
GENEVIZ — Generation,
Validation, and Visualization

of SFC Packages

Martin Juan José Bucher
Zurich, Switzerland

Student ID: 15-705-015

Supervisors: Muriel Figueredo Franco, Eder John Scheid
Date of Submission: May 13, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Network Function Virtualization (NVF) verfolgt das Ziel, die Paketverarbeitung von Netz-
werkfunktionen durch den Einsatz von Virtualized Network Functions (VNFs) auf generi-
scher Standard-Hardware von dezidierten Hardwaregeräten zu entkoppeln. Netzbetreiber
können massgeschneiderte Netzwerkdienste erstellen, indem mehrere VNFs miteinander
verkettet werden, was auch als Service Function Chaining (SFC) bezeichnet wird. Ob-
wohl NFV immer populärer und technisch ausgereifter wird, verlangt die Konstruktion
solcher SFCs noch immer fundierte Kenntnisse über die NFV-Technologie. Zudem kann
die Erstellung eines SFC bisher nur manuell gemacht werden. In der vorliegenden Arbeit
stellen wir GENEVIZ vor, ein Tool, welches ein benutzerfreundliches Interface sowohl für
die Konstruktion und Generierung komplett neuer SFCs von Grund auf, als auch für den
Import und die Anpassung bereits zuvor erstellter SFCs bereitstellt. Letzteres ist ins-
besondere deshalb interessant, weil somit neue SFCs erstellt werden können, welche auf
zuvor schon existierenden SFCs basieren. Darüber hinaus gehen wir das Thema Dateninte-
grität an und bieten einen Weg, um SFCs, die aus einer externen Quelle bezogen wurden,
durch die Verwendung der Blockchain-Technologie validieren zu können. GENEVIZ zielt
darauf ab, die Erstellung von SFCs intuitiver und einfacher zu machen. Zugleich wird die
Anzahl der Schritte, welche notwendig sind für die verschiedenen Anwendungsfälle, redu-
ziert. Wir führen drei Fallstudien an unserem entwickelten Prototypen durch und zeigen
dadurch nicht nur die technische Machbarkeit von GENEVIZ, sondern weisen auch die
Nutzbarkeit der verschiedenen Visualisierungen nach.

i

ii

Abstract

Network Function Virtualization (NFV) aims to decouple the package processing of net-
work functions from dedicated hardware appliance by running Virtualized Network Func-
tions (VNFs) on general-purpose hardware. Network operators can create customized
network services by chaining multiple VNFs together, forming a so-called Service Func-
tion Chaining (SFC). Although NFV becomes more popular and technically mature, the
construction of such SFCs still needs in-depth knowledge about NFV technology. Fur-
thermore, the creation of an SFC can only be done manually up until now. In this thesis,
we introduce GENEVIZ, a tool providing a user-friendly interface both for the construc-
tion and generation of completely new SFCs from scratch as well as for the import and
adjustment of previously created SFCs in order to create new SFCs based on existing
ones. Beyond that, we address the issue of data integrity and give the possibility to
validate SFCs — received from an external source — through the usage of blockchain
technology. GENEVIZ aims to provide a way to create SFCs more intuitive and easier.
In addition, the number of steps necessary for different use cases is reduced. We conduct
three case studies on our developed prototype, not only showing the technical feasibility
of GENEVIZ, but also providing evidence of the usability of the different visualizations
we proposed.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Muriel Figueredo Franco,
for his continuous assistance and inputs during the writing of this thesis. It has been a
tremendous pleasure to work with someone as passionate and smart as Muriel, as I could
not only profit from his insights for the draw up of this thesis but also on how to think
from a scientific perspective in the research area of Computer Science.

I would also like to thank my co-supervisor, Eder John Scheid, for his precious inputs
on GENEVIZ from a more abstract layer, and especially his help during the blockchain
implementation for the Prototype.

Finally, I would like to thank Prof. Dr. Burkhard Stiller, head of the Communication
Systems Research Group (CSG) at the University of Zurich, for making it possible to
write my bachelor’s thesis within this hot research topic.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Background and Related Work 5

2.1 Network Function Virtualization . 5

2.1.1 NFV Architecture . 6

2.2 Service Function Chaining . 7

2.2.1 Network Function Descriptors . 9

2.3 Blockchain Technology . 10

2.4 Related Work . 12

3 GENEVIZ 15

3.1 Use Cases . 15

3.2 Architecture . 17

3.2.1 User Layer . 19

3.2.2 Data Layer . 21

vii

viii CONTENTS

3.2.3 Blockchain Layer . 23

3.3 Prototype and Implementation . 24

3.3.1 User Layer . 24

3.3.2 Data Layer . 29

3.3.3 Blockchain Layer . 30

4 Evaluation 33

4.0.1 Case Study No. 1 — Construction of an SFC 33

4.0.2 Case Study No. 2 — Generation of an SFC Package 34

4.0.3 Case Study No. 3 — Validation and Import of an SFC Package . . 35

4.0.4 Discussion . 37

5 Future Work 39

6 Summary and Conclusions 41

Abbreviations 47

List of Figures 47

List of Tables 49

A HTTP API of the Data Layer 53

B Installation Guidelines 61

B.1 Setting up the User Layer . 61

B.2 Setting up the Data Layer . 62

B.3 Setting up Ganache . 64

C Contents of the CD 65

Chapter 1

Introduction

The paradigm of Network Function Virtualization has gathered significant attention over
the last couple of years both from academia as well as from industry, leading to a disruptive
shift in telecommunication service provisioning [1]. NFVs decouple the packet process-
ing from dedicated hardware middleboxes and handle it on Virtual Network Functions
instead, running on commercial off-the-shelf programmable hardware, such as general-
purpose servers, storage and switches [2]. Besides the technical challenges of NFV, as the
paradigm is still in its infancy, it comes with several benefits, including simplified network
operations, a potential of speeding up service delivery, and significant reductions in Op-
erational Expenditures (OPEX) and Capital Expenditures (CAPEX) [3]. With the usage
of NFV, network operators can create customized network services by chaining together
multiple VNFs. Such an aggregation of different network functions builds up a network
service, fulfilling the individual demand of the user.

1.1 Motivation

Nowadays, a network operator should have in-depth knowledge about NFV technology in
general and its corresponding descriptors in order to create a Service Function Chaining,
which it can be deployed on an NFV-enabled infrastructure in the end. In NFV, an SFC
is represented as a forwarding graph of VNFs and should take into account three main
descriptors:

(i) VNF Descriptor (VNFD): Represents a VNF by defining deployment and oper-
ational behavior requirements. A single SFC usually contains several of those.

(ii) VNF Forwarding Graph Descriptor (VNFFGD): Provides a textual repre-
sentation of the VNF Forwarding Graph (VNFFG), information about the VNFDs
which compound the service, virtual links, and dependencies between particular
VNFs.

1

2 CHAPTER 1. INTRODUCTION

(iii) Network Service Descriptor (NSD): Contains information about the network
service vendor and specific requirements used for the deployment of the service on
the network.

We argue that the process of constructing such an SFC is not very intuitive, a lot of
manual steps are necessary for the file handling and editing, and the creation can be —
for inexperienced users — quite error-prone. This might even lead to a negative impact
on the broad adoption of NFV technology in general. Furthermore, by considering the
prospective market growth of VNF as a Service (VNFaaS) [4] and its potential to simplify
the way how end users obtain VNFs and services in general, the lack of intuitive solutions
should also be addressed when considering the potential of SFCs for end users without a
lot of expertise in NFV technology.
In this context, Information Visualization techniques can be a powerful tool, helping net-
work administrators understand the behavior of the managed network or service in a
manner which is quicker and easier [5]. Even though the analysis of such data can be
almost fully automated, human interpretation plays a crucial role in the interpretation
and decision-making while doing network and service management. Especially in NFV
environments, there is an enormous amount of data available and the understanding and
evaluation of it represent a challenging task itself [6].
Although past work explored visualization techniques to simplify the identification of
problems in SFCs, there is still a lack of research addressing the simplification of SFC
construction. We claim that information visualization could provide several benefits in
NFV environments. Such benefits include (i) an intuitive way to select VNFs that will
compound the forwarding graph, (ii) a quick configuration of the SFC through its corre-
sponding VNFs in order to meet particular requirements, (iii) a fast identification of SFC
misconfigurations, and (iv) the validation of the data integrity of a previously created
SFC. Besides all those, a visual interface can also provide opportunities to reuse already
available SFCs as a template and configure them to meet new requirements, making it
much easier to build a new SFC based on an existing one.

1.2 Description of Work

The present bachelor thesis covers first the design and implementation of a visualization
tool, which allows the construction of a new SFC Package based on multiple VNF Pack-
ages and other inputs defined through the visualization tool. The interface should be as
intuitive as possible, providing an easy way to create new SFCs as well as to configure
properties of the VNFs the SFC consists of. Secondly, the provided tool should be able
to store the hash of the content of such a package in a public blockchain. Thus, network
operators can validate an already existing SFC configuration before it gets deployed inside
their network. Finally, an evaluation of the usability of the provided solution should be
conducted.

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 gives a rough overview
of several concepts of utmost significance for the context of this thesis. In Chapter 3, the
design and general architecture of the visualization tool are discussed, whose implementa-
tion is addressed in Chapter 4. An evaluation of the effectiveness of the prototype which
was built is conducted in Chapter 5. Chapter 6 identifies key research areas for possible
future exploration, followed by Chapter 7 concluding the present work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

The following sections aim to give a preliminary overview of the major technological
concepts that are building the fundamental basis for the present bachelor thesis. First, we
will discuss a few important architectural concepts leading the current shift in computer
networking, followed by a rough summary of the emerging blockchain technology and
information visualization since they all fit into the context of this thesis.

2.1 Network Function Virtualization

Traditionally, network operators are confronted with an extensive variety of hardware
appliances. For each function of a given service one needs to deploy dedicated physi-
cal devices and equipment with the service components having a strict ordering inside
a network topology. These specific spatial placements — together with the demand for
high stability, quality, and strict protocol compliance — have led to heavy dependence
on specialized hardware, long product cycles, and low service agility [1]. NFV aims to
resolve those issues by virtualizing industry network equipment onto industry standard
general-purpose hardware.
One of the most crucial works was published in 2012 by the Industry Specification
Group (ISG) under the auspices of the European Telecommunications Standards Insti-
tute (ETSI) [7]. Therein, they summarized the benefits and challenges involved with an
architecture supporting Network Function Virtualization with the goal to encourage in-
ternational collaboration as well as to accelerate the development of the new paradigm. A
large amount of work has been published since then, exploring possible solutions for single
parts of its architecture and the NFV system as a whole. Among various advantages com-
ing with NFV — with the potential of leading a radical shift in the telecommunications
industry — we can summarize the main benefits as follows:

1. Efficiency — By consolidating multiple network functions on one single hardware
and exploiting the economies of scale of the IT industry, both the amount of capital
investment as well the energy consumption can be reduced in order to save costs.
Dedicated hardware for specific networking functions would be omitted in the near

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

future, focusing research to a reduced variety of hardware equipment. The base of
know-how for general-purpose computers is much larger than the one for the specific
equipment in the telecommunication industry.

2. Faster Time to Market — Through NFV, the time needed to deliver new ser-
vices on the market is drastically reduced. The typical innovation cycle of network
operators can be minimized by deploying new software completely remotely instead
of going there physically to install new software. Further, the amortization costs for
the infrastructure are reduced by the effects of economies of scale.

3. Flexibility — The support of multi-tenancy allows network operators to provide
targeted and tailored services based on the customer’s needs, as the NFV infras-
tructure can easily scale up or out resources for certain services. Even though that
would be possible on a traditional networking system as well, NFV can scale much
faster, making the system more agile for abrupt changes in traffic or demand. Also,
the mitigation of failures within a network could be done automatically by the re-
configuration and bypassing of traffic through orchestration mechanisms.

