ outputs(t) such that pk′ 6= pk but d+
addr(pk

′) = 1; i.e., for all the
outputs in the transaction, condition 1 is met for only pk.

The definition of the one-time change address is then used in the Change heuristic as
follows:

The one-time change address is controlled by the same user as the input addresses, i.e.,
for any transaction t, the controller of inputs(t) also controls the one-time change address
pk in outputs(t) (if such an address exists).

Figure 4.3 shows a simplified Bitcoin transaction with one address as input, i.e., A1, and
two addresses as output, i.e., A2 and A3. Since A1 is a valid address, the transaction is
not a coinbase transaction. The Change heuristic says now that the two input addresses,
A1 and A3, belong to the same user.

List of Inputs List of Outputs

A1 (2.5 BTC) A2 (0.4 BTC)

A3 (2.1 BTC)

Transaction nr 500

A2 appeared in tx nr 400

first appearence of A3

Figure 4.3: Transaction where the Change heuristic is applied

18 CHAPTER 4. PROCESSING BITCOIN DATA

4.1.3 Address Graph

The result of applying an address clustering heuristic, such as the above mentioned Multi-
Input heuristic, is that we know which addresses are connected. To be able to reason about
the result, it is useful to picture it as a graph, the Address Graph, where addresses are
represented by vertices and edges between two vertices indicate that they are connected.
The connected components of an Address Graph represent clusters of addresses, whereby
the addresses of one cluster belong to one user. The Address Graph presented in Figure
4.4 has three connected components depicted using green, blue, and red squares. The
addresses of the green connected component (i.e., A1, A3, A4 and A8) belong to User1.
Whereas A2, A6 and A7 are controlled by User2. And User3 has only one address,
A5.

A1
A2

A3

A7

A6

A4

A5A8

Figure 4.4: Address Graph with three connected components

4.1.4 Database

As we started thinking about how to store the data we would get after clustering the
addresses, we realised that it is possible to store that data directly as a graph, the Address
Graph, such that we could later on detect the connected components. Graph databases
allow to store data directly as graphs. Neo4j is the most popular graph database [43] and
it is freely available. Therefore, it is relatively well documented and discussed in forums.
Another advantage of using Neo4j is that it provides a variety of graph algorithms, such
as one to detect strongly connected components [44]. Those are the reasons why Neo4j
was chosen as a database for this solution.

The more it was researched about the information necessary to apply the address cluster-
ing heuristics, the more it was realised that this data also is of a graph nature. Neo4j’s
query language Cypher allows to implement address clustering heuristics, that exploit the
structure of the Bitcoin blockchain data, easily. It is even possible to apply Cypher queries

4.1. SOLUTION DESIGN DECISIONS 19

on a Neo4j graph in a distributed fashion with Cypher for Apache Spark (CAPS). This
lead to the decision to store the necessary blockchain data in Neo4j. Figure 4.5 shows the
database schema used to store the Bitcoin transaction data, e.g., the Transaction Graph.
This schema is composed of following nodes:

• Transaction: This node represents a Bitcoin transaction which can be identified
through its transaction id (txid).

• Block: This node represents a block of the Bitcoin blockchain. It can be identified
by its block hash (hash). It also stores the height in which this block can be found
in the blockchain.

• Address: This node represents an address from the Bitcoin blockchain. It can be
identified through the address property.

The nodes mentioned above are connected through the following relationships:

• A Block IS BEFORE another Block.

• A Transaction BELONGS TO a Block.

• An Address that is the input of a Transaction SENDS an amount of bitcoin in
satoshis (value) to that Transaction.

• An Address that is the output of a Transaction RECEIVES an amount of bitcoin
in satoshis (value) from that Transaction. The RECEIVES relationship also has
a property output_nr.

Block

Transaction Address

IS_BEFORE

BELONGS_TO

SENDS

RECEIVES

value: Integer

value: Integer
output_nr: Integer

txid: String address: String

hash: String
height: Integer

Figure 4.5: Database Schema for the Transaction Graph

20 CHAPTER 4. PROCESSING BITCOIN DATA

4.2 Implementation

Bitcoin
Blockchain

Data
Extractor

btc-csv

Database

Neo4j Import
Tool

Neo4jdeduplication

Big Data Processing
Framework

Cypher for Apache
Spark

Figure 4.6: Data Flow of the Solution Implementation

Figure 4.6 shows the phases of data flow of the solution implementation. The Data
Extractor phase consists of two steps: first, btc-csv, a program written in Go, parses
the Bitcoin blockchain and creates csv files containing nodes and relationships (see Data
Import Method 4.2.2). In a second phase, duplicate Address nodes are removed from
the csv file using a process called deduplication. Thirdly, in the Database phase, the
previously created nodes and relationships are imported into the Neo4j graph database
using the Neo4j Import Tool. Finally, in the Big Data Processing phase, relying on
CAPS, a set of heuristics is applied taking advantage of the distributed processing provided
by Apache Spark and the result is stored in the database for future retrieval by the user.

4.2.1 Data Extractor

To interact with the Bitcoin blockchain the chainswatch/bclib [45] library was em-
ployed. bclib is a Bitcoin blockchain library developed by Kevin Primicerio using the Go
language. It provides a set of functions and models, such as the function LoadFile (see
Listing 4.1) and the struct models for transactions and block headers (see Listing 4.2),
that allow to parse the Bitcoin blockchain.

Listing 4.1: LoadFile Function in bclib Library

1 // LoadFile allows to traverse the blocks by height order while applying a

function argFn

2 func LoadFile(fromh, toh uint32, newFn apply, argFn interface{}) error {...}

The function LoadFile parses the blockchain from blockheight fromh to blockheight toh.
For each block in the blockchain that is decoded, a data structure Block (see Listing 4.2)
is created and filled with the decoded information and the function fn is called with the
Block struct as parameter. The function fn(b *models.Block) is returned by argFn

which is a parameter of LoadFile.

