
Pricing Catastrophe Bonds Using Extreme Value Theory

Master’s Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of
Arts in Economics and Business Administration

Author

Alberto Residori

Hinterbergstrasse 67, CH-8044 Zürich
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Executive Summary

Catastrophe (CAT) bonds are financial contracts whose value is primarily driven by insurance-linked

variables. Roughly speaking, the payoff of a CAT bond is contingent on an underlying index not

exceeding a given threshold, known as the attachment point. Should this threshold be exceeded,

the CAT bond investor loses the notional amount fully or partially and the CAT bond is said to

be triggered. The index movements are typically driven by the occurrence and economic impact of

natural disasters. The events on which CAT bonds are based can be classified as low frequency and

high severity; for this reason, they can be analyzed and predicted in a statistically optimal manner

using Extreme Value Theory (EVT).

Objective

The aim of this thesis project is two-fold: first, to develop a formal arbitrage-free pricing model for

CAT bonds; second, to numerically apply said model in order to evaluate an actual CAT bond deal

based on insured losses from floods occurring within the United States. This thesis contributes to

the scarce research on CAT bond pricing and proposes an innovative pricing approach that captures

extreme events and their impact on the the CAT bond cash value.

Methodology

In order to price CAT bonds as contingent claims, it is key to understand the functioning of such

contracts. Hence, one chapter of this thesis is devoted to thoroughly investigating the structure of

a CAT bond transaction. The CAT bond contract is then translated into mathematical terms so

as to develop an analytical solution for the CAT bond price in the form of an expectation of future

contingent cash flows. Given the final valuation formula, the price can be numerically approximated

using Monte Carlo methods. The Monte Carlo algorithm works roughly as follows: The occurrence

and size (in terms of insured losses) of flooding events are assumed to be driven by a generalized

extreme value (GEV) distribution whose parameters can be estimated via a standard maximum like-

lihood (MLE) optimization or, subject to conditions, via the Hill (1975) approach. More specifically,

statistical inference on the GEV model is drawn from a sequence of annual maximum insured losses
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from floods reported by Munich Re. After obtaining a fitted GEV distribution, from which ran-

dom numbers can be generated along with their impact on the CAT bond value, the price is finally

determined by averaging across all simulated outcomes.

Results

The pricing model successfully creates a final expression for the CAT bond price as the sum of

discounted expectations under the risk-neutral measure, which is consistent with the no-arbitrage

assumption. The numerical study starts with an EVT statistical analysis, from which it is found

that the Hill estimator outperforms MLE owing to lower variance and greater accuracy in terms

of in sample forecasting. Thus, the first estimation approach is chosen over the second. The CAT

bond that is being evaluated consists of two tranches that, apart from the difference in the attach-

ment point, are equivalent to each other. As expected, it is found that the tranche bearing a higher

threshold is more valuable than the other, in that it is safer, i.e. less likely to be triggered. Fur-

thermore, the numerical study produces a set of risk metrics, demonstrating how the first tranche is

safer than the second.
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Introduction: Research and Motivation

Since the first successful catastrophe (CAT) bond issuance in 1994 by the reinsurance group Hannover

Re (Cummins and Weiss, 2009), these instruments have drawn the attention of scholars in the field of

finance and insurance. Aside from several empirical studies, a few scholars have developed valuation

frameworks for CAT bonds. Within the existing research on CAT bond pricing there is a lack

of consensus. Although most of the research contributions agree with each other on some key

probabilistic assumptions, the pricing models diverge significantly. This is especially noticeable in

the payoff structure and in the modeled dynamics of the underlying random variables, owing to the

fact that CAT bonds are very heterogeneous instruments. To address this issue, this thesis is aimed

at developing a general pricing framework that can be applied to as many different types of CAT

bonds as possible. A set of assumptions then restricts the model so as to numerically evaluate a

specific CAT bond transaction. In particular, it is assumed that the main underlying random variable

follows a distribution based on Extreme Value Theory (EVT).