With all the advantages coming along with NFV there are also some technical challenges
which need to be addressed in order to enable fast and broad adoption of NFV [8]:

1. Performance and Stability — Latency and throughput should remain stable over
time. Previous work has shown significant variations in both of them, which should
not be the case in a productive system in the near future. There is also a processing
overhead for the virtualization which could affect performance as well. The key
challenge is to keep a networking system with a virtualization layer at least as good
as a system consisting of physical dedicated appliances.

2. Migration — The effort for a smooth transition from existing networks to NFV-
enabled systems will confront network providers with big challenges when consider-
ing the massive scale of today’s globally spanning network and the tight coupling
among components. In theory, a hybrid version could be composed from physical
and virtual network appliances with the final goal to replace the physical ones step
by step.

3. Placement of VNFs — The separation of functionality and physical location
brings up the question of how to efficiently place the virtual functions inside a
network. Ideally, network operators would place a VNF where it will be least ex-
pensive and used most effectively. As network functions often need to fulfill certain
requirements regarding latency and throughput, the placement of a VNF will be of
significance for network operators.

2.1.1 NFV Architecture

Virtualization allows a very flexible way to run software in general. Regarding NFV, it
enables dynamic schemes for the creation and management of network functions [9] due

2.2. SERVICE FUNCTION CHAINING 7

to three fundamental differences: (i) the software is separated from the hardware which
allows independent evolvements of hardware and software respectively, (ii) services can
be provided in a dynamic way by scaling up or down resources as there is a need for it,
and (iii) network functions can be deployed very flexible on a pool of hardware resources
running at different times in different locations. A high-level architecture of the NFV
framework is illustrated in Figure 2.1 and consists of five major functional blocks:

(i) Orchestrator — Responsible for the orchestration and management of software
resources and the virtualized infrastructure of the hardware for the realization of
networking services.

(ii) VNF Manager (VNFM) — Communicates with the respective VNFs in order
to instantiate, terminate, scale or update VNFs during their life cycle. Also, in-
formation about configurations and events (e.g. warnings or errors) are stored by
the VNFM. This block could be automized almost completely in the future, solving
issues with productive VNF instances by itself.

(iii) NFV Infrastructure (NFVI) — The virtualization layer in this block abstracts
the physical hardware from the virtualized components the VNFs are addressing to.
By providing standardized interfaces, the life cycle of a VNF remains independent
from the hardware underneath.

(iv) Virtualized Infrastructure Manager (VIM) — Responsible for the virtualiza-
tion and management of the given computing, networking and storage resources
provided by the real hardware. A ”parent” NFVI may contain more than one VIM,
with each VIM responsible for one single NVFI from a given infrastructure.

(v) Virtualized Network Functions (VNFs) — Moves the network functions from
dedicated appliances to software-based functions. A typical VNF, for example, is a
Firewall, Content Delivery Network (CDN), or Network Address Translation (NAT).

The three components VNFM, VIM, and Orchestrator together form the so-called NFV
Management and Orchestration (MANO) sub-framework which is of crucial importance
for the understanding and management of an NFV environment. The MANO is illustrated
as the dashed box on the right side in Figure 2.1.

2.2 Service Function Chaining

The chaining of service functions can be described as the mechanism of defining an ordered
list of network functions and stitching them together to a single chain. This virtual chain
can be specified as a Service Function Chaining (SFC). Thus, an SFC can be seen
as a graph describing a set of Network Functions (NF), connection points, as well as the
order in which the packets are traversing the NFs in the given path [10].
Such a network function doesn’t necessarily rely exclusively on VNFs and can also run on
commercial physical hardware appliances. In general, an SFC is defined and configured
by a network operator which has expertise in the field of the operating network functions

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: NFV Architecture [3]

working underneath. The paths along with the network often need to satisfy certain
requirements in terms of bandwidth efficiency. The network operator, therefore, has to
provide for these demands.

It’s important at this point to denote that NFV is closely related to Software Defined
Networking (SDN). Although both are complementary and can benefit from each other,
they do not depend on each other. SDN can be seen as a network paradigm characterized
by the following three properties [11]:

(i) The data forwarding plane and control planes are clearly separated.

(ii) The network logic is completely abstracted from the hardware implementation into
software.

(iii) There is a network controller coordinating the forwarding decisions of involved net-
work devices.

NFV can be implemented without SDN and vice versa. However, the separation of the
control and data forwarding plane, as suggested by SDN, can simplify the compatibility
with existing deployments, enhance performance, and alleviate maintenance and operation
procedures [12]. SDN can also enable dynamic and cost-efficient traffic steering among
individual VNFs [13].

Coming back to SFC, we briefly want to discuss two uses cases given in Figure 2.2. Both
scenarios aim to satisfy certain end user requirements, accomplished through the chaining
of different NFs. The first use case addresses the delivery of a web service, the second
use case a video service. Without SDN, the traffic forwarding between NFs needs to be
manually configured by a network operator on certain forwarding devices (i.e. a router

2.2. SERVICE FUNCTION CHAINING 9

or a switch). Without NFV the scaling or update of certain NFs with increased traffic
will get harder to manage the more NFs the SFC contains. Hence, the combination of
SDN and NFV can facilitate a flexible and efficient SFC provisioning. Additionally, with
the combination of SDN and NFV, SFCs could use network resources more efficiently,
allowing certain VNFs in the network to adjust their CPU usage, allocated memory, or
disk size for storage.

Figure 2.2: SFC structure by means of two use cases [10]

2.2.1 Network Function Descriptors

In the following section, we aim to discuss the three descriptors mentioned in the in-
troduction in a more detailed manner. All three of them are — in theory — part of
the composition of our proposed SFC Package, which aims to include all information
necessary to deploy a new network service on an NFV environment:

VNF Descriptor (VNFD)

The Virtual Network Function Descriptor describes a VNF regarding its operational and
deployment requirements. It is not only necessary for the usage by NFV MANO for the
creation of a virtual link within an NFVI but also contains information about the behavior
of the VNF over a period of time. Additionally, the VNFD also contains information about
the management of its corresponding VNF, such as several parameters for monitoring the
VNF as well as a description of the minimum resource requirements necessary to run the
VNF properly. Of greater importance are the connection points defined in the VNFD,
which are needed to establish appropriate Virtual Links within the NFVI between different
VNF Components (VNFCs) [9].

Network Service Descriptor (NSD)

The Network Service Descriptor consists of static information used by the NFV Orchestra-
tor (NFVO) for the instantiation of a new network service. It can contain information nec-
essary to deploy VNFs as well as information about the network service vendor. The NSD

10 CHAPTER 2. BACKGROUND AND RELATED WORK

can also include references to other nested NSDs, Virtual Link Descriptors (VLDs), Phys-
ical Network Function Descriptors (PNFDs), VNFDs and the VNF Forwarding Graph
Descriptor (VNFFGD).

VNF Forwarding Graph Descriptor (VNFFGD)

The VNF Forwarding Graph Descriptor contains meta information about the VNF For-
warding Graph (VNFFG) itself as well as references to VNFs, PNFs, and VLs. It is still
a challenge nowadays how the VNFFGD will track changes from the deployed instances
(e.g. an additional VNF is connected for scaling up the service) as the forwarding graph
and therefore the descriptor itself must change. Hence, similar to the way the VNFD
describes a VNF, the VNFFGD describes a VNFFG.

2.3 Blockchain Technology

Although the underlying technologies for the blockchain were already developed decades
ago, it has not gained any significant attention up until the publication of a whitepa-
per [14] written by Satoshi Nakamoto in 2008. In there, Nakamoto introduced Bitcoin,
a digital currency providing a solution to the problem of trust in a decentralized system.
The ledger of Bitcoin is publicly auditable for all participants (peers) in the network.
Transactions are broadcasted to all peers and their validity is verified by each peer in-
dependently [15]. Multiple valid transactions are collected into a single block, which is
then sealed cryptographically. A new block follows up on the predecessor by referencing
it, hence forming a chain of blocks, and is generated by special peers (also called voters
or miners) based on a cryptographic puzzle. Usually, each block contains the hash of the
previous block, computed through a cryptographic hash function.

A cryptographic hash function is a special subtype of a hash function and has certain
properties, making it especially suitable for cryptography. Typically, it has the following
five properties:

(i) It is one-directional (one can’t reverse it easily to find its input)

(ii) The computation of the hash is fast

(iii) Finding the same hash value for two different inputs is infeasible

(iv) It is deterministic in the sense that it will always produce the same output for the
same input

(v) A small change in the input should result in a large change of the output, making
it impossible to map two similar outputs to two similar inputs

As the hash of the previous block is contained in the header of the newly created block,
any alteration of the previous block results in a different hash of the content. Thus, all
transactions contained in a newly mined block are made immutable. Any modification

2.3. BLOCKCHAIN TECHNOLOGY 11

of a transaction previously made would make the block and hence the whole blockchain
invalid.

Bitcoin uses a Merkle Tree for the transactions, where every leaf node holds the hash of
a certain data block, and every non-leaf node holds the cryptographic hash of the child
nodes. Only the root is included in the block’s hash in order to save storage as shown
in Figure 2.3. But not all distributed ledgers consist of a chain of blocks such as Bitcoin
does. Thus, a blockchain is just one type of distributed-ledger technology and there exist
many other systems already. IOTA [16] for example takes usage of a Tangle — a new
data structure based on a directed acyclic graph — instead of blocks.

Figure 2.3: Blockchain concept as seen in the Bitcoin Whitepaper [14]

The competition among different miners of the Bitcoin Blockchain is based on their re-
spective computational power. This kind of consensus mechanism is referred to as Proof
of Work. Not all blockchain architectures rely on the Proof of Work consensus algorithm
and there exist other consensus methods such as Proof of Stake, where a set of validators
take turns proposing and voting on the next block, and the weight of the vote of each val-
idator depends on the deposit’s size. Another consensus mechanism is Proof of Authority,
where a fixed set of block creators and validators is defined. But besides the mentioned
three, there exist many more consensus algorithms.

In contrast to traditional centralized databases, a blockchain is distributed and retriev-
able from every participant of the network. Therefore, all transactions on the blockchain
are transparent and visible to all participants in real-time. A blockchain removes the need
of a Trusted Third Party (TTP) to secure and validate transactions within such systems
and relies on a cryptographic proof instead. Thus, there is absolutely no trust in any
entity of the decentralized system.

The blockchain technology can be seen — together with other emerging technologies such
as Artificial Intelligence (AI), fog computing, and autonomous vehicles — as part of the
current fourth industrial revolution. The blockchain technology, in particular, has the
potential to radically change entire business sectors, governance, regulatory services, and
society as a whole [15].

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Related Work

The management of networks and services demands a multitude of methods, activities,
procedures, and tools, with the final goal to ensure the proper functioning of the observed
system. Such tools enable a network administrator to retrieve management information
from the corresponding devices, analyze the obtained data and take decisions to optimize
or repair a service. Within this workflow, information visualization can provide — if
done right — a way to represent a large amount of data in a way perceivable much
faster by the human user than the raw and often abstract data. As outlined by Colin
Ware [17], good information visualization allows to perform cognitive work more efficiently
and hence in less time. While scientific visualization addresses scientific data, information
visualization addresses abstract data such as texts (e.g. configuration settings or log
messages) and graphs (e.g. the VNFFGD described before or logical connections between
different Internet Protocol (IP) addresses). Network services mostly provide this kind of
abstract data.