4.2. IMPLEMENTATION 21

Listing 4.2: Implemented Models in bclib Library

1 // TxInput holds tx inputs

2 type TxInput struct {

3 Hash []byte ‘db:"hash"‘ // Hash previous tx

4 Index uint32 ‘db:"index"‘ // Output previous tx

5 Script []byte ‘db:"script"‘ // Not used

6 Sequence uint32 ‘db:"sequence"‘ // Always 0xFFFFFFFF

7 ScriptWitness [][]byte

8 }

9

10 // TxOutput holds tx outputs

11 type TxOutput struct {

12 Index uint32 ‘db:"index"‘ // Output index

13 Value uint64 ‘db:"value"‘ // Satoshis

14 Addr []byte ‘db:"addr"‘ // Public key

15 AddrType uint8

16 Script []byte ‘db:"script"‘ // Script Code

17 }

18

19 // Tx holds transaction

20 type Tx struct {

21 NVersion int32 ‘db:"n_version"‘ // Always 1 or 2

22 Hash []byte ‘db:"tx_hash"‘ // Transaction hash (computed)

23 NVin uint32 ‘db:"n_vin"‘ // Number of inputs

24 NVout uint32 ‘db:"n_vout"‘ // Number of outputs

25 Vin []TxInput

26 Vout []TxOutput

27 Locktime uint32 ‘db:"locktime"‘

28 Segwit bool

29 }

30

31 // BlockHeader contains general index records parameters

32 // It defines the structure of the postgres table

33 type BlockHeader struct {

34 NVersion uint32 ‘db:"n_version"‘ // Version

35 NHeight uint32 ‘db:"n_height"‘ //

36 NStatus uint32 ‘db:"n_status"‘ //

37 NTx uint32 ‘db:"n_tx"‘ // Number of txs

38 NFile uint32 ‘db:"n_file"‘ // File number

39 NDataPos uint32 ‘db:"n_data_pos"‘ // (Index)

40 NUndoPos uint32 ‘db:"n_undo_pos"‘ // (Index)

41 Hash []byte ‘db:"hash_block"‘ // current block hash (Added)

42 HashPrev []byte ‘db:"hash_prev_block"‘ // previous block hash (Index)

43 HashMerkleRoot []byte ‘db:"hash_merkle_root"‘ //

44 NTime uint32 ‘db:"n_time"‘ // (Index)

45 NBits uint32 ‘db:"n_bits"‘ // (Index)

46 NNonce uint32 ‘db:"n_nonce"‘ // (Index)

47 TargetDifficulty uint32 ‘db:"target_difficulty"‘ //

48 NSize uint32 ‘db:"n_size"‘ // Block size

49 }

22 CHAPTER 4. PROCESSING BITCOIN DATA

50

51 // Block contains block infos

52 type Block struct {

53 BlockHeader

54 Txs []Tx

55 }

In addition, bclib contains several functions to extract and calculate information related
to the Bitcoin blockchain, such as the function putTxHash presented in Listing 4.3 to
calculate the hash of a transaction (reversed txid). This function produced a wrong
hash in some transactions that contained thousands of inputs or outputs. This error
was encountered while parsing the blockchain data. The error was located, after some
research by Kevin Primicerio and the authors, in the parser.CompactSize(n uint64)

[]byte function, which converts an integer to an array of 1 to 8 bytes. This error was
fixed in a new version of the library.

Listing 4.3: Function that calculates the transaction hash (reversed txid) and adds it to
the transaction

1 func putTxHash(tx *models.Tx) {

2 bin := make([]byte, 0)

3 version := make([]byte, 4)

4 binary.LittleEndian.PutUint32(version, uint32(tx.NVersion))

5 bin = append(bin, version...)

6

7 vinLength := parser.CompactSize(uint64(tx.NVin))

8 bin = append(bin, vinLength...)

9 for _, in := range tx.Vin {

10 bin = append(bin, getInputBinary(in)...)

11 }

12

13 voutLength := parser.CompactSize(uint64(tx.NVout))

14 bin = append(bin, voutLength...)

15 for _, out := range tx.Vout {

16 bin = append(bin, getOutputBinary(out)...)

17 }

18

19 locktime := make([]byte, 4)

20 binary.LittleEndian.PutUint32(locktime, tx.Locktime)

21 bin = append(bin, locktime...)

22

23 tx.Hash = serial.DoubleSha256(bin)

24 }

btc-csv

btc-csv parses the Bitcoin blockchain using bclib and generates the Transaction graph
shown in Figure 4.5. As mentioned in Section 2.1.1, a Bitcoin transaction input does not

4.2. IMPLEMENTATION 23

contain the address but a link to a previous UTXO. To resolve the address for a transaction
input a leveldb [46] (a fast persistent key-value store) instance is used to maintain a key-
value store of all the UTXO at the current block height during the parsing. For each
transaction output an entry is added in the UTXO leveldb, called utxo. As shown in
Listing 4.4, the key of the new entry is a string constructed of the txid and the output
number of the UTXO. The value of the entry is the address and the amount of bitcoin
sent. For each transaction input the utxo is queried to retrieve the corresponding address
and amount of bitcoin. Then the entry in utxo is deleted to make look-ups faster.

Listing 4.4: New UTXO is added to leveldb instance called utxo

1 txOutput.Addr = addr

2 txOutput.Value = vout.Value

3 data, err := proto.Marshal(txOutput)

4 if err != nil {

5 log.Fatal("marshalling error: ", err)

6 }

7 utxo.Put([]byte(txid+fmt.Sprint(vout.Index)), data, nil)

To create the Transaction Graph, the above mentioned function LoadFile from bclib is
called with the function Build(x interface{}) presented in Listing 4.5. The function
returned by Build(x interface{}) creates nodes and relationships for a block and writes
them to the corresponding csv files.

Listing 4.5: Function that builds the Transaction Graph

1 func Build(x interface{}) (func(b *models.Block) error, error) {

2 // Omitted code

3 return func(b *models.Block) error {

4 // Here are the nodes and relationships for the current block

5 // created.

6 }

7 }

If the blockchain shall parsed from a certain block height b > 0, it is important provide
the utxo leveldb for block height (b− 1). If it is missing, then the input addresses cannot
be resolved, and hence the program fails. If the newly created nodes and relationships
shall be added to en existing Transaction Graph (see the Load CSV function in Section
4.2.2), it is important to either rename the existing csv files or move it to another folder.
Otherwise, the new nodes and relationships are added to the existing csv files.

Deduplication

To avoid maintaining a second leveldb key-value store for addresses, all addresses are
directly written to the address node csv file. This leads to duplicate Address nodes. Since
removing duplicate nodes makes the Neo4j import slow, it is important to remove them
in advance.

24 CHAPTER 4. PROCESSING BITCOIN DATA

The deduplication of the address nodes is achieved by sorting and omitting duplicates in
the address.csv file. Listing 4.6 shows the command used to remove duplicate address
nodes. After -T a folder with enough space to hold the temporary data shall be specified.
This is needed if the Linux root partition, e.g., the partition where the operating system
resides, is not large enough.

Listing 4.6: Deduplication using Linux sort

1 user@hostname:~$ sort -u addresses.csv -o addresses.csv -T /path/to/folder

4.2.2 Data Import Method

To import the Bitcoin data to the Neo4j database three options are available, (i) Neo4j
Go Driver, (ii) Neo4j Import Tool, and (iii) Load CSV.

i The Neo4j Go Driver [47] is the officially supported tool to interact with the Neo4j
database from within a Go program. It allows to execute Cypher queries to either
add nodes and/or relationships to the database or just getting information from the
database. One can refer to [48] for a more detailed description.

ii The Neo4j Import Tool [49] can be used to import large amounts of data in a batch.
For each sort of node and relationship at least one CSV file needs to be provided. The
big advantage of the Import Tool is that it works in parallel.

iii Load CSV [50] is a statement of Neo4j’s query language Cypher. In contrast to the
Import Tool it allows to add nodes and relationships from CSV files to an existing
database.

In this work the Neo4j Import Tool was chosen because a first implementation using
the Neo4j Go Driver has shown that it is too slow, and hence not usable to import the
complete Bitcoin blockchain. Load CSV was not used because Neo4j suggests to use the
Neo4j Import Tool for large amounts of data.

To be able to import the data using the Neo4j Import Tool, the following csv-header files
containing these exact information need to be provided:

• addresses-header.csv:
address:ID(Address)

• blocks-header.csv:
hash:ID(Block),height:int

• transactions-header.csv:
txid:ID(Transaction)

• before rel-header.csv:
:START ID(Block),:END ID(Block)

4.2. IMPLEMENTATION 25

• belongs to rel-header.csv:
:START ID(Transaction),:END ID(Block)

• receives rel-header.csv:
:START ID(Transaction),value,output nr:int,:END ID(Address)

• sends rel-header.csv:
:START ID(Address),value,:END ID(Transaction)

The csv files holding the data need to be structured in the way of the corresponding
header file, e.g., the addresses.csv file needs to be structured as the addresses-header.csv.
The nodes and relationships can be imported into Neo4j using the import script shown in
Listing 4.7.