The thesis is structured as follows: Chapter 1 provides background information on Insurance-

Linked Securities (ILS), a broader category of financial instruments to which CAT bonds belong, as

well as a short qualitative assessment of ILS from both sponsors’ and investors’ perspectives. In order

to study in detail the pricing dynamics of a CAT bond, it is key to understand its functioning. Hence,

Chapter 2 is devoted to thoroughly investigating the features of a CAT bond contract. Chapter 3

moves on to the pricing model, where the information from the previous chapter is translated into

formal mathematics so as to develop a final pricing formula. Furthermore, Chapter 3 discusses the

relevant literature on the subject and compares the pricing approach employed in this study against

those proposed by rest of the literature. The numerical application of the pricing model requires

information about the distribution of the underlying random variables. Thus, Chapter 4 introduces

Extreme Value Theory and how statistical inference can be drawn from actual data, identified as

extremes. Finally, Chapter 5 combines the pricing model and the statistical framework to evaluate

an actual CAT bond deal based on insured losses from flooding events.
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Chapter 1
Overview of Insurance Securitization

The National Association of Insurance Commissioners defines Insurance-Linked Securities (ILS) as

securities whose performance is linked to the possible occurrence of pre-specified insurance risks.

Such risks include the occurrence and impact of natural and man-made disasters as well as life-

insurance variables such as longevity. Consequently, ILS are different from traditional equity and

debt securities issued by insurers, in that they offer a pure play in the underlying risk types (Am-

mar et al., 2015). From the supply side, ILS are typically sponsored by insurers and/or reinsurers

(hereafter (re)insurers), including governmental insurance programs. However, a sponsor can be

any party being interested in alternative risk transfer. A prominent example is the international

football association, FIFA, that sponsored a CAT bond to cover losses resulting from terror attacks

and/or natural catastrophes with reference to the 2006 World Cup held in Germany (Kunreuther

and Michel-Kerjan, 2009). CAT bonds are the most prominent example of ILS and cover the prop-

erty and casualty segment. Other examples of ILS include industry loss warranties and, within the

life and health segment, longevity bonds (see e.g. Ammar et al., 2015). As of 2018, the investor

base for ILS is dominated by dedicated catastrophe funds providing 59% of capital (Aon Securities,

2018). Other categories of capacity providers include mutual and hedge funds as well as (re)insurers

themselves (Aon Securities, 2018). Private investors are able to participate in the secondary ILS

market by acquiring shares of dedicated ILS funds. The subsequent sections discuss the motivation

to participate in the ILS market from both the sponsor’s and the investor’s perspective.

2



1.1. SPONSOR’S PERSPECTIVE 3

1.1 Sponsor’s Perspective

The traditional way of transferring risk off balance sheet among (re)insurers is by means of reinsur-

ance contracts1. This section briefly explains the motivation for (re)insurers to instead sponsor ILS,

a form of alternative risk transfer, and under what circumstances it is preferable over traditional

reinsurance.

1.1.1 Credit Risk

ILS are typically fully collateralized instruments. This makes them attractive when compared to

traditional reinsurance, wherein the (in)solvency of the reinsuring party is a source of risk. The

collateral account is typically managed by a third party, known as special purpose vehicle (SPV).

The main advantage of this practice is that the solvency of the SPV is largely uncorrelated with

insurance risks.

1.1.2 Pricing

ILS have favorable pricing as compared to reinsurance, although that depends largely on the business

cycle. Indeed, after an extreme event, such as a named hurricane, reinsurance pricing tends to

increase, giving rise to a ”hard” market over an extended period of time (Swiss Re, 2011). During

hard markets, insurers have an incentive to seek alternative sources of risk financing and, since CAT

bonds are traded daily in the secondary market, risk pricing is more flexible and responds faster to

market conditions than traditional reinsurance. Furthermore, once a (re)insurer sponsors an ILS at

a favorable pricing, it can take advantage of the coverage over a multiyear period. On the other

hand, reinsurance contracts are typically renewed yearly under new terms (Swiss Re, 2011).