Taking a look at related work in the field of information visualization applied to NFV
environments, Guimarães et al. [5] discussed in their survey that Information Visualization
should be explored on hot topics such as virtual networks as there was no publication
addressing it up until the year 2016. Soles and Snider [18] examined specifically the
process of virtualized network configuration, making it clear that there were no tools to
assist the configuration, deployment, and testing of virtualized networks by 2016 either.
Specifically, they found no single graphical tool for the creation of a network map directly
from a configuration as given by the various descriptors in an SFC configuration. In other
work, Franco et al. [6] presented VISION, a tool which provides interactive and selective
visualizations for the assistance during NFV management. While the visualizations can
help network operators to identify and alleviate problems in the context of VNFs, the
VISION tool also provides a complete forwarding graph visualization. Although the tool
can provide useful information about incorrect VNF placements or performance issues in
the visualization, it is only focusing on already deployed services and previously configured
monitoring systems and doesn’t address the creation of new network services through the
help of visualization tools.

In the context of SFC visualization, Sanz et al. [19] introduced SFCPerf, an automatic
performance evaluation tool for SFCs. The tool ensures the repeatability of the per-
formance measurements through the definition of a testing workflow, thus allowing the
performance comparison among different SFC configurations based on the same test. The
visualization module in their framework provides a user-readable interface to visualize
throughput, round-trip time, and request rate of the given SFC. Based on their scenarios,
they discovered that the main impact factors on the overall performance of an SFC were
(i) the number of physical link hops between different nodes, and (ii) the competition for
resources on shared physical nodes. These visualizations can be useful especially during
the construction phase of an SFC while considering different topologies and NFV plat-
forms, ensuring that the performance meets the desired requirements. In another work
by Eichelberger et al. [20], SFC Path Tracer is presented, a troubleshooting tool for SFC
environments, enabling the visualization of the trace of network packets in SFC domains.
This trace generation is accomplished by mirroring probe packets as they traverse through

2.4. RELATED WORK 13

the chain. Hence, SFC Path Tracer can be useful for the identification of problems within
an SFC configuration, as it pinpoints the origin of a possible problem by providing packet
trace information. The authors also argue that the tool could be expanded in the near
future to a more general measurement tool (e.g. to support performance measurements
as done by Sanz et al.).

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

GENEVIZ

This chapter aims to outline the design and implementation of GENEVIZ (Generation,
Validation, and Visualization of SFC Packages) — our proposed visualization tool. We
will first cover the use case scenarios and conceptual architecture, followed by a brief
discussion about the implementation of the GENEVIZ Prototype.

Although information visualization was already applied by a few works in the context
of NFV and SFC environments, none of them addresses the process of SFC creation.
We want to go a step further with this thesis, stating that a visualization tool could
significantly simplify the construction of new SFCs from scratch by the composition of
multiple VNFs, as well as the creation of new SFCs by the modification of existing ones.
In general, an SFC can be visualized by nodes, with each node representing a single
VNF, and edges, with each edges representing the traffic flow between two VNFs. Those
elements build up a graph together, referenced to as Forwarding Graph. In the context
of NFV, such a forwarding graph is called VNF Forwarding Graph, or VNFFG, and its
respective descriptor is the VNFFGD. For each service described by an SFC, one needs in
any case (i) zero to multiple VNFFGDs, (ii) one NSD, and (iii) one to multiple VNFDs,
depending on the number of VNFs involved. Overall, there is a tremendous amount of
data distributed over many files in order to construct and manage the properties of an
SFC. GENEVIZ should be capable to handle this data through an interactive graphical
user interface. In fact, a significant part of past work using information visualization —
applied on network management — lacks in interactive features. Although the analyzed
tools update information automatically, they are often focusing on the management itself
and do not address the challenges concerning the creation and configuration of services [5].
Further, a visualization tool addressing SFC construction shall not be limited to the
creation of completely new services from scratch, but also be able to handle the import of
previously created services in order to create new services based on already existing ones.

3.1 Use Cases

Based on the lack of research addressing SFC construction with the help of a visualization
tool, the use cases listed in Figure 3.1 were defined. We differentiated between User No.

15

16 CHAPTER 3. GENEVIZ

1 and User No. 2 as the validation of an SFC Package is usually done by a second user,
being a different actor than the creator of the SFC Package. Further, we tried to keep the
use cases as abstract as possible for this subchapter and they can be seen independently
from the architecture of GENEVIZ. The requirements defined here are directly used as a
reference for the definition of the GENEVIZ architecture.

Figure 3.1: Use Cases of GENEVIZ

• Generate SFC Package: The user should be able to generate an SFC Package
based on the configurations he applied through the usage of GENEVIZ. As this step
is usually done at the end of the creation process, it depends on a valid construction
of the graph. The SFC Package could also be stored remotely or be uploaded directly
to a marketplace service during this step and is not limited to a downloadable
file format. We see an SFC Package as an archive containing all the information
required for managing the lifecycle of an SFC in a similar way a VNF Package holds
the necessary information for a VNF.

• Validate SFC Package: Through GENEVIZ, one should be able to validate an
already existing SFC Package in order to determine if the content of the package
was modified in any way. Ensuring trust on an SFC Package is an important part
during the deployment phase of new network service. An invalid SFC Package could
indicate possible security concerns on it.

3.2. ARCHITECTURE 17

• Construct VNF Forwarding Graph: During the construction of a new SFC
Package, the user should be able to define the path in which the traffic is flowing.
This path is — generally spoken — a Directed Acyclig Graph (DAG) with each
node only having one outgoing edge except the last node, which has none. The User
Interface (UI) for this should be as intuitive as possible, allowing easy and quick
adjustments of the forwarding graph.

• Configure VNFD Properties: Since the properties inside the VNF Descriptor
are quite nested and handling with the file hierarchy is — especially for large and
complex SFCs — time consuming and unnecessary, GENEVIZ should provide some
graphical user interface, allowing to modify certain VNFD properties much easier
and directly during the construction of an SFC.

• Identify SFC Misconfigurations: During the construction of a new SFC, recom-
mendations should be provided to create better SFCs in terms of chaining. This can
be especially helpful for not so experienced users constructing new network services.

• Import SFC Package: The last use case considers the import of a previously
created SFC Package into GENEVIZ. By importing an existing SFC Package into
GENEVIZ, the user can create a new network service based on the old one.

3.2 Architecture

The conceptual architecture of GENEVIZ is illustrated in Figure 3.2 and will be discussed
in the following subchapters component by component. White blocks with a solid bor-
der represent internal components, grey blocks with a dashed border represent external
components. The GENEVIZ platform can be divided into three main layers: User Layer,
Data Layer, and Blockchain Layer respectively. Although the Blockchain Layer is not
part of the GENEVIZ tool itself, it is an integral part of our proposed solution since it
is needed for the validation of SFCs. GENEVIZ sets out mainly two goals: it aims (i) to
simplify the process of creating new network services (i.e. SFCs) in general, and (ii) to
ensure data integrity of previously created services by validating them.

While defining the architecture, we also considered the case of creating large and complex
SFCs where the same VNF is used multiple times but with different configurations. Hence,
in GENEVIZ, we differentiate between a VNF Template, being the original and ”generic”
VNF Package which was imported through the User Layer, and a VNF Package, which
is the VNF being part of the composed SFC and thus an instance of the template. A
VNF Package might have customized VNFD properties which are different from the VNF
Template. In the same meaning, we can speak of an SFC Template on the User Layer
and of an SFC Package on the Data Layer when talking about SFCs in the subsequent
chapters.

The Data Flow of GENEVIZ can be described as follows: The end user accesses the
platform through the User Interface of the web application. The User Interface provides
several interactive visualizations, which depend on data provided by the Visualization
Manager. An integral part of this data is given by the Template Catalog, which retrieves

18 CHAPTER 3. GENEVIZ

the templates from the Templates Collector. The Collector on the other hands gets its
data from multiple different sources (e.g. marketplaces, independent catalogs, or a simple
manual upload from the local machine) and can be extended if more sources seem to fit
into GENEVIZ.
While creating an SFC through the Service Constructor visualization, the VNF Tem-
plates from the Template Catalog are transmitted through the Visualization Manager to
the Management API and then stored through the Package Handler on the Packages
Database. If an SFC Package is generated, the SFC Package Generator creates an SFC
Package based on the information provided from the Visualization Manager (e.g. the list
of included VNFs, the forwarding graph, and some properties for the NSD) and transmits
the package to the SFC Package Manager. The latter sends it to the Package Handler,
where it is sent further through the Management API and the Visualization Manager
back to the User Interface, where it is downloaded through the web application.
Both the Placement Recommender visualization and the VNFD Editor visualization need
the current VNFD file from the VNF Package being part of the SFC in order to do their
job. However, as the packages usually are uploaded as ZIP files or another compressed
file format, the VNFD of the VNF Package currently being added to the SFC needs to
be retrieved after the upload from the Packages Database through the Package Handler
and the Package Parser, before sending the VNFD back through the Management API
to the Visualization Manager.
In the case that the properties from the VNFD are edited through the VNFD Editor visu-
alization, the updated VNFD file is transmitted through the Visualization Manager to the
Management API. The corresponding VNF Package is then retrieved from the Packages
Database by the Package Handler and then transmitted to the Package Parser, which
extracts the ZIP file in order to change the properties in the VNFD file. The updated
VNF Package is then stored back into the Packages Database.
For the validation or import of an already existing SFC Package, the package is uploaded
through the User Interface and then transmitted through the Visualization Manager
to the Management API, where it is sent further through the Package Handler to the
Packages Database, to be finally stored there. For the validation, the SFC Package Val-
idator communicates over the SFC Package Manager with the Blockchain API from the
Blockchain Layer. The API then tries to retrieve the corresponding hash from the data
property for the given transaction ID. For the import of an SFC into the GENEVIZ tool,
the Package Handler gets the SFC Package from the Packages Database and extracts
the content with the help of the Package Parser in order to prepare and send the nec-
essary information for the visualizations back to the Visualization Manager through the
Management API.

The general architecture of GENEVIZ is composed of completely separate, but intercon-
nected components. This modularization mechanism allows to replace existing modules
or add new modules without affecting the remaining components of the GENEVIZ plat-
form. We imagine GENEVIZ as a completely local application with both User Layer and
Data Layer running on the local machine. Hence, no trust is necessary in the provider
of a component of GENEVIZ from the end user perspective. Nevertheless, through the
modularization, specific components could also be located remotely. In the following
subchapters, the components from each layer of GENEVIZ are discussed in greater detail.

3.2. ARCHITECTURE 19

Figure 3.2: Conceptual architecture of GENEVIZ

3.2.1 User Layer

The User Layer contains the elements responsible for the interaction between the user and
the GENEVIZ platform. Except for the VNF Templates Database, all other components
on this layer build up together the Web Application of GENEVIZ. We decided to propose
a web application on this layer as there is no need to download and install specific soft-
ware for the end user, as long as the assumption, that the currently installed browser is
supporting the GENEVIZ web application, holds.

Template Collector

As VNF and SFC Templates can come from several sources, this component has the job
to communicate with other platforms in order to gather the set of templates available
for the SFC construction. These platforms can include several marketplaces, independent
catalogs or the simple manual upload of a ZIP file. VNFs and SFCs purchased over a
marketplace through a specific user account could be retrieved during the initialization of
the platform, if authorization is provided, and could hence directly be integrated within
GENEVIZ. VNF Templates are needed in order to construct new network services from
scratch. SFC Templates can be validated and imported in order to create new SFCs based
on previously created SFCs.

20 CHAPTER 3. GENEVIZ

Template Catalog and Database

The Template Catalog handles first the communication between the Template Collector
and the Templates Database, with the latter holding all templates collected during the
launch (or later in the lifecycle) of the application. As the data stored in this database
is not needed for the SFC Package construction, we clearly separate it from the Packages
Database located on the Data Layer. The collector transmits the templates to the catalog,
which are subsequently stored on the database. Further, the catalog retrieves all stored
templates in order to provide them to the Visualization Manager for its usage. In fact,
the storage of the templates in GENEVIZ is only mandatory for the manual upload.
VNFs collected through the integration of a marketplace or independent catalog don’t
necessarily need to be stored on a database inside GENEVIZ, and could instead be directly
transmitted through the Visualization Manager to the Data Layer, where they will be
stored as VNF Package respectively if they are added to the SFC currently in draft. The
consideration of both VNFs and SFCs in the catalog can be especially interesting if we
consider the case that a previously created SFC from a marketplace could be imported
into GENEVIZ, which would afterward be extended in a next step by adding additional
VNFs from a catalog.