Listing 4.7: Import Script

1 export DATA=/path/to/folder/containing/csv-files/

2 export HEADERS=/path/to/folder/containing/csv-headers/

3

4 ./bin/neo4j-admin import \

5 --mode=csv \

6 --database=btc.db \

7 --nodes:Address $HEADERS/addresses-header.csv,$DATA/addresses.csv \

8 --nodes:Block $HEADERS/blocks-header.csv,$DATA/blocks.csv \

9 --nodes:Transaction

$HEADERS/transactions-header.csv,$DATA/transactions.csv \

10 --relationships:IS_BEFORE

$HEADERS/before_rel-header.csv,$DATA/before_rel.csv \

11 --relationships:BELONGS_TO

$HEADERS/belongs_to_rel-header.csv,$DATA/belongs_to_rel.csv \

12 --relationships:RECEIVES

$HEADERS/receives_rel-header.csv,$DATA/receives_rel.csv \

13 --relationships:SENDS $HEADERS/sends_rel-header.csv,$DATA/sends_rel.csv \

14 --ignore-missing-nodes=true \

15 --ignore-duplicate-nodes=true \

16 --multiline-fields=true \

17 --high-io=true

However, if new data is to be added to an existing Transaction Graph, e.g., nodes and
relationships from newly parsed blocks, then the Load CSV method must be used. Listing
4.8 shows an example of how to import new address nodes.

Listing 4.8: Load CSV addresses.csv

1 USING PERIODIC COMMIT 1000

2 LOAD CSV FROM ’/path/to/addresses.csv’ AS line

3 CREATE (:Address { address: line[1]})

26 CHAPTER 4. PROCESSING BITCOIN DATA

4.2.3 Distributed Data Analysis

The Multi-Input heuristic was implemented using Cypher for Apache Spark (CAPS)
[51]. CAPS allows to use Cypher in a Apache Spark context. It gives the opportunity
of integrating different data sources, such as Neo4j graphs and graphs stored as csv files,
as well as it supports queries that involve multiple graphs at once. It allows to run
Cypher graph queries on a Spark cluster. CAPS is maintained by the openCypher project
which also maintains the Cypher language [51]. The Cypher language will also become
an integral part of a new graph module in Apache Spark 3.0 [52].

Cypher not only allows to exploit the graph structure of the Bitcoin transaction data, but
gives also the opportunity to express the heuristics easily. Listing 4.9 shows the Multi-
Input heuristic as Cypher query that can be run directly on a Neo4j graph via the Neo4j
Browser or the Neo4j Cypher Shell. An example of its application on a Transaction Graph
can be seen in Figure 4.7, where the heuristic is applied to the Transaction Graph in (a)
and (b) shows the result of that application. In fact two new IS SAME relationships are
created in the same Transaction Graph. However, the other nodes and relationships are
omitted in the Figure to emphasize the newly created relationships.

Listing 4.9: Multi-Input heuristic in Cypher

1 MATCH (a1:Address)-[:SENDS]->(t:Transaction)<-[:SENDS]-(a2:Address)

2 MERGE (a1)-[:IS_SAME]->(a2)

(a) Transaction Graph (b) Address Graph

Figure 4.7: Cypher Multi-Input heuristic application

There are currently two ways to use CAPS, (i) using a Zeppelin Notebook [53], and (ii) in
a Scala Maven project. Both approaches use the programming language Scala. Therefore,
the Scala implementation of the Multi-Input heuristic presented in Listing 4.10 can be
used in a Zeppelin Notebook as well as in a Scala Maven project. This code, however,
could not be tested because of an error in CAPS’s Maven dependency.

4.2. IMPLEMENTATION 27

Listing 4.10: Multi-Input heuristic in Scala

1 // Create CAPS caps

2 implicit val caps: CAPSSession = CAPSSession.create(spark)

3

4 val neo4jConfig = Neo4jConfig(URI.create("bolt://localhost:7687"), user =

"neo4j", password = Some("password"), encrypted = false)

5

6

7 caps.registerSource(Namespace("txGraph"),

GraphSources.cypher.neo4j(neo4jConfig))

8

9 def multiInputQuery(fromGraph: String): String =

10 s"""FROM GRAPH $fromGraph

11 |MATCH (a1:Address)-[:SENDS]->(t)<-[:SENDS]-(a2:Address)

12 |CONSTRUCT

13 | CREATE (a1)-[:IS_SAME]->(a2)

14 |RETURN GRAPH

15 """.stripMargin

16

17 // Create the Address Graph by applying the Multi-Input heuristic

18 val addressGraph =

caps.cypher(multiInputQuery(s"txGraph.$entireGraphName")).graph

19

20 // Merge graph into existing Neo4j database

21 Neo4jGraphMerge.merge(entireGraphName, addressGraph, neo4jConfig)

In the following paragraph the Multi-Input Scala program presented in Listing 4.10 is
explained: First, a CAPSSession is created. A CAPSSession wraps a SparkSession in
order to use the underlying Spark APIs. In the fourth line a Neo4jConfig is created
which is needed to access the graph currently running in the Neo4j database. After-
wards, the graph stored in Neo4j is registered as a source with the name txGraph in the
CAPSSession. The function multiInputQuery holds the Cypher implementation of the
Multi-Input heuristic and returns it as a string. This implementation creates a new graph
consisting of Address nodes and IS SAME relationships. In contrast to Cypher used di-
rectly in Neo4j, it is not possible in CAPS to create new nodes and relationships directly
in the existing Neo4j database, and hence a new graph must be created which exists only
in CAPS. This new graph can then for example be merged into the existing Neo4j graph
using Neo4jGraphMerge, as can be seen in line 21.

28 CHAPTER 4. PROCESSING BITCOIN DATA

Chapter 5

Evaluation and Challenges
Discussion

This chapter presents a performance evaluation of the solution proposed in Chapter 4 as
well as a discussion of the challenges faced in the development phase. The performance
evaluation is structured in the way of the solution workflow. Firstly, the Bitcoin blockchain
is parsed and the Transaction Graph is created. Secondly, duplicate Address nodes are
removed. Thirdly, the Transaction Graph is imported into Neo4j. Finally, the addresses
are clustered using a heuristic.

5.1 Evaluation

In this section, the solution is evaluated in terms of processing time and storage use.
However, due to errors encountered in the employed tools, such as the CAPS project
used for the distributed data analysis mentioned in Section 4.2.3, not all the parts of
the solution could be evaluated. Thus, the evaluation only comprises the fully functional
parts. The hardware and height of the blockchain used are always described in the specific
section.

5.1.1 Blockchain Parsing

For this evaluation the Bitcoin blockchain was parsed until block height 564,700 using
btc-csv parser. At this height, the size of the blockchain was around 205 GB. Table 5.1
presents the hardware used for the parsing.

Component Description
Processor Intel Core i5-2500 CPU @ 3.30GHz x 4
Memory 16 GB Memory
Disk 1 TB SSD

Table 5.1: System Used to Parse the Bitcoin Blockchain

29

30 CHAPTER 5. EVALUATION AND CHALLENGES DISCUSSION

It took 29 hours, 59 minutes, and 31 seconds to run btc-csv from block height 0 to
564,700. The outcome was csv files holding nodes and relationships with a total size of
331.4 GB. The sizes of the individual files can be found in Table 5.2. The total amount
of disk space needed for the nodes and relationships exceeds the size of the blockchain by
more than 120 GB. The files for the relationships with a combined size of 270.0734 GB
make up a large proportion (81%) of the total size. The combined size of the node files
is only 61.3405 GB. This difference is not only because there might be more relationships
than nodes, i.e., from address reuse, but also because each relationship contains two long
node ID’s, i.e., a SENDS relationship contains a Bitcoin address and a txid.