1.1.3 Capital

Similar to reinsurance, sponsoring ILS allows a (re)insurer to decrease its minimum capital require-

ments, thereby boosting the return on equity and/or allowing the relaxation of regulatory as well as

1 Here ”reinsurance” refers to both reinsurance contracts for insurers and retrocession contracts for reinsurers.

Pricing Catastrophe Bonds Using Extreme Value Theory



1.2. INVESTOR’S PERSPECTIVE 4

internal underwriting constraints. The capital relief is even greater for ILS that cover multiple perils

(Swiss Re, 2011).

1.1.4 Capacity

Securitization not only benefits (re)insurers individually but also the industry as a whole. Indeed,

capital markets have a much greater capacity of bearing risk than the (re)insurance industry. It is

estimated that, in 2005, the hurricanes Katrina, Rita, and Wilma and other events combined caused

insured losses of $114 billion. This amount, while large relative to the total equity capital of global

(re)insurers combined, represents less than 0.5% of the value of the US stock and bond markets alone

(Cummins and Weiss, 2009, p. 494).

1.2 Investor’s Perspective

This section outlines the role of ILS as an alternative asset class and what makes them attractive to

the investor in terms of performance and diversification benefits.

1.2.1 Diversification

It is generally accepted that the ILS market provides investors with an attractive risk-return profile

while maintaining its diversification benefits. Cummins and Weiss (2009) studied this phenomenon

in detail and concluded that ILS are barely correlated to other asset classes under normal economic

conditions. The same authors, however, concluded that ILS are significantly correlated with equities

and corporate bonds under financial crisis scenarios and, therefore, subject to systemic risk, like all

other asset classes. Table 1.1, taken from Lombard Odier (2017), illustrates the cross-asset correlation

between ILS and other main asset classes.

Pricing Catastrophe Bonds Using Extreme Value Theory



1.2. INVESTOR’S PERSPECTIVE 5

Table 1.1 – Correlation matrix between ILS: Swiss Re CAT Bond Index, Equities: MSCI World Total
Return Index , Bonds: Citigroup World Government Bond Total Return Index, Commodities: SP GSCI
Total Return Index. Observation period: January 1, 2002 to March 31, 2017. Source: Lombard Odier
(2017)

ILS Equities Bonds Commodities

ILS 1

Equities 0.18 1

Bonds 0.12 0.16 1

Commodities 0.11 0.40 0.18 1

1.2.2 Low Credit and Market Risk

Aside from the low systematic risk, ILS are structured so as to be largely immune to other typical

financial risks. ILS typically pay a fixed spread plus a floating component based on a certain ref-

erence rate. This minimizes the interest rate risk. Moreover, ILS are typically fully collateralized

instruments and are structured so that the solvency of the sponsoring party does not impact the

repayment of the contractual obligations2. Adding that to high collateral standards, credit risk is

largely eliminated. In summary, ILS are designed to bear insurance risk only; in other words, they

offer a pure-play in the underlying insurance-linked variables.

1.2.3 Investment Performance

ILS are not only attractive as a diversification tool but they also perform relatively well as a stand

alone asset class. Indeed, several empirical studies demonstrate that ILS consistently outperform

other traditional asset classes. Table 1.2, taken from Lombard Odier (2017), reports a short per-

formance summary of ILS along with other main asset classes.

2 More details will follow in the next chapter

Pricing Catastrophe Bonds Using Extreme Value Theory



1.3. CHAPTER SUMMARY 6

Table 1.2 – Performance summary of ILS: Swiss Re CAT Bond Index, Equities: MSCI World Total
Return Index , Bonds: Citigroup World Government Bond Total Return Index, Commodities: SP GSCI
Total Return Index. Observation period: January 1, 2002 to March 31, 2017. Source: Lombard Odier
(2017)

Asset class Annualized return Annualized volatility Sharpe ratio

ILS 8.00% 2.70% 2.23

Equities 6.20% 15.20% 0.36

Bonds 4.80% 6.90% 0.48

Commodities -1.30% 23.30% N/A

According to the above table, ILS dominate the other asset classes, as they outperform their

counterparts in every item.

1.3 Chapter Summary

Insurance-Linked Securities are an attractive means of alternative risk transfer for sponsors and offer

an outstanding performance to institutional investors, characterized by a favorable risk-return profile

as well as low correlation to other asset classes. Table 1.3 summarizes the motivation to invest in,

resp. sponsor, Insurance-Linked Securities discussed in this chapter.