Visualization Manager

This component is the key bridge between the User Layer and the Data Layer as it han-
dles the communication between the mentioned two on the User Layer. The Visualization
Manager is also in charge of handling the interaction between the user and the visualiza-
tions, which also includes the provisioning of necessary data needed for the visualizations,
such as the catalog from the Template Catalog component. Hence, this component can
also be seen as the ”store” (i.e. current state) of the web application. From a Model-View-
Controller (MVC) perspective, the Visualization Manager holds both the Model and the
Controller, leaving the User Interface as a dumb View component.

User Interface

The web-based User Interface provides several visualizations to the end user but is not
limited to them exclusively. This component is the only way where an interaction between
the user and the GENEVIZ platform can occur. It should allow an intuitive and easy
way for the end-user to interact with the visualizations and the rest of the user interface.
It’s important to note here that in our context, the term Visualization is used in a much
broader sense, not only referring to the visual representation of abstract data but also
being an interactive interface providing forms to modify the data. As the visualizations
are modular as well, they could be adapted to the network operator’s needs. We currently
propose four visualizations for our solution, although a lot more could be integrated into
GENEVIZ:

1. Service Constructor — By chaining two or more VNFs, a forwarding graph is
created, defining the flow in which the traffic is traversing through the VNFs. The

3.2. ARCHITECTURE 21

graph should be constructed with the help of this visualization and is based on the
end user requirements for the new network service. Hence, the Service Constructor
should visually represent the whole SFC.

2. VNFD Editor — The properties of the VNFD should be configurable in an easier
way than navigating through the file system in order to find the respective VNFD,
open it in a separate Editor, and adjust the properties. For GENEVIZ, we decided
that the properties in terms of hardware allocation could be some of the most
important ones during the creation of a new network service. Hence, (i) Number
of CPUs, (ii) Memory Size, and (iii) Disk Size should be adjustable in the VNFD
Editor, which can be opened for every VNF Package added to the SFC currently
in draft. This can be especially interesting for large SFCs, where multiple VNF
Packages from the same VNF Template, but with different hardware properties, are
defined. It’s important to denote here that the VNFD Editor is not limited to the
three properties addressing hardware allocations, but could involve any properties
from the VNFD.

3. SFC Validator — To check the integrity of an already created SFC, this visualiza-
tion should visually represent the state of the validation of the SFC Template after
it has occurred.

4. Placement Recommender — For GENEVIZ, we propose that this visualization
should go hand in hand with the Service Constructor visualization, but it is not
limited to it and could be completely independent for other SFC visualization tools.
Further, the Placement Recommender could combine several different approaches
together under one single visualizations. To make a universal statement in terms of
general performance for a given connection, there doesn’t seem to exist enough data
from current NFV environments. But as the placement and order of VNFs can have
a direct impact on the whole performance of an SFC, we see the Placement Recom-
mender as an advisor in terms of Chaining of VNFs. Hence, this visualization should
either recommend, not recommend, or stay neutral on a currently created connection
between two different VNFs. For this, we propose the extension of the current ETSI
specification of the VNF Descriptor by adding two new properties, namely tar-

get_recommendation and target_caution. The target_recommendation should
list services (i.e. VNFs) which are recommended as a target. Hence, an edge from
the current VNF to the one mentioned in the recommendation list is advisable. The
target_caution should list services (i.e. VNFs) which are not recommended as a
target. The service names in both of the new properties should refer to the ser-

vice_types property of the target VNF. During the construction of the forwarding
graph, the Placement Recommender should visualize these placement suggestions in
order to guarantee the best chaining for the SFC.

3.2.2 Data Layer

In general, the Data Layer can be seen as the backend of the GENEVIZ platform, as it is
mostly responsible for data storage and no interaction with the user finds place here. It

22 CHAPTER 3. GENEVIZ

is also responsible for the communication with the Blockchain Layer in order to handle
the validation of already existing SFC Packages.

Management API

This component handles the communication between the User Layer and the Data Layer
on the latter side. Specifically, it handles requests between the Visualization Manager
and the Package Handler such as the transmission of VNF and SFC Packages as well as
the VNFD file for example.

Package Parser

Since VNF and SFC Packages consist of multiple files and folders with a quite nested
hierarchy and are usually compressed as a ZIP file or another compressed file format,
the Package Parser has the job to extract those files in order to make it accessible to
the Package Handler component. It parses the VNFD file from a VNF Package, which
is needed for several visualizations on the User Layer, as well as the NSD file, which is
needed for the import of an existing SFC Package.

Package Handler

The Package Handler transmits either VNF or SFC Templates from the Management API
to the Packages Database to be instantiated as a VNF or SFC Package, SFC Packages
from the SFC Package Manager to the Management API, VNF or SFC Packages from the
Database to the Parser, or Data from the Parser to the Management API. This component
is also in charge of updating the VNFD properties as supported through the VNFD Editor
visualization.

SFC Package Manager

Handles the communication between the Data Layer and the Blockchain Layer by sending
a request to the Blockchain API to either store a hash or validate an SFC Package. Also,
this component triggers the generation and validation of an SFC Package by communicat-
ing with the respective two components. The SFC Package generated by the SFC Package
Generator is sent back further through the Package Handler to the Management API,
to then sent to the User Layer. Further, the results from the validation are transmitted
through the Package Handler to the Management API.

3.2. ARCHITECTURE 23

SFC Package Generator

As its name says, this component generates the SFC Package by aggregating the different
VNF Packages being part of the SFC and creating the NSD by the given data provided by
the User Layer. In general, the VNFFGD is also part of the SFC Package, but is currently
not intended to be generated by GENEVIZ within this component, since the VNFFGD
depends too heavily on the NFV environment. Open Baton and OpenStack, for example,
have different ways to describe the VNFFGD. Optionally, the SFC Package Generator
also requests the writing of the hash of the generated SFC Package on the blockchain and
receives a transaction key after successful writing on the blockchain. This transaction key
is stored together with the account address on the SFC Package and used for the later
validation of this package.

SFC Package Validator

This component is responsible for the validation of already created SFCs. By compar-
ing the hash of the SFC Package, together with a given transaction key, with the hash
written on the blockchain for this transaction key, GENEVIZ can check if the package
content matches the initial one from the creator of the SFC Package. For GENEVIZ, we
differentiate between three different possible states, where we see an SFC Package after
its validation:

(i) Valid — If the hash matches the one written on the blockchain for the given trans-
action key, data integrity of the package content could be established as the content
was not modified in some way and is the original one from the moment of creation.

(ii) Invalid — As the SFC Package was somehow modified, the hash of the downloaded
package doesn’t match anymore with the one written on the blockchain for the given
transaction key. Hence, the package becomes invalid and data integrity could not
be established.

(iii) Unknown — During the creation of a new SFC Package, the user can decide to
not store the hash of the package on the blockchain due to some reasons. Thus,
there is no transaction key or address given for the package, which can be used for
verification. In this case, GENEVIZ doesn’t want to make a statement about the
integrity of the content. It can either be that the content was modified or stayed
the same, so GENEVIZ marks the package as Unknown.

3.2.3 Blockchain Layer

Although this layer is not part of GENEVIZ itself, it can be seen as a part of the GENEVIZ
platform as a whole. We could imagine any kind of blockchain for this layer, if it supports
some data property inside a single transaction where we can store the hash value of our
created SFC Packages, such as Ethereum, Bitcoin or IOTA can do it. As GENEVIZ aims
to be used locally with no centralized server for the uploaded VNF Packages or generated

24 CHAPTER 3. GENEVIZ

SFC Packages, we think a blockchain would fit best for this kind of data storage. A
centralized database needs to be maintained somewhere — ensuring trust on it from the
perspective of a network operator seems to come with a certain risk. Thus, we imagine a
decentralized blockchain for the storage of the data hashes of the SFC Packages, accessible
from any local machine as long as a connection can be established between the computer
and the blockchain. Further, in the work of [15], the usage of a blockchain for a digital
asset’s proof-of-existence was discussed. We would like to build upon that, using the hash
of an SFC Package as an immutable time-stamp to certify the authenticity of a created
package. By storing the fingerprint of the package — during its generation — on a publicly
accessible blockchain, a proof-of-existence can be made at a later point in time on any
machine running GENEVIZ.

Blockchain API

This component handles the communication between the Data Layer and the Blockchain
Layer from the side of the latter one. As we imagine any kind of blockchain supporting
some data property on the transaction itself, this API will be different for a different
blockchain. For GENEVIZ, we could also imagine an API providing interoperability on
different blockchains at the same time through one single interface. Hence, the user could
choose on the User Layer, on which blockchain he wants to store the hash. Such an
Interoperability API can be seen in the work of [21], where a solution for storing and
retrieving data on seven different blockchains is provided.

3.3 Prototype and Implementation

We implemented the GENEVIZ Prototype using HTML, CSS, and JavaScript on the User
Layer and Python on the Data Layer. The prototype was implemented considering the
requirements defined in Chapter 3, serving as a Proof of Concept (PoC) for the conceptual
architecture of GENEVIZ. As we tried to hold the application as light as possible, no
database — as it was proposed in the general architecture — was integrated. Instead,
the Web Application on the User Layer holds its data through a single JavaScript object,
while on the Data Layer all files are stored in a temporary folder on the local machine,
also eliminating the need for a database integration.

3.3.1 User Layer

For the Web Application on the User Layer, we decided to go with React 16.8.3[22], a
JavaScript library for building User Interfaces which gained wide popularity also for large
applications in recent years (e.g. Facebook and Instagram are using React for their web
applications) [23]. As React itself is not a framework, the state management of the appli-
cation is handled with Redux 4.0.1 [24], a JavaScript library for handling global state man-
agement. Redux doesn’t depend on React and can be used together with any UI library.
The source code of the web application is mainly written in TypeScript 3.3.3333 [25], a

3.3. PROTOTYPE AND IMPLEMENTATION 25

strict syntactical superset of JavaScript, adding static typing to the language and using
a bunch of JavaScript libraries provided through the Node Package Manager (NPM) [26].
The TypeScript source code hence needs to be compiled to plain JavaScript code, which
is supported by the majority of today’s web browsers. As this type of compilation from
TypeScript to JavaScript is converting the source code on a similar level of abstraction,
one often refers to this as transpilation. For this, Babel 6.26.3 [27] in combination with
Webpack 3.8.1 [28] is used, with the latter aggregating the different files into one single
and compressed JavaScript file.

Figure 3.3: Screenshot of the GENEVIZ Prototype

A screenshot from the web application of the GENEVIZ Prototype can be seen in Fig-
ure 3.3. On the left side, there is a menu, allowing the user to manually upload zipped
VNF and SFC Packages by using the dropzone with the dashed border. By clicking on the
respective buttons for ”VNFS” and ”SFCS”, the user can switch between the two catalogs.
For the GENEVIZ Prototype, only ZIP files are allowed to be uploaded.

At the bottom of the menu, a blue button allows the generation of an SFC Package, based
on the constructed SFC. This button only appears if the constructed SFC is valid. Hence,
the button is not visible at the initial start of the application, as an empty SFC is seen
as invalid. The requirements for an SFC to be valid are at least two VNFs connected
through one edge.

The User Interface shows an alert on the top right corner if any kind of error message
should be passed down to the user. This can especially be helpful during the graph
construction or import of new packages, as there is some kind of feedback from the web
application if some action fails or is not allowed. Examples for this could be a wrong
format of the VNF Template (e.g. the Package Parser can’t find the VNFD) or the
attempt to create a loop during the forwarding graph construction.