File Size
addresses.csv 36.2 GB
blocks.csv 40.5 MB
transactions.csv 25.1 GB
before_rel.csv 73.4 MB
belongs_to_rel.csv 50.3 GB
receives_rel.csv 114.4 GB
sends_rel.csv 105.3 GB

Total Size 331.4139 GB

Table 5.2: Sizes of the Node and Relationship csv Files

As described in Section 4.2.1, btc-csv uses a leveldb UTXO store, called utxo, to resolve
Bitcoin addresses for transaction inputs. Since, an entry is deleted as soon as it is spent,
its size varies. After parsing was finished at block height 564,700 the size of the complete
leveldb was 6.6 GB.

Figure 5.1 shows a the parsing time for different block heights. To create this chart
the parsing time was logged after each 100 blocks. Petkanic’s blockchain parser needed
23 hours 49 minutes for 508,000 blocks with Solid State Drive (SSD) (without an SSD
it would take more than 150 hours) [39]. In contrast btc-csv 21 hours 58 minutes for
the same amount of blocks. Nevertheless, it is very difficult to compare different parsers,
since they generate different files as output. Petkanic’s solution converts raw blocks into
JSON files holding the relevant information of the block. In contrast, btc-csv creates
nodes and relationships. Both solutions, however, resolve input addresses while parsing.

5.1. EVALUATION 31

0

20000

40000

60000

80000

100000

120000

0
22

60
0

45
20

0
67

80
0

90
40

0
11

30
00

13
56

00
15

82
00

18
08

00
20

34
00

22
60

00
24

86
00

27
12

00
29

38
00

31
64

00
33

90
00

36
16

00
38

42
00

40
68

00
42

94
00

45
20

00
47

46
00

49
72

00
51

98
00

54
24

00

Se
co
nd
s

Number	of	Blocks

Parsing	Time

Figure 5.1: Time to Parse a Number of Blocks

Figure 5.2: Size of the Bitcoin blockchain

Figure 5.2 shows the increase in size of the Bitcoin blockchain from 2009 until 2019. By
comparing the parsing times in Figure 5.1 with the blockchain sizes in Figure 5.2 it can be
seen that the parsing times behave equally to the blockchain sizes. An experiment where
the spent UTXOs were not deleted from utxo showed that the parsing times tend to grow
faster than the blockchain. Parsing 546,700 blocks took 40 hours 20 minutes which can
be related to longer look-up times.

32 CHAPTER 5. EVALUATION AND CHALLENGES DISCUSSION

5.1.2 Deduplication

The removal of duplicated address nodes using Linux’s sort algorithm took 31 minutes
and 51 seconds on the hardware presented in Table 5.3. The size of the file address.csv

reduced from initially 36.2 GB to 17.0 GB.

Component Description
Processor Intel Core i5-2500 CPU @ 3.30GHz x 4
Memory 16 GB Memory
Disk 1 TB SSD
Linux OS Ubuntu 18.04 LTS

Table 5.3: System Used for Address Node Deduplication

File Size
addresses.csv 17.0 GB
blocks.csv 40.5 MB
transactions.csv 25.1 GB
before_rel.csv 73.4 MB
belongs_to_rel.csv 50.3 GB
receives_rel.csv 114.4 GB
sends_rel.csv 105.3 GB

Total Size 312.2139 GB

Table 5.4: Sizes of the Deduplicated Node and Relationship csv Files

5.1.3 Neo4j Import

To import the nodes and relationships from the deduplicated csv files presented in Table
5.4 the Neo4j Import Tool was used on the system shown in Table 5.5. The complete
import took 7 hours 41 minutes 34 seconds 899 ms with a peak memory usage of 10.74 GB.
The resulting Neo4j graph has a size of 246.27 GB, and contains the Neo4j nodes presented
in Table 5.6 and relationships described in Table 5.7.

Component Description
Processor Intel Core i5-2500 CPU @ 3.30GHz x 4
Memory 16 GB Memory
Disk 1 TB SSD
Linux OS Ubuntu 18.04 LTS
Neo4j Neo4j Desktop 1.1.15 (Neo4j 3.5.3)

Table 5.5: System Used for Neo4j Import

5.1. EVALUATION 33

Node Type Count

Address 48,4364,667
Block 564,701
Transaction 38,6749,163

All Nodes 87,1678,531

Table 5.6: Nodes in Neo4j

Relationship Type Count

IS BEFORE 564,700
BELONGS TO 386,749,165
RECEIVES 1,031,175,599
SENDS 974,350,717

All Relationships 2,392,840,181

Table 5.7: Relationships in Neo4j

5.1.4 Address Clustering

Due to the problems encountered when applying the CAPS approach, alternative appli-
cations of the Multi-Input heuristic are evaluated in this subsection. These approaches
(Approach #1, Approach #2, and Approach #3) were applied on the Neo4j database
directly.

Component Description
Processor Intel Core i7-3520 CPU @ 2.90GHz x 4
Memory 16 GB Memory
Disk 500 GB SSD
Linux OS Ubuntu 18.04 LTS
Neo4j Neo4j Desktop 1.1.15 (Neo4j 3.5.3)

Table 5.8: System Used to Cluster Addresses

For the following performance measurements, a Neo4j Transaction Graph with block
height 100,000 was used if nothing else is mentioned. The size of the Bitcoin blockchain
was around 10 MB at this block height [2]. The resulting Neo4j graph has a size of
108.33 MB, and contains the Neo4j nodes presented in Table 5.9 and relationships de-
scribed in Table 5.10.

Node Type Count

Address 174,701
Block 100,001
Transaction 216,575

All Nodes 491,277

Table 5.9: Nodes in Neo4j at Block
height 100,000

Relationship Type Count

IS BEFORE 100,000
BELONGS TO 216,577
RECEIVES 264,251
SENDS 192,363

All Relationships 5,162,023

Table 5.10: Relationships in Neo4j at
Block height 100,000

Approach #1

This approach applies the Multi-Input heuristic on the Neo4j graph and writes an IS SAME
relationship to the file is_same_rel.csv for every match. Listing 5.1 shows the Cypher

34 CHAPTER 5. EVALUATION AND CHALLENGES DISCUSSION

query employed in this approach.

Listing 5.1: Batch Multi-Input heuristic in Cypher

1 CALL apoc.export.csv.query(

2 ’MATCH (a1:Address)-[:SENDS]->(t:Transaction)<-[:SENDS]-(a2:Address)

3 RETURN a1.address, a2.address’,’/home/csg/BA/heuristics/is_same_rel.csv’,

{useTypes: false, quotes: false});

The execution time of the Cypher query was 21 seconds 474 ms on the system presented
in 5.8, and the deduplication using sort took less than a second. The size of the file
is_same_rel.csv was 721.8 MB before removing duplicates and 324.4 MB after. This
means that 55% of all the relationships in the file were duplicates.

The execution of this query on the complete Transaction Graph (block height 564,700)
had to be manually stopped after 12 hours because the size of the csv file exceeded 600 GB.
This size makes deduplication using sort impossible. This experiment was carried out on
the system presented in Table 5.5.