Table 1.3 – Motivation to invest in, resp. sponsor, Insurance-Linked Securities. Source: personal research

Motivation to invest in Motivation to sponsor

Low correlation with other asset classes Risk bearing capacity

Performance Favorable pricing

Low credit and interest rate risk Multiyear coverage
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Chapter 2
Structure of a CAT Bond Transaction

In order to develop a pricing model for CAT bonds, it is key to understand the functioning of such

instruments. Hence, this chapter is devoted to thoroughly investigating how a CAT bond deal is

structured. In particular, the next sections examine the conditions under which investors lose their

capital and how the sponsor is compensated in case a triggering event occurs.

2.1 CAT Bond Contract

A CAT bond contract involves three main parties: the sponsor, the investor, and a special pur-

pose vehicle (SPV). The SPV plays three important roles. First, it issues the CAT bond to the

investor and allocates the proceeds from the sale to a collateral account. Second, it collects the

fixed spread payments from the sponsor and the floating-rate payment generated from the collateral

fund. Floating-rate payments are based on a benchmark interest rate, such as the London Interbank

Offered Rate (LIBOR). Lastly, the SPV pays to the investor periodic coupons, which consist of the

two components mentioned above, as well as the full principal at maturity in case no qualifying

triggering event occurs. A CAT bond is said to be triggered if a qualifying event causing an index

value to exceed a predefined attachment point occurs before or at maturity. The occurrence of a

single or multiple qualifying events is a necessary but not sufficient condition for the CAT bond to

be triggered. Reasons for this include but are not limited to the following:

7
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1. It is possible that a qualifying event occurs no later than the maturity date, but the resulting

index value does not reach the threshold.

2. The CAT bond can only be triggered by a single event; hence, multiple index values below the

threshold cannot trigger the CAT bond even if they exceed the threshold when combined3.

3. A single qualifying event that causes an index value above the attachment point may only

occur after maturity.

To objectively determine how an event qualifies and how its occurrence may trigger the CAT bond,

the contract must specify the following information (Braun, 2012):

1. Reference peril(s). Can be natural catastrophe (e.g. earthquakes, typhoons, hurricanes, floods

and so on), or man-made disasters (e.g. terror and cyber attacks)

2. Geographical region(s) potentially affected by the reference peril(s).

3. Trigger type (indemnity, industry loss or pure parametric), a measure for the index value

associated with the qualifying event.

In case the CAT bond is triggered, the sponsor ceases to make spread payments, and the SPV

liquidates the principal. The proceeds from the sale are split between the investor and the sponsor.

The residual principal paid to the sponsor increases proportionally with the difference between the

index value and the attachment point4. Once the index value reaches the exhaustion point, a second

pre-specified threshold greater than the attachment point, the investor loses the entire principal,

as the full amount is transferred to the sponsor. However, the investor cannot lose more than the

notional amount, even if the index exceeds the exhaustion point. The diagram in figure 2.1 represents

a CAT bond issued at par, i.e. the face value is equal to the price paid by the investor.

3 A CAT bond can be structured to provide cover for a single event (per occurrence cover) or to provide aggregate
cover for multiple events (Artemis, nd). In this framework, however, only per occurrence covers have been
considered.

4 Both binary and proportional payoffs are possible, although the latter is mostly the case (Cummins and Weiss,
2009, p. 523). In this framework, the CAT bond bears a proportional payoff with respect to the principal, while
coupon payments follow a binary structure.
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Sponsor SPV Investor

Collateral
Fund

(Periodic) LIBOR + Spread

(Residual) Principal

Principal

Principal Principal +(Periodic) LIBOR

(Residual) Principal

(Periodic) Spread

- - - Contingent

—– Non Contingent

Figure 2.1 – Structure of a par value CAT bond. Source: Braun (2016)

2.2 Choice of Trigger Type

With reference to the previous section, the trigger type is extremely relevant in order to objectively

determine how a qualifying event may trigger a CAT bond and what fraction of the notional amount

is transferred to the sponsor. Hence, the choice of trigger type must be contractually specified. This

section discusses the most common options.