26 CHAPTER 3. GENEVIZ

Store

State

User Interface

ActionsReducer

co
ntai

ns defines

tr
ig

ge
rs

sent to

updates

Figure 3.4: Software Architecture of GENEVIZ with the Redux pattern

For the GENEVIZ Prototype, we assume the VNFD to lie in the standardized path
/Descriptors/vnfd.json inside the VNF Package. The VNFD is retrieved after a VNF
is added to the SFC and not during the manual upload of a package, hence an error
message for the wrong path is not returned before the addition of the VNF. Any other
location for the VNFD is not supported for the prototype. This location could be changed
in the source code or even dynamically be set in order to handle other paths. We don’t
actually care for the rest of the content of the VNF Package as the only necessary file for
our visualizations is the VNFD.

As already mentioned in the previous subchapter, the VNF Forwarding Graph Descriptor
cannot be generated through the GENEVIZ Prototype as it depends too heavily on the
NFV environment. For the forwarding graph of the VNFs, under the assumption that
there is only one single directed path going through each VNF once, a simple list is enough
to represent the forwarding graph of the network traffic. For the GENEVIZ Prototype,
we decided to define this list through the VNFD reference inside the vnfd property of the
NSD (e.g. the first VNFD path refers to the first VNFD of the SFC, the second VNFD
to the second VNF, and so on).

The name of a template is received through its file name. Thus, the file firewall-1.0-

uzh.zip, for example, is named as ”firewall-1.0-uzh” in the templates list in the menu on
the left side of the GENEVIZ application. For the title of the nodes, we extract the name

property from the VNFD file and set the nodes according to the name specified in the
VNFD, which we don’t have at the moment of the ZIP file upload in the templates list
and is the reason we rely on the file name for the templates.

As the Frontend is implemented with React and Redux, we briefly want to discuss the
Redux pattern as seen in Figure 3.4, since it sets the main software architecture of the
web application. The whole state of the GENEVIZ web application is stored in an object
tree inside a single Store object and the only way to change this state tree is to trigger
an Action, an object which describes what happened and usually also contains some data
necessary for the state transition. To define how the different actions alter the state tree, a

3.3. PROTOTYPE AND IMPLEMENTATION 27

Reducer is needed, eventually transforming the previous state to the next one. This state
change triggers the re-rendering of the User Interface, which is written by using React.
A Reducer can be seen as a pure function that takes the previous state and an action
and returns the next state. Hence, the Reducer is similar to a higher-order function, a
functional programming concept.

Visualizations

The visualizations of the GENEVIZ Prototype refer back to both the conceptual archi-
tecture of GENEVIZ as seen in Figure 3.2, as well as the use cases defined in Chapter 3.1
and also shown in Figure 3.1.

Service Constructor In general, the Service Constructor can be referenced to as the
right side of the GENEVIZ Prototype, consuming about 2/3 of the application window,
also seen in Figure 3.3. It depends on the addition of VNF Templates from the left
menu, consuming about 1/3 of the application window. After successfully uploaded a
VNF Package through the Dropzone in the left menu, the VNF Template can be added
to the SFC as a VNF Package by clicking on the blue bordered ”Add to SFC” Button
and removed from the templates list by clicking on the red bordered ”Remove” button.
After clicking the blue ”Add to SFC” button, a node appears in the Service Constructor
visualization. If a node is selected by clicking on it, three blue buttons appear at the
bottom right corner of the application window:

• Show VNFD Properties — Opens the VNFD Editor

• Remove Node — Removes the selected VNF Package from the SFC and hence also
from the graph. Any other connection with other nodes is detached by removing
the corresponding edges as well.

• Clear Graph — Removes all nodes and edges from the graph and resets the entire
SFC to an empty state.

If an edge is selected by clicking on it, the first button (”Show VNFD Properties”) is not
shown, as no VNFD Properties can be edited on an edge. The graph construction tries
to be as strict as possible, not allowing any loops or multiple outgoing connections from
the nodes.

Nodes can be relocated by selecting them first and then moving them around with the
mouse cursor. With this, the nodes can be rearranged in order to construct a clearly
ordered SFC, which can be helpful especially for large and complex SFCs.

A new edge can be created by first pressing and holding the Shift key on the keyboard, then
selecting the first node with the mouse cursor by clicking on it, moving the mouse cursor
to a second node which should be connected, and then releasing both the mouse button
as well as the Shift key. While doing all this, an arrow should appear on the graph plane,
making the connection visible as a preview before the actual edge is created. With this,

28 CHAPTER 3. GENEVIZ

the different VNFs can be connected to each other in order to define the VNF Forwarding
Graph. The type of edge depends on the Placement Recommender visualization.

VNFD Editor To open the VNFD Editor, a node must be selected from the Service
Constructor visualization. When a node has been selected, the blue ”Show VNFD Prop-
erties” button appears at the bottom right corner of the GENEVIZ application window
beside two other blue buttons. Clicking on the respective button opens up a popup win-
dow, which represents the VNFD Editor visualization. For the GENEVIZ Prototype, we
expected each VNF has at least the same three hardware properties in their descriptor.
The hardware properties are assumed to be located in the VNFD as follows:

1 "vnfd": {

2 "attributes": {

3 "vnfd": {

4 "topology_template": {

5 "node_templates": {

6 "VDU1": {

7 "capabilities": {

8 "nfv_compute": {

9 "properties": {

10 "num_cpus": 1,

11 "mem_size": "4 GB",

12 "disk_size": "5 GB"

13 }

14 }

15 }

16 }

17 }

18 }

19 }

20 }

Thus, the three properties num_cpus, mem_size, and disk_size can be edited through the
VNFD Editor and saved on the VNFD by clicking on the blue-bordered ”Apply Changes”
button. When clicking on the ”Cancel” button, the current changes are not saved on the
VNFD.

Placement Recommender Before a new edge is being placed between two nodes on
the graph plane, the edge type is chosen based on the two properties target_recommendation
and target_caution inside the VNFD of the source node (i.e. the Source VNF). Based
on this information, the edge holds a green dot for a recommended target VNF, a red
dot for not recommended target VNF, and a blue/white for neutral targets. The latter is
especially important, as a VNF does not hold the entire list of all possible VNFs as targets
in its properties, leaving the statement about the placement recommendation neutral.

3.3. PROTOTYPE AND IMPLEMENTATION 29

SFC Generation Although the generation of an SFC Package itself doesn’t have or
need a visualization, there is certain information necessary before the generation of a new
SFC Package can happen. We decided to provide the setting of three properties from the
NSD — namely name, vendor, and version — within this step. By clicking the ”Generate
SFC” button, a popup window is opened where the properties can be set. Further, by
clicking the checkbox, two additional properties appear for the writing of the hash of the
SFC Package on the blockchain, namely address and privateKey, which are both needed
to store the hash on a given address and sign it with the private key.

SFC Validator The validation of an uploaded SFC is triggered directly during the
upload and doesn’t need to be done manually. In the case, the validation succeeds, a
green ”Valid” label appears below the SFC Template on the left menu. If the validation
fails, a red ”Invalid” label appears. A grey ”Unknown” label appears for the unknown
integrity of an uploaded SFC Package.

3.3.2 Data Layer

For the Data Layer, we chose Python 3.7.0 [29] together with Flask 1.0.2 [30]. Flask
is a micro web framework as it does not require particular libraries or tools itself. We
used Flask’s route() decorator to bind a function to a URL and hence implementing the
Management API with the required functionality. The User Layer communicates with the
Data Layer by using the Fetch API, a Web API for fetching resources, through JavaScript.
The Fetch API allows making a network request similar to an XMLHttpRequest (XHR),
with the important difference that the Fetch API is using Promises, an object representing
the eventual completion or failure of an asynchronous request and its resulting value.
Appendix A provides the complete list of the HTTP Endpoints from the Management API
with the corresponding parameters needed for the requests and the different responses.

All the necessary components from the Data Layer of GENEVIZ are integrated into the
Management API source code, which hence handles ZIP file storage, extraction, and
parsing, as well as the SFC Package generation and validation.

Figure 3.5 shows the file structure of an SFC Package generated by the GENEVIZ Pro-
totype. For the prototype, we defined an SFC Package to be a ZIP file, named as sfc-

package.zip. This ZIP file acts as a ”wrapper” ZIP file for the actual sfc.zip file. The
sfc.zip file contains several VNF Packages, with each VNF having its own separate
folder for its respective content. If an SFC Package has multiple VNFs from the same
VNF Template, there is still just one folder, as the content, except for the VNFD, stays the
same. Hence, for an SFC Package with multiple VNFs from the same template, we have
multiple VNFDs lying in the same Descriptors folder, but with different UUIDs. This
sfc.zip file has — besides the different VNF Packages — another file named nsd.json,
which represents the Network Service Descriptor of the SFC. At the same hierarchy level
as the sfc.zip file, there is another file named geneviz.json, containing two properties,
namely txHash and address. The transaction hash property txHash is retrieved from
the blockchain itself after the hash is written on the blockchain, and is known as the

30 CHAPTER 3. GENEVIZ

transaction ID of the transaction for the Ethereum Blockchain. The address is given
by the user itself when the generation of the package is requested. The geneviz.json

is therefore needed for the validation of an SFC Package as it contains the transaction
key necessary for the lookup of the data properties for this transaction key. If the data
property retrieved from the transaction matches with the computed hash from the content
of the sfc.zip file, the package is seen as Valid. Does the hash found on the blockchain
for the given txHash not match with the computed hash from the content of the sfc.zip

file, the package is seen as Invalid. If both the txHash and the address properties are
empty strings, GENEVIZ has not stored any hash on the blockchain for this SFC Package
and thus the data integrity of the SFC Package is seen as Unknown.

Figure 3.5: File Structure of SFC Package for the GENEVIZ Prototype

3.3.3 Blockchain Layer

The Blockchain Layer of the GENEVIZ architecture proposes the usage of a Blockchain
API in order to communicate with any underlying blockchain supported by the API. We
decided to take a more simplified version of this API and are using parts of the source
code provided by [21] to communicate with the Ethereum Blockchain [31]. Hence, we
extracted the majority of the source code from the Ethereum Adapter and adopted it for

3.3. PROTOTYPE AND IMPLEMENTATION 31

our use case. For easier testing purposes and in order to run GENEVIZ fully locally, we
used Ganache [32], a personal blockchain for Ethereum development, which can run on
the local machine and connected through the Endpoint URL provided by Ganache with
GENEVIZ. The Ethereum API of the GENEVIZ Prototype takes usage of web3 [33], a
python implementation of web3.js. Both web3 and web3.js are Ethereum APIs connecting
to the Generic JSON RPC of Ethereum. For our prototype, we directly integrated the
Blockchain API into the Management API by importing the former into the latter one.
Hence, communication between the two through an API endpoint becomes obsolete.

Figure 3.6 shows a screenshot of a successful transaction on the Ethereum Blockchain by
using Ganache. The property ”TX Data” in the beige box contains the necessary data,
which is then translated by the Blockchain API to the hash of the sfc.zip file, to then
be further used for the validation of the package.

Figure 3.6: Screenshot of Ganache

32 CHAPTER 3. GENEVIZ

Chapter 4

Evaluation

In order to validate the usability and technical feasibility of GENEVIZ as we proposed, the
following sections describe three case studies, focusing on three different use case scenarios.
The case studies aim to cover the different visualizations provided by GENEVIZ, showing
their helpfulness in the context of SFC construction and validation. In the first case
study, we discuss both the construction of a new network service (i.e. an SFC) by using the
Service Constructor visualization, as well as the usefulness of the Placement Recommender
visualization, with the latter helping us to better optimize our newly constructed network
service in terms of chaining. In the second case study, we generate an SFC Package by
using the constructed SFC from Case Study No. 1 and also trigger the writing of the
hash of the SFC Package on the Ethereum Blockchain. In the third case study, we take
a second user in, perform a validation of the created SFC Package from Case Study No.
2., import it into GENEVIZ in order to adjust some properties of an associated VNF
Package, and conclusively generate a new SFC Package based on the imported one.