Approach #2

This approach applies the Multi-Input heuristic on the Neo4j graph and creates an
IS SAME relationship for every match if there does not exist one. The result is that each
two addresses belonging together are connected through two IS SAME relationships, as
presented in Figure 5.3. Listing 5.2 shows the Cypher query used in this approach.

Figure 5.3: Two Addresses that Belong Together According to #Approach 2

Listing 5.2: Batch Multi-Input heuristic in Cypher

1 CALL apoc.periodic.iterate(

2 "MATCH (a1:Address)-[:SENDS]->(t:Transaction)<-[:SENDS]-(a2:Address) RETURN

a1, a2",

3 "MERGE (a1)-[:IS:SAME]->(a2)",

4 {batchSize:10000,iterateList:true,parallel:false})

The execution time of the Cypher query was 9 minutes 17 seconds 316 ms on the system
shown in 5.8 and 4,388,808 IS SAME relationships were created. The size of the Neo4j
graph increased from 108.33 MB to 1.51 GB, i.e., an increase of 1.4 GB.

5.1. EVALUATION 35

Approach #3

This approach applies the Multi-Input heuristic on the Neo4j graph and creates an
IS SAME relationship for every match if there does not exist one no matter in which
direction. The result is that each two addresses belonging together are connected through
one IS SAME relationship, as presented in Figure 5.4. Listing 5.3 shows the Cypher
query used in this approach.

Figure 5.4: Two Addresses that Belong Together According to Approach #3

Listing 5.3: Batch Multi-Input heuristic in Cypher

1 CALL apoc.periodic.iterate(

2 "MATCH (a1:Address)-[:SENDS]->(t:Transaction)<-[:SENDS]-(a2:Address) RETURN

a1, a2",

3 "MERGE (a1)-[:IS_SAME]-(a2)",

4 {batchSize:10000,iterateList:true,parallel:false})

The execution time of the Cypher query was 8 minutes 14 seconds 131 ms on the system
presented in 5.8 and 2,194,978 IS SAME relationships were created. The size of the
Neo4j graph increased from 108.33 MB to 753.17 MB, i.e., an increase of 644.84 MB.

Comparison of Approaches

Although these three approaches are not practical for the complete blockchain, because
of their extensive execution times due to the blockchain size, they provide interesting
insights. As can be seen in Approach #1, 55% of all the results were duplicates. Since
all the approaches use the same MATCH clause, they all find the same duplicates. The
difference is that Approach #1 does not eliminate any duplicate relationships, whereas
Approach #2 and Approach #3 check whether the current relationship already exists
or not. Moreover, any possible implementation of the Multi-Input heuristic will have to
eliminate duplicate relationships in order to provide a valuable output, either during the
application of the heuristic or later on.

Moreover, when Approach #1 was applied to the complete Transaction graph, the csv
file holding the results (including duplicates) exceeded 600 GB, meaning more than 8.7
billion relationships. It becomes difficult to deduplicate a file of this size using sort. This
problem can be reduced by using address IDs instead of the 34 byte Bitcoin addresses.
Using address IDs would also improve performance in other parts of the solution, and
save disk space.

36 CHAPTER 5. EVALUATION AND CHALLENGES DISCUSSION

To compare the complete run times of the three approaches, the deduplicated relationships
from Approach 1 were imported together with the address nodes using the Neo4j Import
Tool. Including the import, which took 16 seconds and 754 ms, to complete Approach 1
took 39 seconds and 228ms. This is much faster than the 9 minutes 17 seconds 316 ms
of Approach #2 (around 7% of Approach #2) and the 8 minutes 14 seconds 131 ms of
Approach #3 (around 8% of Approach #3).

The insights gathered in this comparison lead to the following conclusions: Firstly, it is
important to use address IDs instead of addresses to reduce the size of a relationship.
Secondly, it is important for the performance of the address clustering solution to have
a fast mechanism to remove duplicated relationships. As the comparison has shown,
Neo4j’s MERGE seems to be relatively slow in comparison to the sort method. If the
deduplication in the Spark cluster (CAPS) using either the Cypher MERGE or a distributed
sorting algorithm cannot exploit the computing cluster, it might be worth considering to
change to a highly optimised local solution for the complete workflow. However, such a
solution would not be as adaptable as the solution presented in this thesis.

5.2 Challenges Discussion

During the development of the presented solution various challenges were encountered.
Some of them lead to a changes in the approach, while others could not be implemented.

The first challenge was the use of bclib. Since it is a relatively new blockchain parsing
library, it lacks official documentation. Although the authors of this work were not familiar
with Go and the library was lacking documentation, it was decided to use this library
because the developer, after a brief contact about the library, provided all the support
and documentation available.

After implementing the Bitcoin blockchain parser btc-csv using bclib, the parser was
tested with a relatively small portion of the blockchain (e.g., first 300,000 blocks) and
everything ran without errors. When 564,700 blocks were given as input for the parser,
an UTXO used in a transaction from block 324,121 could not be resolved. At that time,
a Go map was used as utxo in the implementation. Although the estimated size of utxo
should not exceed the machines memory, the in-memory solution was replaced by a leveldb
solution on disk. Further, a next test showed that it was not the utxo that caused the
problem, but rather a problem in the bclib. After further investigation of the library
developer, Kevin Primicerio, he could detect the problem and fix it.

The initial approach for the workflow was envisioned to write the nodes and relationships
of the Transaction Graph directly to Neo4j using the Neo4j Go Driver. However, since the
Neo4j Go Driver was first released in November 2018 [54], there was not much information
regarding its effectiveness and correct functioning. The first implementation of btc-

csv using Neo4j Go Driver was extremely slow. In the first version, UTXO look-ups
were also done in Neo4j. However, even the change of performing UTXO look-ups in a
different manner, i.e., with the UTXO store utxo, did not have noticeably effects on the
performance of the program. Therefore, the approach had to be changed to write the

5.2. CHALLENGES DISCUSSION 37

nodes and relationships to csv files and then, after the parsing, import them using the
Neo4j Import Tool.

The next problem faced was the data import using the Neo4j Import Tool. This import
method is supposed to be the fastest of all import methods because it is able to use
parallelisation. As a first experiment, it was tried to import the csv files with a total
size of around 45 GB. After 16 hours the import was still at 60% and was just using one
CPU core. Thus, as it was not clear whether that was normal behaviour or what caused
the problem (e.g., too long IDs or incorrect Neo4j configuration), the Neo4j Community
[55] was contacted. After the contact, the developers of Neo4j suspected that the Import
Tool’s deduplication was the root of the problem. Therefore, a deduplication step was
included before the import, which resulted in a import time of less than 30 minutes.

After the import of the data to Neo4j, it was envisioned to employ Cypher for Apache
Spark in a Zeppelin Notebook to implement the heuristics. By relying on this approach,
a user of the solution does not have to modify a Scala project with Maven dependencies
if a new heuristic should be executed. Even after deep research on the openCypher’s
wiki regarding the use of CAPS in a Zeppelin Notebook [56], and conversations held by
Neo4j community, such as one from Martin Junghanns [57], this approach presented to
be complex for the thesis time-frame. Therefore, it was chosen to use CAPS in a Scala
project. The CAPS project provides examples which use different data sources, e.g., Neo4j
or graphs stored in a special structure of csv and JSON files. To utilise CAPS in a Scala
project it must be added as Maven dependency. After several attempts to use CAPS as
a Maven dependency, it was decided to write an issue on the CAPS GitHub repository.
To allow the developers to reproduce the error, it was created a small program based on
an example published by the CAPS team. They were able to reproduce the error and
suspect that it was due to a packaging problem. However, the issue, at the time of this
thesis writing, is still marked as bug and not closed. Thus, the further development of
the present thesis was halted and the remaining steps marked as future work.