2.2.1 Indemnity

Indemnity-based contracts dominate the CAT bond market with a primary issuance volume in the

first quarter of 2018 (Q1-2018) of $4.649 billion (Swiss Re, 2018). Indemnity triggers are based on

the individual losses reported by the sponsor as a result of a qualifying event.

2.2.2 Industry Loss

CAT bonds based on an industry loss trigger account for a primary issuance volume of $1.3 billion

as per Q1-2018 (Swiss Re, 2018). Industry loss triggers are based on insured losses that result from

a qualifying event. In other words, the industry loss index reports how much the entire (re)insurance

industry lost as a result of a particular event. The overall industry losses are never known with
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certainty. Estimates are produced by third party agencies collecting claim reports from as many

worldwide (re)insurers as possible. Thus, in case of an industry loss trigger, the CAT bond contract

must additionally specify the third party agency reporting the loss estimate. The most widely

accepted service providers are Property Claim Services from Verisk Analytics and PERILS.

2.2.3 Pure Parametric

During Q1-2018, CAT bonds with a pure parametric trigger were issued for a total volume of $1.36

billion (Swiss Re, 2018). Pure parametric are popular among investors, as they offer the highest

degree of transparency. They are based on the physical parameters recorded following a natural

catastrophe (such as wind speed, earthquake magnitude, and so on). Unlike individual or industry

losses, data on physical parameters are publicly available, allowing for the transparency.

2.3 Risk Sources

Aside from the obvious insurance-linked risk CAT bonds are subject to, this section discusses other

sources of risk from the perspective of both sponsors and investors.

2.3.1 Basis Risk

In the context of ILS, basis risk refers to the discrepancy between the actual losses incurred by the

sponsor and the recovery provided by the CAT bond following a qualifying event. In other words,

basis risk arises from the possibility that the compensation received according to the contractual

terms of the CAT bond may not suffice to cover the actual losses incurred by the sponsor. Indemnity-

based CAT bonds minimize basis risk, whereas pure parametric maximize such risk. A sponsor would

agree on an industry loss trigger only under the expectation that its individual losses are positively

correlated to those of the overall (re)insurance industry (Lee and Yu, 2002).

Pricing Catastrophe Bonds Using Extreme Value Theory
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2.3.2 Moral Hazard

Moral hazard occurs when a party increases its risk exposure, under the assurance that another

party bears a part or the full cost of such a risk. In the context of CAT bonds, moral hazard

opportunities arise when the sponsor’s cost of loss control efforts exceeds the benefits from debt

forgiveness (Lee and Yu, 2002). That is, the sponsor as a (re)insurer has an incentive to relax its

underwriting constraints and gain a higher risk exposure, given the protection provided by the CAT

bond contract. Indemnity-based triggers therefore maximize the moral hazard occurrence, given that

the size of the catastrophic event is self-reported by the sponsor. Industry loss triggers minimize the

risk of moral hazard at the individual level. However, opportunities still persist, in that the insurance

claims are self-reported by the industry (Braun, 2012). However, sponsors, whether individually or

as a group, have no influence over the reporting of physical parameters of the natural catastrophes;

hence, pure parametric triggers eliminate moral hazard opportunities.

2.3.3 Credit Risk

Credit risk refers to the possibility that the CAT bond’s counter-parties might default on their

contractual obligations, adversely affecting the principal redemption by the investor. CAT bonds

are structured so that the (in)solvency of the sponsor does not impact the principal redemption by

the investor. Nevertheless, sources of credit risk may arise from weaknesses in the structure of the

collateral account. During the financial crisis, four CAT bonds defaulted as a result of a pure credit

event, namely the bankruptcy of Lehman Brothers (Towers Watson, 2010). The investment bank

acted as a total return swap counter-party to the collateral fund, and its bankruptcy caused the

downgrading and the technical default of the four CAT bonds. After the financial crisis, however,

improvements were made to collateral standards, including the abandoning of the total return swap

structure, which decreased credit risk in CAT bonds even further (Towers Watson, 2010). For this

reason, CAT bonds can be assumed to be default-free securities, which is in line with most of the

existing literature.
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2.4 Sample CAT Bond Transaction

Table 2.1 provides a sample CAT bond transaction. Note that key information (attachment and

exhaustion point) is missing. Nevertheless, the following table is useful in complementing the in-

formation presented earlier in this chapter.