4.0.1 Case Study No. 1 — Construction of an SFC

Addressing the most prominent visualization inside GENEVIZ, namely the Service Con-
structor, let’s consider a user with the specific demand to create a new network service,
which should finally be deployed in an NFV environment in order to fulfill its purpose.
For this, the user bought — beforehand — three different VNF Packages from an external
source (e.g. from a marketplace), which are needed in order to create the SFC. Concretely,
the user bought the following three VNF Packages: a Deep Packet Inspection (DPI) VNF,
a Firewall VNF, and a Load Balancer (LB) VNF.
In a first step, the three VNFs are imported via manual upload in the menu on the left
side of the GENEVIZ web application. After uploading them, the VNF Packages appear
in the left menu as VNF Templates since they could be added multiple times for the same
SFC. By clicking the blue-bordered ”Add to SFC” button for each VNF Template once,
each template is added as a VNF Package to the SFC and appears as a squircled node on
the graph plane on the right side of the web application.
Now, the user makes the first connection between two VNFs by holding the Shift key on
the keyboard, clicking on the DPI node, holding the left mouse button, moving the cursor

33

34 CHAPTER 4. EVALUATION

Figure 4.1: Screenshot 1 of GENEVIZ for Use Case No. 1

to the Firewall node, and releasing both the Shift key as well as the mouse button. This
created an edge between the DPI and the Firewall node. By connecting the Firewall with
the LB node with the same approach, the second edge is created. The current graph of
this construction can be seen in Figure 4.1.
This first draft of the SFC can be seen as a misconfiguration, although it would not be
wrong to create an SFC like this. The current construction also makes it clear that the user
is not very experienced with the creation of SFCs since a red dot on the edge between the
DPI and the Firewall node appears. This red dot is part of the Placement Recommender
visualization of the GENEVIZ Prototype and indicates that the connection is not recom-
mended for an SFC. Hence, the user overthinks the current construction and swaps the
DPI and the Firewall node by deleting the two created edges, then swapping the position
of the DPI and the Firewall node, and then connecting the three nodes again by creating
two new edges. Now. the first edge even has a green dot, indicating a recommended
connection. The graph of this enhanced construction is shown in Figure 4.2.

4.0.2 Case Study No. 2 — Generation of an SFC Package

This case study addresses the generation of the SFC Package and assumes a correct
construction of the forwarding graph in the graph plane as given in Case Study No. 1.
An SFC such as the one constructed in Figure 4.2 is valid, and hence a blue button with
the label ”Generate SFC Package” appears at the bottom left corner. For this case study,
we consider the exact same SFC as constructed in Case Study No.1 as a base for the
subsequent steps.
By clicking on this blue button, a popup window appears, requesting the user to define
the name, vendor, and version for the SFC Package. Our user sets these three properties

35

Figure 4.2: Screenshot 2 of GENEVIZ for Use Case No. 1

to ”GENEVIZ Evaluation” (name), ”UZH” (vendor), and ”1.0” (version) respectively. The
SFC Package could be downloaded at that time, but our user decides to click on the
checkbox below the three input boxes in order to store the hash of the Package, which
will be generated, on the Ethereum Blockchain. For this, the user needs to provide both
the address of the Ethereum account as well as the private key for this account in order
to sign the transaction properly. The information provided in the popup can be seen in
Figure 4.3.
As a next step, the user clicks the blue-bordered ”Download” button, which forces the
generation of the SFC Package and the storage of the hash value of the package on the
Ethereum Blockchain. The web browser should automatically trigger the download of
our ZIP file, containing both an sfc.zip file for the deployment of the SFC as well as a
geneviz.json file to validate the SFC Package at a later point in time.

4.0.3 Case Study No. 3 — Validation and Import of an SFC
Package

For this case study, we take in a second, different user being a different actor than the
one from Case Study No. 1 and 2. This second user has downloaded three SFC Packages
somewhere from the Internet (e.g. from a marketplace or a website) with a specific end-
user requirement in mind, having no idea about the exact content of the SFC Packages.
Also, the user has no idea about who the authors of the SFC Packages were, and if one
can rely on the source of the downloaded file. As the packages contain a lot of different
folders and nested files — which would take quite some time to check it’s content — the
user leaves the validation of the packages up to GENEVIZ. The user would like to use the

36 CHAPTER 4. EVALUATION

Figure 4.3: Screenshot of GENEVIZ application for Use Case No. 2

SFC Package named sfc-package-evaluation, but he also considers the sfc-package-

other and the sfc-package-other-2 packages if the first one turns out to be invalid.
In a first step, the user clicks on the grey-bordered ”SFCS” button in the menu on the
left side of the platform in order to switch to the SFC section. The button should now be
dark colored, indicating that the ”SFC” section is chosen. This section allows the manual
upload of SFC Packages through the browser as it is done in the same way for the upload
of VNF Packages. The uploaded SFC Packages appear now on the SFC List as SFC
Templates in a similar way uploaded VNF Packages are handled as VNF Templates. The
validation of the uploaded packages is triggered automatically and the response depends
on the current block time of the blockchain. For the package named sfc-package-other-

2, no statement about its data integrity can be made, as no information for the retrieval
on the blockchain is provided, and it is hence marked as Unknown. The second package,
named sfc-package-other, appears to be marked as Invalid, which means the content of
the package was somehow modified. The third package named sfc-package-evaluation

is the package we created during Case Study No. 1 and generated in Case Study No. 2. As
the hash of this package was written on the Ethereum Blockchain during the generation
of the package by the first user, and the transaction ID is part of the downloaded SFC
Package, GENEVIZ finds a data hash for the given transaction ID, which matches with
the hash of the content from the uploaded SFC Package. Hence, GENEVIZ marks the
uploaded SFC Package as Valid, and shows a green ”Valid” label at the location where the
”Validate” button was before. The labels can be seen in Figure 4.4a in the white boxes of
the SFC Templates.
For the last SFC Package, trust could now be established — to a certain degree — between
our second user and the downloaded SFC Package from the unknown source. The user
decides to import this SFC Package as a new SFC into GENEVIZ in order to adjust some
VNFD properties of the involved VNFs, which fit better his demands. By clicking on the

37

(a) Uploaded SFCs (b) VNFD Editor of the DPI VNF from the imported SFC

Figure 4.4: Screenshots of GENEVIZ application for Use Case No. 3

blue-bordered ”Import” button on the left menu, an alert appears, warning the user that
the currently drafted SFC will be cleared and replaced by the new SFC. This is totally fine
for our user as the previously drafted SFC is not relevant anymore and hence the ”OK”
button is clicked on the alert. Now, the SFC will be imported if the SFC Package can
be extracted properly and the Service Constructor visualization shows the corresponding
graph. This is helpful for our user too, as the forwarding graph is now directly visible and
could also be modified if needed.
Next, the user decides to open the VNFD Editor for the DPI VNF, which lies between the
Firewall and the LB VNF. By clicking on the blue-filled button ”Show VNFD Properties”
at the bottom of the Service Constructor visualization, a popup window appears, showing
the current VNFD properties of the DPI VNF. Our user decides to change the memory
size to ”8 GB” and the number of CPUs to ”2”, which seems to better fit the demands for
the new network service. After clicking the blue-bordered ”Apply Changes” button, the
new VNFD properties are directly updated.
Finally, the user clicks the blue-filled ”Generate SFC Package” button at the bottom
left corner of the GENEVIZ web application, forcing the generation and download of an
adjusted SFC Package based on the SFC Package created by the first user. In the same
way, the information is provided for the NSD and the Blockchain in the popup window,
which appears after the button is pressed, it can be done for this second SFC Package.
This last step completes our evaluation and the second SFC Package could be further
used to deploy a new network service.

4.0.4 Discussion

The three case studies deal with different scenarios making usage of GENEVIZ. Both the
construction of a new network service based on some VNF Packages as well as the adjust-
ment of the properties of a certain VNF — being part of the SFC — aim to be simplified

38 CHAPTER 4. EVALUATION

with the proposed solution. With a graphical user interface for the Service Constructor
and the Placement Recommender, the critical issue of VNF placement can be addressed,
helping the user to draft better SFCs in terms of chaining. Further, by writing the hash of
the content of the newly created package on a blockchain, the verification of the package
originality can be done by a second user through GENEVIZ as well. All these tasks could
be done separately, consuming unnecessary manual effort for users inexperienced in the
NFV landscape, and aim to be unified and thus simplified at one single place through the
GENEVIZ.
One of the limitations SFC construction currently has in general is the limitation of one
single forwarding graph. Hence, GENEVIZ too only allows the definition of one output
path to connect the next VNF. The case of creating multiple output paths and hence
connecting multiple VNFS with a single VNF would need to creation of multiple SFCs.
Further, the VNFFGD cannot be entirely generated through GENEVIZ since this de-
pends too heavily on the NFV platform the SFC will be deployed to. Thus, the order of
the VNFs is set through the order of the VNFDs in the vnfd property of the NSD, with
the first VNF appearing in the VNFD list being the first node in the forwarding graph.
In the future, there could be VNFs needing more than one output path in order to run
properly. How this would be translated through one single NSD for a single SFC is not
clear at the moment. It might be that GENEVIZ needs to be integrated directly into the
different NFV environments (e.g. based on OpenStack Tacker [34] or CloudStack [35]) to
generate the VNFFGD during the generation of a new SFC Package.
Another limitation of the work is that the evaluation is solely based on case studies. Thus,
we are currently not able to provide quantitative evidence about the performance of the
GENEVIZ platform in terms of intuitiveness and simplification to create SFCs easier and
faster than in a manual way. In this sense, a usability evaluation with real users could be
done to validate the real benefits of GENEVIZ and provide details about the effectiveness
of the platform. An evaluation using the System Usability Scale (SUS) questionnaire and
other methods are mapped as future work.
We take into account the usage of a blockchain to ensure the data integrity of a previously
created SFC Package. First, for a smooth user experience, we assume the block time to be
in a reasonable amount of time for the end user of GENEVIZ, which is not always guar-
anteed for certain blockchains (e.g. Ethereum had several peaks with up to 30 seconds for
the block time in its recent history [36]). Second, although the integrity of the content can
be guaranteed through the hash verification, the package could already contain malicious
code at the moment of the creation of the package, inserted by the creator of the SFC
Package. Or malicious code could be inserted even earlier during the creation of a VNF
Package, which would, in turn, be part of the downloaded SFC Package. Hence, actually
ensuring trust on a downloaded package from the internet can not be guaranteed with
GENEVIZ and the user also needs to trust the creator of the package itself. Checking
the content of the package would still be up to the marketplace provider or the catalog
holder when approving a new package on their respective platforms, or even the second
user from Case Study No. 2, who finally validates the downloaded package and wants to
use them further to create a new network service.

Chapter 5

Future Work

Due to the modularized nature of GENEVIZ, several different extensions could be explored
as future research directions. Besides the further enhancement of existing modules inside
GENEVIZ, we could imagine the expansion of the platform with additional features for
the internal components or even the coupling with external components.