38 CHAPTER 5. EVALUATION AND CHALLENGES DISCUSSION

Chapter 6

Conclusions and Future Work

In this thesis, an approach to process the Bitcoin blockchain data and output helpful
insights, e.g., address clusters, was presented. In order to be highly adaptable, this
approach is based on Neo4j and Apache Spark. This allows to reason about address clus-
tering heuristics based on the Transaction Graph and implement them in Neo4j exploiting
the graph nature of the data, while shorten the execution time by distributing the work
via Apache Spark.

The propsed approach was evaluated in terms of the time needed to import and extract
the data to a Neo4j graph. The evaluation showed that it took 9 hours, 59 minutes,
and 31 seconds to parse the Bitcoin blockchain with a size of 205.5 GB and create a
Transaction Graph from it. The removal of duplicate address nodes took 31 minutes and
51 seconds, and the resulting deduplicated Transaction Graph was imported into Neo4j
within 7 hours, 41 minutes, 34 seconds, and 899 milliseconds. However, the processing of
the Bitcoin blockchain data using Cypher for Apache Spark presented some challenges,
such as lack of documentation, and a software bug in CAPS Maven dependency.

Nonetheless, through applying three different approaches of the Multi-Input heuristic,
valuable insights were found. The Multi-Input heuristic detected more than 8.7 billion
relationships, that is more than 600 GB in csv format, when applied to the complete
blockchain. By applying it to a smaller Transaction Graph it could be shown that 55%
of the detected relationships were duplicates. These insights lead to the following conclu-
sions: Firstly, it is important to use address IDs instead of addresses to reduce the size
of a relationship. Secondly, it is important for the performance of the address clustering
to have a fast mechanism to remove duplicated relationships. If the deduplication in a
distributed approach cannot exploit the computing cluster, it might be worth considering
to change to a highly optimised local solution.

Based on the related work description in Chapter 3 and the challenges faced during the
development of this thesis described in Section 5.2, it can be seen that processing to
gather useful insights about the Bitcoin blockchain is a promising research topic that the
academia is focused on. However, the tools and solutions employed in this thesis are still
under development, but present an active community which works to fix software bugs
and improve them. In conclusion, the approach of combining Neo4j with Apache Spark is

39

40 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

promising. Unfortunately, due to the time-frame of this bachelor thesis and the described
challenges, some parts of the approach were not implemented. Nevertheless, it is expected
that the present thesis shed light on future works on the topic.

Therefore, future work proposals include, but are not limited to, (i) introduce address
IDs instead of addresses in transactions (ii) finish the address clustering approach using
CAPS as soon as the bug is fixed, (iii) apply different heuristics, (iv) implement the
Multi-Input heuristic in Go, and (v) compare the performance of the distributed solution
with the local implementation.

Bibliography

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. url:
https://bitcoin.org/bitcoin.pdf (visited on 11/23/2018).

[2] Blockchain Luxembourg S.A. Blockchain Size. 2019. url: https://blockchain.
info/charts/blocks-size (visited on 03/21/2019).

[3] The Apache Software Foundation. Apache Spark - Unified Analytics Engine for Big
Data. url: https://spark.apache.org/ (visited on 04/04/2019).

[4] Jeremy Rubin. BTCSpark: Scalable Analysis of the Bitcoin Blockchain using Spark.
2015. url: https : / / rubin . io / public / pdfs / s897report . pdf (visited on
03/21/2019).

[5] Harry Kalodner et al. “BlockSci: Design and applications of a blockchain analysis
platform”. arXiv:1709.02489 [cs] (Sept. 7, 2017). arXiv: 1709.02489. url: http:
//arxiv.org/abs/1709.02489 (visited on 03/26/2019).

[6] D. D. F. Maesa, A. Marino, and L. Ricci. “Uncovering the Bitcoin Blockchain: An
Analysis of the Full Users Graph”. 2016 IEEE International Conference on Data
Science and Advanced Analytics (DSAA). Oct. 2016, pp. 537–546. doi: 10.1109/
DSAA.2016.52.

[7] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Characterizing Payments Among
Men with No Names”. Proceedings of the 2013 Conference on Internet Measurement
Conference. IMC ’13. New York, NY, USA: ACM, 2013, pp. 127–140. isbn: 978-1-
4503-1953-9. doi: 10.1145/2504730.2504747. url: http://doi.acm.org/10.
1145/2504730.2504747 (visited on 03/23/2019).

[8] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
1st. O’Reilly Media, Inc., 2014. isbn: 9781449374044.

[9] Bitcoin. Address Documentation. url: https://en.bitcoin.it/wiki/Address
(visited on 03/18/2019).

[10] Bitcoin. Pay-to-Pubkey Hash. url: https://en.bitcoinwiki.org/wiki/Pay-to-
Pubkey_Hash (visited on 04/23/2019).

[11] Bitcoin. Pay to Script Hash. url: https://en.bitcoin.it/wiki/Pay_to_script_
hash#Addresses (visited on 04/23/2019).

[12] Bitcoin. Bech32. url: https://en.bitcoin.it/wiki/Bech32 (visited on 04/23/2019).
[13] Bitcoin. OP RETURN Documentation. url: https://en.bitcoin.it/wiki/OP_

RETURN (visited on 03/19/2019).
[14] Bitcoin. Mining Documentation. url: https://en.bitcoin.it/wiki/Mining

(visited on 03/21/2019).
[15] Bitcoin. Proof-of-Work Documentation. url: https://en.bitcoin.it/wiki/

Proof_of_work (visited on 03/21/2019).

41

42 BIBLIOGRAPHY

[16] BitcoinCore. About. url: https : / / bitcoincore . org / en / about/ (visited on
03/21/2019).

[17] Bitcoin. Bitcoin Core 0.11: Data Storage. url: https://en.bitcoin.it/wiki/
Bitcoin_Core_0.11_(ch_2):_Data_Storage (visited on 03/21/2019).

[18] Bitcoin. Protocol Documentation. url: https://en.bitcoin.it/wiki/Protocol_
documentation#Block_Headers (visited on 03/08/2019).

[19] Neo4j. Graph Platform. url: https://neo4j.com/product/ (visited on 04/03/2019).
[20] Neo4j. Compare Neo4j Editions. url: https : / / neo4j . com / subscriptions /

#editions (visited on 04/03/2019).
[21] Holden Karau et al. Learning spark: lightning-fast big data analysis. ” O’Reilly Me-

dia, Inc.”, 2015.
[22] F. Reid and M. Harrigan. “An Analysis of Anonymity in the Bitcoin System”. 2011

IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011
IEEE Third International Conference on Social Computing. Oct. 2011, pp. 1318–
1326. doi: 10.1109/PASSAT/SocialCom.2011.79.

[23] Elli Androulaki et al. “Evaluating User Privacy in Bitcoin”. Financial Cryptogra-
phy and Data Security. Ed. by Ahmad-Reza Sadeghi. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 34–51. isbn: 978-3-642-39884-1.

[24] Michael Fleder, Michael S. Kester, and Sudeep Pillai. “Bitcoin Transaction Graph
Analysis”. arXiv:1502.01657 [cs] (Feb. 5, 2015). arXiv: 1502.01657. url: http:
//arxiv.org/abs/1502.01657 (visited on 03/24/2019).