Table 2.1 – Sample CAT bond transaction. Source: Swiss Re (2016)

First Coast Re Ltd. 2016-1 A

Sponsor Security First Insurance Company

SPV First Coast Re Ltd.

Issuance date June 1, 2016

Maturity date May 31, 2019

Territory/Peril Florida/storm or sever thunderstorm

Trigger Type Indemnity, per occurrence

Notional USD 75 million

2.5 Chapter Summary

A CAT bond contract must specify the following key information:

1. Maturity

2. Spread and coupon structure (e.g. annual)

3. Reference floating interest rate (e.g. LIBOR)

4. Reference territory (single or multiple) and peril (single or multiple)

5. Trigger type (single or combination of multiple)

6. Attachment point

Pricing Catastrophe Bonds Using Extreme Value Theory
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7. Exhaustion point

CAT bonds are very heterogeneous instruments in that they vary greatly in their structure based on

the items listed above. However, one common feature of all CAT bond transactions is that they are

structured in a manner that the (in)solvency of the sponsoring party does not impact the repayment

of the principal, thereby minimizing counter-party credit risk. One of the most relevant decision

criteria when structuring a CAT bond deal is the choice of trigger type. This represents a trade-off

between transparency (from the investor’s perspective the higher the better) and basis risk (the lower

the better from the sponsor’s perspective).
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Chapter 3
Pricing Model

Catastrophe (CAT) bonds can be thought of as contingent claims, in that their payoff is contingent

on an underlying natural catastrophe process not exceeding a given threshold. Unlike traditional

derivative contracts, CAT bonds are priced in an incomplete market framework, that is, the un-

derlying triggering process is not linked to a tradable financial asset. Hence, it is not possible to

construct a portfolio of assets that replicates the CAT bond payoff. The next section discusses the

existing research on the pricing of such instruments and how the previous contributions addressed

the problem of incomplete markets. Furthermore, the next section compares the approach adopted

in this thesis to those proposed by the existing literature. This chapter then moves on to the pricing

model and the related assumptions.

3.1 Literature Review

The existing literature on CAT bonds pricing model is divided in two approaches, namely econometric

and contingent claim. Econometric approaches base their pricing model on a large sample of data of

actual CAT bond transactions and determine the CAT bond spread as a linear function of several

other variables by means of an ordinary least square regression. One of the explanatory variables

of interest is the CAT bond reported expected loss, which is found to be statistically significant by

several studies (see e.g. Bodoff and Gan, 2009; Braun, 2016).

14
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In contrast to econometric models, contingent claim approaches are more focused on the CAT

bond price rather than the spread, which is typically given as a constant. Contingent claim pricing

models typically consist of first developing a formal mathematical model for the CAT bond price and

then applying the model numerically by means of Monte Carlo simulations, given that often there is

no closed-form solution for the price.

Cox and Pedersen (2000) propose a discrete arbitrage-free pricing model. In this model, there

are two types of random variables, those depending only on natural catastrophes and those depending

only on financial markets. Under the historical probability measure, the two types of variables are

assumed to be independent of each other. The two authors then show that when switching from

the historical to the risk-neutral probability measure the two types of variables retain independence.

Furthermore, they show that the expectation of a variable that depends only on catastrophic risk is

the same under the historical and risk-neutral measure. Another important conclusion of the work

by Cox and Pedersen (2000) is that imposing no-arbitrage in incomplete markets would only restrict

the price of a CAT bond to a range of possible arbitrage-free values. Indeed, market incompleteness

implies that the risk-neutral measure is not unique and hence the price is not uniquely defined.

Most of the subsequent literature extends the probabilistic framework by Cox and Pedersen (2000)

to a continuous5 setting and retains the no-arbitrage framework, with the exception of Zimbidis et al.