First, the Placement Recommender visualization could be expanded in order to support
further ways to recommend the placement of certain VNFs inside the service function
chaining. For the GENEVIZ Prototype, we considered the addition of two new properties
inside the VNFD to be able to make a statement about the chaining itself. Hence, the
creator of a VNF Package would be responsible for adding the necessary information with
these two properties. We are aware that this can not always be guaranteed. As a future
work, we could imagine an enhanced Placement Recommender, taking information from
a publicly accessible database in order to make a statement about the chaining. Since
this information would be based on large datasets of productive NFV environments, we
could also envisage the application of machine learning on these datasets, making it even
possible to define certain performance requirements in GENEVIZ at the beginning of the
creation of a new network service, which would therefore serve as a base for the placement
recommendation not only in terms of chaining, but also in terms of performance. By
considering the work from Jacobs et al. [37], the affinity between pairs of VNFs, which
is based on a weighted set of criteria, could be computed with the help of past empirical
data and be presented in the Placement Recommender visualization (e.g. a number in
the range of [0,1] is shown a label on the edge, with 1 being fully recommended and 0
not recommended under any circumstances). Further, the recommender is in general not
limited to the two new properties from the VNFD we proposed in Chapter 3. Based
on information provided by Open Baton [38], the NSD can contain an optional property
named vnf_dependency, which describes the dependency of the target VNF from a VNFD
property of the source VNF. Hence, when considering these dependencies as well, a certain
order of the VNFs would even be mandatory during the service construction and should
also be provided by an enhanced Placement Recommender.

Secondly, the VNFD Editor could be made configurable to support the editing of more
properties from the VNF Descriptor. This could easily be managed by the current
GENEVIZ Prototype as well, as the input fields in the popup window map directly to the

39

40 CHAPTER 5. FUTURE WORK

properties of the VNFD. Further, the VNFD Editor could also be extended in a broader
sense to a so-called VNF Editor. It would perhaps make sense to adjust more than only
the properties of the VNFD and the editing could also include the adjustment of launch
or management configuration files.

Thirdly, for the GENEVIZ Prototype, we require the VNF Packages to be in a ZIP file
format for the manual upload. As these files need to be created beforehand, in a future
version of GENEVIZ, we would like to be able to create new VNF Packages through the
same web application as it can be done for SFC Packages. Hence, GENEVIZ would also
allow the creation of completely new VNF Packages from scratch and the import and
adjustment of previously created VNF Packages. The latter goes in a similar direction
to the one of the extended VNFD Editor, but a VNF Constructor would also allow the
upload of completely new files instead of the editing of properties in already existing files.
These newly created VNF Packages could then be used on-the-fly for a new SFC Package.
In the same way, the hash of newly created SFC Packages is written on a blockchain, it
could be done for newly created VNF Packages, addressing the problem of malicious code
and data integrity on them as well.

Lastly, the SFC Validator could be improved not only to ensure data integrity but also
to additionally increase the level of trust for an SFC Package from an unknown source by
scanning the content for malicious content in general. This could be done both during the
construction of an SFC, while VNF Packages are imported, as well as during the import
of an existing SFC Package.

Chapter 6

Summary and Conclusions

As NFV becomes more popular, technically more mature, and its infrastructure wider
adopted, the demand for specific network services based on the chaining of different vir-
tualized network functions could increase significantly in the years to come. In this thesis,
we introduced GENEVIZ, a tool for the generation, validation, and visualization of SFC
Packages. We propose that a graphical user interface can lead to a more intuitive and
easier construction of new network services. GENEVIZ could also lead to fewer mistakes
during the crafting of new, or the adjustment of existing services, as there are fewer steps
necessary to generate an SFC Package. In this thesis, we presented and discussed differ-
ent visualizations, brought together into one single web application: i) the construction of
an SFC by chaining different VNFs through a single, directed, and acyclic graph, ii) the
adjustment of VNFD properties of the VNFs being part of the SFC, iii) supporting the
user to create better SFCs in terms of chaining by providing a placement recommender,
and iv) giving the ability to validate a previously created SFC to check its data integrity.

After having set out the introduction and motivation of GENEVIZ, some theoretical
background is given on NFV, SFCs, and blockchain technology in general. With this
background in mind, related work which applies information visualization in the context
of NFV and SFC is discussed. In a next section, the conceptual architecture of GENEVIZ
is presented, and, after outlining some overall use cases for GENEVIZ, each component is
explained in a more detailed manner. Further, an evaluation of the GENEVIZ Prototype
is conducted based on three different use case scenarios and followed by a discussion of
the prototype. Possible extensions of GENEVIZ, fitting into the context of SFC creation
and adjustment, are then set out in the Future Works section.

GENEVIZ aims to be a web application running on a local machine, hence allowing end
users to create and adjust SFC Packages locally, which, in turn, removes the need of trust
into any provider of GENEVIZ. Although the tool provides the possibility to validate the
data integrity of the content of a package by using the decentralized blockchain technology,
trust in the integrated VNF Packages is still necessary in the end. The modularity of
GENEVIZ offers wide extensibility and we could imagine a whole bunch of appendices into
the platform, enabling an even richer application, and, thus, supporting the construction
of new services even better, while the NFV infrastructure finds widespread dissemination.
A tool, such as GENEVIZ, finally has the potential not only to help experienced network

41

42 CHAPTER 6. SUMMARY AND CONCLUSIONS

operators but also complete newbies, furthermore driving the wide adoption of NFV
technology. However, the effectiveness and usability of GENEVIZ still need to be proven
by considering real use case scenarios with real end users.

Bibliography

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network
function virtualization: State-of-the-art and research challenges. IEEE Communica-
tions Surveys Tutorials, 18(1):236–262, Firstquarter 2016.

[2] Chiosi, Margaret and Clarke, Don and Willis, Peter and Reid, Andy and Feger,
James and Bugenhagen, Michael and Khan, Waqar and Fargano, Michael and Cui,
Chunfeng and Deng, Hui and others. Network functions virtualisation: An introduc-
tion, benefits, enablers, challenges and call for action. In SDN and OpenFlow World
Congress, volume 48. sn, 2012.

[3] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization: Chal-
lenges and opportunities for innovations. IEEE Communications Magazine, 53(2):90–
97, Feb 2015.

[4] L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos, R. J. Pfitscher,
E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte, A. E. Schaeffer-Filho, C. R. P.
d. Santos, and L. Z. Granville. Fende: Marketplace-based distribution, execution,
and life cycle management of vnfs. IEEE Communications Magazine, 57(1):13–19,
January 2019.

[5] V. T. Guimarães, C. M. D. S. Freitas, R. Sadre, L. M. R. Tarouco, and L. Z. Granville.
A survey on information visualization for network and service management. IEEE
Communications Surveys Tutorials, 18(1):285–323, Firstquarter 2016.

[6] M. F. Franco, R. L. d. Santos, A. Schaeffer-Filho, and L. Z. Granville. Vision –
interactive and selective visualization for management of nfv-enabled networks. In
2016 IEEE 30th International Conference on Advanced Information Networking and
Applications (AINA), pages 274–281, March 2016.

[7] ETSI NFV ISG. Network Functions Virtualisation, June 2012. White Paper. Ac-
cessed on November, 2018.

[8] G. Wang and T. S. E. Ng. The impact of virtualization on network performance of
amazon ec2 data center. In 2010 Proceedings IEEE INFOCOM, pages 1–9, March
2010.

[9] ETSI GS NFV-MAN. Network Functions Virtualisation (NFV); Management and
Orchestration . Dez 2014.

43

44 BIBLIOGRAPHY

[10] J. Zhang, Z. Wang, N. Ma, T. Huang, and Y. Liu. Enabling efficient service function
chaining by integrating nfv and sdn: Architecture, challenges and opportunities.
IEEE Network, 32(6):152–159, November 2018.

[11] J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol, and L. Z.
Granville. Software-defined networking: management requirements and challenges.
IEEE Communications Magazine, 53(1):278–285, January 2015.

[12] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. Network slicing and
softwarization: A survey on principles, enabling technologies, and solutions. IEEE
Communications Surveys Tutorials, 20(3):2429–2453, thirdquarter 2018.

[13] S. Van Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet, and
P. Demeester. Deploying elastic routing capability in an sdn/nfv-enabled environ-
ment. In 2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), pages 22–24, Nov 2015.

[14] Nakamoto, Satoshi and others. Bitcoin: A peer-to-peer electronic cash system. 2008.

[15] T. Aste, P. Tasca, and T. Di Matteo. Blockchain technologies: The foreseeable impact
on society and industry. Computer, 50(9):18–28, 2017.

[16] Popov, S. The Tangle, IOTA Whitepaper, 2018.

[17] Ware, Colin. Information visualization: perception for design. Elsevier, 2012.

[18] L. R. Soles, T. Reichherzer, and D. H. Snider. A tool set for managing virtual network
configurations. In SoutheastCon 2016, pages 1–4, March 2016.

[19] I. J. Sanz, D. M. F. Mattos, and O. C. M. B. Duarte. Sfcperf: An automatic
performance evaluation framework for service function chaining. In NOMS 2018 -
2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–9, April
2018.

[20] R. A. Eichelberger, T. Ferreto, S. Tandel, and P. A. P. R. Duarte. Sfc path tracer: A
troubleshooting tool for service function chaining. In 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pages 568–571, May 2017.

[21] Timo Hegnauer. Design and Development of a Blockchain Interoperability API. Mas-
ter’s thesis, CSG@IFI, University of Zurich, Switzerland, to appear 2019. Supervisors:
Eder Scheid, Bruno Rodrigues, Burkhard Stiller.

[22] Facebook Inc. React — A JavaScript Library for Building User Interfaces. https:

//reactjs.org, accessed 21 April, 2019.

[23] Fedosejev, Artemij. React. js Essentials. Packt Publishing Ltd, 2015.

[24] Dan Abramov and the Redux documentation authors. Redux — A Predictable State
Container for JS Apps. https://redux.js.org, accessed 21 April, 2019.

[25] Microsoft Corporation. TypeScript — JavaScript that scales. https://www.

typescriptlang.org, accessed 21 April, 2019.

BIBLIOGRAPHY 45

[26] npm, Inc. NPM — The Essential JavaScript Development Tool. https://www.

npmjs.com, accessed 21 April, 2019.

[27] Sebastian McKenzie and other contributors. Babel — The Compiler for Next Gen-
eration JavaScript. https://babeljs.io, accessed 21 April, 2019.

[28] JS Foundation and other contributors. webpack Website. https://webpack.js.org,
accessed 21 April, 2019.

[29] Python Software Foundation. The Python Programming Language. https://www.

python.org, accessed 21 April, 2019.

[30] Armin Ronacher. Flask (A Python Microframework). http://flask.pocoo.org,
accessed 21 April, 2019.

[31] Wood, Gavin and others. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

[32] Truffle Blockchain Group. Ganache Website. https://truffleframework.com/

ganache, accessed 21 April, 2019.

[33] Piper Merriam and Jason Carver. Web3.py Documentation. https://web3py.

readthedocs.io/en/stable/, accessed 21 April, 2019.

[34] OpenStack Foundation. OpenStack Docs — Tacker Documentation. https://docs.
openstack.org/tacker/latest/, accessed 21 April, 2019.

[35] Apache Software Foundation. Apache CloudStack. https://cloudstack.apache.

org, accessed 21 April, 2019.

[36] D. Vujičić, D. Jagodić, and S. Rand̄ić. Blockchain technology, bitcoin, and ethereum:
A brief overview. In 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH), pages 1–6, March 2018.

[37] A. S. Jacobs, R. L. do Santos, M. F. Franco, E. J. Scheid, R. J. Pfitscher, and
L. Z. Granville. Affinity measurement for nfv-enabled networks: A criteria-based
approach. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM), pages 125–133, May 2017.

[38] Open Baton. OpenBaton Documentation — Network Service Descriptor. https://

openbaton-docs.readthedocs.io/en/2.1.3/ns-descriptor/, accessed 21 April,
2019.

[39] Martin Juan José Bucher. GENEVIZ Prototype — Source Code. https://github.
com/mnbucher/geneviz, accessed 21 April, 2019.

[40] Martin Juan José Bucher. GENEVIZ Prototype — Source Code. https://gitlab.
ifi.uzh.ch/franco/geneviz, accessed 21 April, 2019.