[25] Matthias Lischke and Benjamin Fabian. “Analyzing the Bitcoin Network: The First
Four Years”. Future Internet 8.1 (2016). issn: 1999-5903. doi: 10.3390/fi8010007.
url: http://www.mdpi.com/1999-5903/8/1/7.

[26] D. D. F. Maesa, A. Marino, and L. Ricci. “Uncovering the Bitcoin Blockchain: An
Analysis of the Full Users Graph”. 2016 IEEE International Conference on Data
Science and Advanced Analytics (DSAA). Oct. 2016, pp. 537–546. doi: 10.1109/
DSAA.2016.52.

[27] M. Harrigan and C. Fretter. “The Unreasonable Effectiveness of Address Cluster-
ing”. 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld). July 2016, pp. 368–373. doi: 10.1109/UIC-

ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071.
[28] D. Ermilov, M. Panov, and Y. Yanovich. “Automatic Bitcoin Address Clustering”.

2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA). Dec. 2017, pp. 461–466. doi: 10.1109/ICMLA.2017.0-118.

[29] T. Chang and D. Svetinovic. “Improving Bitcoin Ownership Identification Using
Transaction Patterns Analysis”. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems (2018), pp. 1–12. issn: 2168-2216. doi: 10. 1109/TSMC.2018.

2867497.
[30] Danno Ferrin. “A preliminary field guide for bitcoin transaction patterns”. Texas

Bitcoin Conference. 2015, pp. 1–8.
[31] G. Andresen. bitcointools. url: https://github.com/tuxsoul/bitcoin-tools

(visited on 03/27/2019).
[32] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. “BitIodine: Extracting In-

telligence from the Bitcoin Network”. Financial Cryptography and Data Security.

BIBLIOGRAPHY 43

Ed. by Nicolas Christin and Reihaneh Safavi-Naini. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014, pp. 457–468. isbn: 978-3-662-45472-5.

[33] znort987. blockparser. url: https://github.com/znort987/blockparser (visited
on 03/27/2019).

[34] Armory Technologies Inc. Armory. url: https://github.com/etotheipi/BitcoinArmory
(visited on 03/27/2019).

[35] Core Armory Developer etotheipi. Armory - Discussion Thread. url: https://
bitcointalk.org/index.php?topic=56424.0 (visited on 03/27/2019).

[36] Massimo Bartoletti et al. “A General Framework for Blockchain Analytics”. Proceed-
ings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers. SERIAL ’17. New York, NY, USA: ACM, 2017, 7:1–7:6. isbn: 978-1-4503-
5173-7. doi: 10.1145/3152824.3152831. url: http://doi.acm.org/10.1145/
3152824.3152831 (visited on 03/26/2019).

[37] Bartoletti et al. Blockchain Analytics. url: http : / / blockchain . unica . it /

projects/blockchain-analytics/ (visited on 03/27/2019).
[38] Greg Walker. bitcoin-to-neo4j. url: https://github.com/in3rsha/bitcoin-to-

neo4j (visited on 03/28/2019).
[39] Peter Petkanič. Bitcoin Blockchain Analysis. 2018. url: https://is.muni.cz/th/

v2dsl/bp_petkanic.pdf (visited on 03/31/2019).
[40] Malte Möser and Rainer Böhme. “Trends, Tips, Tolls: A Longitudinal Study of Bit-

coin Transaction Fees”. Financial Cryptography and Data Security. Ed. by Michael
Brenner et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 19–33. isbn:
978-3-662-48051-9.

[41] Malte Möser and Rainer Böhme. “The price of anonymity: empirical evidence from
a market for Bitcoin anonymization”. Journal of Cybersecurity 3.2 (June 1, 2017),
pp. 127–135. issn: 2057-2085. doi: 10 . 1093 / cybsec / tyx007. url: https : / /

academic . oup . com / cybersecurity / article / 3 / 2 / 127 / 4057584 (visited on
03/26/2019).

[42] Bitcoin. CoinJoin. url: https://en.bitcoin.it/wiki/CoinJoin (visited on
04/23/2019).

[43] solid IT gmbh. DB-Engines Ranking of Graph DBMS. url: https://db-engines.
com/en/ranking/graph+dbms (visited on 04/05/2019).

[44] Neo4j. Graph Algorithms in Neo4j: Strongly Connected Components. url: https://
neo4j.com/blog/graph-algorithms-neo4j-strongly-connected-components/

(visited on 04/06/2019).
[45] Kevin Primicerio. A Golang Bitcoin library. url: https://github.com/chainswatch/

bclib (visited on 04/15/2019).
[46] Go Developers. The LevelDB key-value database in the Go programming language.

url: https://github.com/golang/leveldb (visited on 04/15/2019).
[47] Neo4j. Neo4j Go Driver. url: https://github.com/neo4j/neo4j-go-driver

(visited on 04/01/2019).
[48] Neo4j. Using Neo4j from Go. url: https://neo4j.com/developer/go/ (visited

on 04/01/2019).
[49] Neo4j. Import Tool. url: https : / / neo4j . com / docs / operations - manual /

current/tools/import/ (visited on 04/01/2019).

44 BIBLIOGRAPHY

[50] Neo4j. LOAD CSV. url: https:// neo4j .com/docs /cypher- manual/ 3.5 /

clauses/load-csv/#load-csv-importing-large-amounts-of-data (visited on
04/01/2019).

[51] openCypher. Cypher for Apache Spark. url: https://github.com/opencypher/
cypher-for-apache-spark (visited on 04/20/2019).

[52] openCypher. What is openCypher? url: https://www.opencypher.org/ (visited
on 04/20/2019).

[53] The Apache Software Foundation. Apache Zeppelin. url: https : / / zeppelin .

apache.org/ (visited on 04/20/2019).
[54] Neo4j. Neo4j Go Driver Releases. url: https://github.com/neo4j/neo4j-go-

driver/releases (visited on 04/20/2019).
[55] Neo4j. Neo4j-admin import uses only one cpu core after a while. url: https://

community.neo4j.com/t/neo4j-admin-import-uses-only-one-cpu-core-

after-a-while/5393 (visited on 04/23/2019).
[56] openCypher. Use CAPS in a Zeppelin notebook. url: https : / / github . com /

opencypher/cypher- for- apache- spark/wiki/Use- CAPS- in- a- Zeppelin-

notebook (visited on 04/23/2019).
[57] Martin Junghanns Neo4j. Matching Patterns and Constructing Graphs with Cypher

for Apache Spark with Martin Junghanns Neo4j. url: https://www.youtube.com/
watch?v=XYDzx14cznc (visited on 04/23/2019).

Abbreviations

BIP Bitcoin Improvement Protocol
CAPS Cypher for Apache Spark
CSV Comma Separated Value
DBMS Database Management System
GB Gigabyte
JSON JavaScript Object Notation
MB Megabyte
P2PKH Pay-to-PubkeyHash
P2SH Pay-to-Script-Hash
PoW Proof-of-Work
RAM Random Access Memory
SSD Solid State Drive
UTXO Unspent Transaction Output

45

46 ABBREVIATONS

Glossary

Address Clustering Grouping of Bitcoin addresses that belong to the same user.

Blockchain A Decentralized Distributed ledger that enables the transaction of cryp-
tocurrencies between unstrusted peers

Blockchain Fork A situation on the blockchain where a parallel chain is maintained be-
sides the original one. This situation happens when miners are working on different
chains. In Bitcoin it is resolved by selecting the longest chain.

Big Data Massive amount of data stored not yet. It can be viewed as the act of pro-
cessing this data to produce useful insights about its meaning and relations.

Bitcoin The first cryptocurrency based on the blockchain technology. The creator is still
unknown to date.

CoinJoin A trustless method for combining Bitcoin payments from multiple spenders in
a single transaction used to improve privacy.

Cypher A graph database query language maintained by the openCypher project.

Go A statically typed, compiled programming language.

LevelDB A fast persistent key-value store.

Mainnet Main Bitcoin blockchain.

Parsing The act of transforming raw data into a defined syntax following rules to be
later managed or interpreted.

Satoshi The currently smallest unit of Bitcoin currency possible (0.00000001 BTC).

Scala An object-oriented and functional programming language.

SWIG A software development tool that connects C and C++ programs with a variety
of high-level programming languages, such as Python.

Testnet An alternative Bitcoin blockchain used for testing. There have been three ver-
sion, the current one being Testnet3.

47

48 GLOSSARY

List of Figures

2.1 Bitcoin Block Example . 4

2.2 Simplified Bitcoin Transaction Example . 5

2.3 Transaction Example with Combination of Two Inputs 6

2.4 First 293 bytes of blk00000.dat (Genesis Block) 8

2.5 Components of Apache Spark . 9

4.1 Foreseen Architecture of the Solution . 15

4.2 Transaction where the Multi-Input heuristic is applied 16

4.3 Transaction where the Change heuristic is applied 17

4.4 Address Graph with three connected components 18

4.5 Database Schema for the Transaction Graph 19

4.6 Data Flow of the Solution Implementation 20

4.7 Cypher Multi-Input heuristic application 26

5.1 Time to Parse a Number of Blocks . 31

5.2 Size of the Bitcoin blockchain . 31

5.3 Two Addresses that Belong Together According to #Approach 2 34

5.4 Two Addresses that Belong Together According to Approach #3 35

49

50 LIST OF FIGURES

List of Tables

5.1 System Used to Parse the Bitcoin Blockchain 29

5.2 Sizes of the Node and Relationship csv Files 30

5.3 System Used for Address Node Deduplication 32

5.4 Sizes of the Deduplicated Node and Relationship csv Files 32

5.5 System Used for Neo4j Import . 32

5.6 Nodes in Neo4j . 33

5.7 Relationships in Neo4j . 33

5.8 System Used to Cluster Addresses . 33

5.9 Nodes in Neo4j at Block height 100,000 . 33

5.10 Relationships in Neo4j at Block height 100,000 33

51

52 LIST OF TABLES

Appendix A

Installation Guidelines

A.1 btc-csv

This program allows to parse the bitcoin blockchain and write the nodes and relationships
of the created Tranaction Graph to csv.

A.1.1 Getting Started

The following section describes how to setup the environment to be able to run btc-csv.

Prerequisits

1. Install Golang and set up your environment.

2. Get this program:

$ go get -u github.com/wallerprogramm/btc-csv

3. Create a file with name .env in

$GOPATH/src/github.com/wallerprogramm/btc-csv

with the following content:

The package

PKG=btc-csv

The folder where the BTC blockchain is stored

DATADIR=/path/to/bitcoinfolder

#often: DATADIR=/home/username/.bitcoin

The folder where the utxo leveldb is stored

DBDIR=/path/to/leveldb/utxo

53

54 APPENDIX A. INSTALLATION GUIDELINES

A.1.2 Run btc-csv

Prerequisits

Choose from which height to which height should be parsed. To do so enter main.go
and change height to the wished end block height. If the starting block height should be
changed to n, be aware that the utxo leveldb with block height (n-1) has to be provided.
To change the start height change the 0 in

btc.LoadFile(0, height, grapho.Build, c)

to the wished start height.

Install all dependecies of btc-csv:

$ cd $GOPATH/github.com/wallerprogramm/btc-csv

$ go get ./...

Install btc-csv:

$ cd $GOPATH/github.com/wallerprogramm/btc-csv

$ go install

Run it

1. Make sure that all the csv files that should not be changed are moved away from
$GOPATH/github.com/wallerprogramm/btc-csv.

2. Make sure that the leveldb is either inexistent (if start height = 0) or the needed
leveldb is in place (if start height > 0)

3. Run btc-csv:

$ $GOBIN/btc-csv

4. Wait for a couple of hours.

A.1.3 Remove duplicate addresses from addresses.csv

$ cd $GOPATH/github.com/wallerprogramm/btc-csv

$ sort -u addresses.csv -o addresses.csv -T /path/to/folder/for/tmp/files

A.1. BTC-CSV 55

A.1.4 Import the nodes and relationships into Neo4j

Prerequisits

1. Install Neo4j Desktop (download it here https://neo4j.com/download-center/)
if not already installed.

Run it

1. Start Neo4j Desktop

2. Create a new graph (choose a name, pw: password).

3. Change the memory settings of the graph under Settings to the following:

dbms.memory.heap.initial_size=6G

dbms.memory.heap.max_size=6G

dbms.memory.pagecache.size=6G

4. Run the following command in the Neo4j Desktop Terminal:

$ export DATA=/path/to/folder/containing/csv-files/

$ export HEADERS=/path/to/folder/containing/csv-headers/

$./bin/neo4j-admin import \

--mode=csv \

--database=btc.db \

--nodes:Address $HEADERS/addresses-header.csv,$DATA/addresses.csv \

--nodes:Block $HEADERS/blocks-header.csv,$DATA/blocks.csv \

--nodes:Transaction \

$HEADERS/transactions-header.csv,$DATA/transactions.csv \

--relationships:IS_BEFORE \

$HEADERS/before_rel-header.csv,$DATA/before_rel.csv \

--relationships:BELONGS_TO \

$HEADERS/belongs_to_rel-header.csv,$DATA/belongs_to_rel.csv \

--relationships:RECEIVES \

$HEADERS/receives_rel-header.csv,$DATA/receives_rel.csv \

--relationships:SENDS \

$HEADERS/sends_rel-header.csv,$DATA/sends_rel.csv \

--ignore-missing-nodes=true \

--ignore-duplicate-nodes=true \

--multiline-fields=true \

--high-io=true

5. Change the used database in graph Settings by adding:

dbms.active_database=btc.db

56 APPENDIX A. INSTALLATION GUIDELINES

A.2 Distributed Data Analysis

A.2.1 Getting Started

The following section describes how to setup the environment to be able to use the program
addressClustering that uses Cypher for Apache Spark to cluster Bitcoin addresses in a
Spark cluster.

Prerequisits

1. Install Java 8

2. Scala 2.12

3. Spark 2.4

Run it

Further instructions are omitted because of the current bug in CAPS.

Appendix B

Contents of the CD

Thesis-BA-DS.pdf contains the thesis in a PDF.

Thesis-BA-DS.zip contains the thesis and figures as LATEX source file.

Figures contains the figures as pdf and draw.io files.

btc-neo4j contains the Go sources of the parsing approach that writes to Neo4j directly.

btc-csv contains the Go sources of btc-csv.

csv headers contains the csv header files needed for the Neo4j import.

zeppelin contains Zeppelin Notebooks.

addressClustering contains a Scala Maven project that contains different approaches
to use CAPS, one of them being the example used to create the github issue.

Midterm presentation.pptx contains the slides of the midterm presentation.

Midterm presentation.pdf contains the slides of the midterm presentation as pdf.

measurements contains different files containing measurements.

57