46 BIBLIOGRAPHY

Abbreviations

AI Artifical Intelligence
API Application Programming Interface
BLOB Binary Large Object
CAPEX Capital Expenditures
CDN Content Delivery Network
CLI Command-Line Interface
CSG Communication Systems Research Group
DAG Directed Acyclig Graph
DPI Deep Packet Inspection
IP Internet Protocol
LB Load Balancer
MVC Model-View-Controller
NAT Network Address Translation
NF Network Function
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestrator
NPM Node Package Manager
NSD Network Service Descriptor

47

48 ABBREVIATONS

List of Figures

2.1 NFV Architecture [3] . 8

2.2 SFC structure by means of two use cases [10] 9

2.3 Blockchain concept as seen in the Bitcoin Whitepaper [14] 11

3.1 Use Cases of GENEVIZ . 16

3.2 Conceptual architecture of GENEVIZ . 19

3.3 Screenshot of the GENEVIZ Prototype . 25

3.4 Software Architecture of GENEVIZ with the Redux pattern 26

3.5 File Structure of SFC Package for the GENEVIZ Prototype 30

3.6 Screenshot of Ganache . 31

4.1 Screenshot 1 of GENEVIZ for Use Case No. 1 34

4.2 Screenshot 2 of GENEVIZ for Use Case No. 1 35

4.3 Screenshot of GENEVIZ application for Use Case No. 2 36

4.4 Screenshots of GENEVIZ application for Use Case No. 3 37

49

50 LIST OF FIGURES

List of Tables

A.1 Request to store VNF Package . 54

A.2 Request to get VNF Descriptor . 55

A.3 Request to update VNF Descriptor . 56

A.4 Request to import SFC Package . 57

A.5 Request to validate SFC Package . 58

A.6 Request to generate SFC Package . 59

51

52 LIST OF TABLES

Appendix A

HTTP API of the Data Layer

By using Flask, the following six HTTP Endpoints are provided in order to establish the
communication between the User Layer and the Data Layer of GENEVIZ. The list of
parameters and response types should serve as additional help besides the source code of
the GENEVIZ prototype:

• Store VNF Template: Table A.1

• Get VNFD: Table A.2

• Update VNFD: Table A.3

• Import SFC Package: Table A.4

• Validate SFC Package: Table A.5

• Generate SFC Package: Table A.6

53

54 APPENDIX A. HTTP API OF THE DATA LAYER

Table A.1: Request to store VNF Package

Request

Path HTTP verb Description

/vnfs POST Stores the .zip of the VNF Tem-
plate in a temporary folder on
the local machine.

Body Parameters for the Request

Name Data Type Description

uuid string UUID of the VNF Template
(given by the User Interface)

vnfName string Name of the VNF Template
fileBase64 string Content of the .zip file encoded

in Base64 format and converted
to a string

Response with HTTP Status 200

Name Data Type Description

success: True boolean VNF Package could be stored
successfully

Response with HTTP Status 400

Name Data Type Description

success: False boolean VNF Package could not be
stored successfully

55

Table A.2: Request to get VNF Descriptor

Request

Path HTTP verb Description

/vnfs/<vnf_name>/<uuid> GET Extracts the VNFD from the
VNF Package .zip file and re-
turns it as a JSON object

URL Parameters for the Request

Name Data Type Description

vnf_name string Name of the VNF Package
(should refer to the name of the
VNF Template)

uuid string UUID of the VNF Package

Response with HTTP Status 200

Name Data Type Description

success: True boolean VNFD could be retrieved suc-
cessfully

vnfd JSON object VNFD of a VNF Package in
JSON format

Response with HTTP Status 400

Name Data Type Description

success: False boolean VNFD could not be retrieved

56 APPENDIX A. HTTP API OF THE DATA LAYER

Table A.3: Request to update VNF Descriptor

Request

Path HTTP verb Description

/vnfs/<vnf_name>/<uuid> PUT Updates the VNFD of a given
VNF Package which is already
stored

URL Parameters for the Request

Name Data Type Description

vnf_name string Name of the VNF Package
(should refer to the name of the
VNF Template)

uuid string UUID of the VNF Package

Body for the Request

Name Data Type Description

- string Serialized JSON of the VNFD
Package

Response with HTTP Status 200

Name Data Type Description

success: True boolean VNFD could be udpated suc-
cessfully

Response with HTTP Status 400

Name Data Type Description

success: False boolean VNFD could not be updated

57

Table A.4: Request to import SFC Package

Request

Path HTTP verb Description

/sfcs POST Updates the VNFD of a given
VNF Package which is already
stored

Body for the Request

Name Data Type Description

- string Serialized string of the encoded
.zip file of the SFC Package in
Base64 format

Response with HTTP Status 200

Name Data Type Description

success: True boolean VNFD could be udpated suc-
cessfully

vnfs object[] Array of VNF Packages with
each element containing three
attributes, namely name for the
name of the VNF Template,
uuid referring to the VNF Pack-
age, and vnfd with the cor-
responding VNFD of the VNF
Package

order string[] Array of UUIDs as strings,
which define the order of the
VNF Packages for the graph
construction

Response with HTTP Status 400

Name Data Type Description

success: False boolean VNFD could not be updated

58 APPENDIX A. HTTP API OF THE DATA LAYER

Table A.5: Request to validate SFC Package

Request

Path HTTP verb Description

/sfcs/validate POST Updates the VNFD of a given
VNF Package which is already
stored

Body for the Request

Name Data Type Description

- string Serialized string of the encoded
.zip file of the SFC Package in
Base64 format

Response with HTTP Status 200

Name Data Type Description

success: True boolean SFC Package is valid

Response with HTTP Status 404

Name Data Type Description

success: False boolean SFC Package is not valid

Response with HTTP Status 400

Name Data Type Description

success: False boolean SFC Package is unknown. Ei-
ther no information could be
found on the Blockchain or the
SFC Package has a wrong folder
structure such that the valida-
tion could not be done properly.

59

Table A.6: Request to generate SFC Package

Request

Path HTTP verb Description

/sfcs/generate POST Updates the VNFD of a given
VNF Package which is already
stored

Body Parameters for the Request

Name Data Type Description

vnfPackages string Name of the VNF Package
(should refer to the name of the
VNF Template)

path string UUID of the VNF Package
nsd object Object containing three at-

tributes, namely name (string),
vendor (string), and version

(string) for the Network Service
Descriptor

bc object Object containing three string
attributes, namely storeOnBC

(boolean), address (string),
and privateKey (string). If
the Hash should not be stored
on the Blockchain, storeOnBC

will be false and the remain-
ing two attributes should con-
tain an empty string. If the
Hash should be stored, the
boolean will be true and the two
string attributes should contain
the necessary data to store the
Hash on the Blockchain.

Response with HTTP Status 200

Name Data Type Description

- BLOB SFC Package could be created
successfully

Response with HTTP Status 400

Name Data Type Description

success: False boolean SFC Package could not be cre-
ated

60 APPENDIX A. HTTP API OF THE DATA LAYER

Appendix B

Installation Guidelines

This chapter provides the necessary information to install and run the components of the
GENEVIZ Prototype on a computer or virtual machine with a fresh installation of Apple’s
macOS. Setting up the components on another operating system based on UNIX should
work quite similar, for Windows the steps could differ slightly more. The source code of
the GENEVIZ Prototype is available at Github [39] or the Gitlab [40] of the Institute of
Informatics at the University of Zurich.

B.1 Setting up the User Layer

Setting up the User Layer of the GENEVIZ Prototype requires first the installation of the
Node Package Manager (npm). The distribution of npm comes along with Node.js and
can be installed from the website:

https : //www. npmjs . com/ get−npm

After navigating into the root directory of the source code, all necessary node packages
defined in the packages.json file need to be installed by running the following command
through the Command-Line Interface (CLI):

npm i n s t a l l

This should have successfully installed all node modules in the node modules directory.
As the source code of the web application is written in TypeScript, the language of the
package named react-digraph needs to be manually changed to TypeScript instead of
regular JavaScript by opening the following file in order to edit it:

node modules / react−digraph / package . j son

61

62 APPENDIX B. INSTALLATION GUIDELINES

Now, the package.json file needs to appended by adding a new attribute called typings

in the first hierarchy-level of the JSON in order to refer to the following path:

”typ ings ”: ”. / typ ings / index . d . t s ”

After saving the edited package.json of the react-digraph module, the web application
should now be ready to be properly compiled in development mode. The development
mode comes with an integrated development server on localhost, which enables live reload-
ing if the source code has changed. In favor of this, not all source code files are fully
optimized. To start the development mode, run the following command through the CLI,
which also shows up the respective port for the web application:

npm run dev

To compile the application in production mode, run the following command:

npm run bu i ld

B.2 Setting up the Data Layer

In order to run the Data Layer of GENEVIZ, Python 3.7 needs to be installed first, which
can be done through the Website:

https : //www. python . org /downloads/

After successfully installing Python 3.7, the global installation of the virtualenv package
needs to be installed with the help of the Python Package Installer (pip). Pip should
already be installed with the Python 3.7 distribution and can be accessed through the
CLI by using pip. Sometimes, the pip3 command is necessary, in case that pip is not
recognized as a command. The virtualenv package is installed as follows:

pip i n s t a l l v i r t u a l e n v

Now, one needs to navigate into the subfolder geneviz-management-api, where the source
code for the Data Layer is located. We have put all the necessary source code for the
Data Layer inside the Management API. There, a new virtual environment needs to be
set up with the following command:

B.2. SETTING UP THE DATA LAYER 63

python3 −m venv venv

This should have created a virtual environment named venv. The folder name could also
be named differently by changing the last argument of the above command. Now, the
virtual environment needs to be activated:

source venv/ bin / a c t i v a t e

At this step, it should be ensured that the environment is using Python 3.7 and pip3 by
checking their respective versions with the -version flag through the CLI. As a next step,
the required Python Packages need to be installed by running the following command:

pip i n s t a l l −r requ i rements . txt

Next, the FLASK_APP environment variable needs to be set on the local machine based on
the absolute path of the geneviz_management_api.py file:

export FLASK APP=abso lu te /path/ to / geneviz management api . py

Lastly, still being in the virtual environment, Flask can finally be started with the following
command:

f l a s k run

This should have started Flask on the port given in the console log.

Due to access control checks, depending on the locations of both the web application,
as well as the Management API, the respective origins of the web application need to
be defined in the Management API. If npm run dev is called for the web application,
running on port 3000, and the Management API is running on the same local machine,
the communication should work properly.

If these settings differ slightly (e.g. another port or by putting the Management API
on a remote server), the respective origin of the web application may need to be set in
the Management API by appending or changing the "origins" array on line 24 of the
geneviz_management_api.py file:

CORS(app , r e s o u r c e s={r ”/ ∗ ”: {” o r i g i n s ”: [
”http :// l o c a l h o s t : 3000”

]}})

64 APPENDIX B. INSTALLATION GUIDELINES

B.3 Setting up Ganache

To set up Ganache on the local machine, it can simply be installed through the Website:

https : // t ru f f l e f r amework . com/ganache

By clicking ”Quickstart” after the launch of the application, a local Ethereum Blockchain
is created, which can then be used for testing purposes. The respective port of Ganache
can be adjusted and is seen in the application window at the top menu bar. If the
Ethereum API of the GENEVIZ Prototype can’t reach Ganache, the port maybe needs
to be changed in the source code of the ethereum_api.py file.

Appendix C

Contents of the CD

• GENEVIZ Prototype (Source Code)

• LaTeX Source Code of the Bachelor Thesis Document

• Bachelor Thesis Document (.pdf)

• Intermediate Presentation (.pdf)

• End Presentation (.pdf)

• Abstract German (.txt)

• Abstract English (.txt)

65