(2007) as well as the independence assumption, with the exception of Nowak and Romaniuk (2018).

Lee and Yu (2002, 2007) develop a model in which CAT bonds are directly issued by the

sponsor. It follows that CAT bonds are subject to credit risk, as the solvency of the issuing party

directly impacts the CAT bond payoff. Default risk is investigated via the asset and liability dynam-

ics. Additional sources of risk are represented by the interest rate, which is driven by the CIR (Cox,

Ingersoll, and Ross, 1985) model, a mean reverting process, which includes a Brownian component.

The underlying catastrophe index (industry loss) follows a compound Poisson process.

Vaugirard (2003a,b) models the dynamics of the underlying index via a Merton (1976) jump-

diffusion process. This process includes a Brownian component representing ordinary index move-

ments and a Poissonian part representing large discontinuous movements; these are known as jumps.

5 The Cox and Pedersen (2000) framework is both time and space-discrete, in that there is a finite number of states
in the economy.
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Catastrophic events are seen as jumps in the underlying index and are assumed to be unsystematic,

i.e. fully diversifiable. It follows that investors are neutral towards catastrophic risk. Furthermore,

it is assumed that ordinary index movements can be replicated by existing securities. Based on these

two assumptions, Vaugirard (2003a,b) shows the existence of a well-defined arbitrage-free price, in

stark contrast to the solution proposed by Cox and Pedersen (2000).

The actuarial approach by Zimbidis, Frangos, and Pantelous (2007) distinguishes itself

from the rest of the literature in that it is entirely based on the historical probability measure.

Furthermore, the underlying index process (earthquake magnitude) is a sequence of independent

and identically distributed (iid) random variables whose distribution is based on Extreme Value

Theory.

In contrast to other models which are solved via numerical approximations, the valuation formula

proposed by Jarrow (2010) admits a closed-form solution for the price. This approach is based

on reduced form models used to price credit derivatives and is consistent with the no-arbitrage

framework.

Nowak and Romaniuk (2013) extend the approach employed by Vaugirard (2003a) to a more

general pricing framework, where the interest rate dynamics are modeled as a Vasicek (1977), Hull

and White (1990) and CIR process.

Recently, Nowak and Romaniuk (2018) have relaxed the independence assumption by intro-

ducing a non-zero correlation factor between two Brownian motions—one belonging to the interest

rate CIR dynamics and the other belonging to the jump-diffusion process for the underlying index.

This thesis distinguishes itself from most of the existing literature, in that the index dynamics

are represented by a sequence of iid random variables with a common distribution function based on

Extreme Value Theory. Unlike most of the literature, the triggering process is based on single events

rather than the sum of consecutive events. This application of EVT has several advantages over

the traditional compound Poisson process when modeling catastrophic events. First of all, under

certain conditions, the arrival of catastrophic events is deterministic and only the size of such events

is random. Indeed, under the block maxima method, extremal events are expected to occur at a

fixed frequency. Furthermore, EVT allows to easily determine relevant statistics via a closed-form
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solution. Examples of this include but are not limited to the following:

1. Probability of the underlying index exceeding a given threshold (e.g. the CAT bond attachment

point) within a given period (e.g. the CAT bond maturity)

2. Expected period needed to observe an index value exceeding a given threshold (return period)

3. Expected threshold to be exceeded within a given period (return level)

Further, this thesis assumes that the risk-free interest rate is constant for discounting purposes. On

the other hand, the LIBOR rates, which directly impact coupon payments, are assumed to be driven

by a geometric Brownian motion, as seen in Zimbidis et al. (2007) and Romaniuk (2003). This

thesis is loosely based the approach used by Zimbidis et al. (2007). However, there is a substantial

difference between the two. Unlike the reference paper, this thesis adopts the no-arbitrage approach

when pricing CAT bonds; thus, the expected value of the CAT bond payoff is determined under

the risk-neutral measure. This divergence is especially noticeable in that the approach employed in

this thesis determines the CAT bond expected return as the risk-free rate, whereas the approach by

Zimbidis et al. (2007) attaches a risk premium to the discount rate.

3.2 Contingent Claim Pricing Model

This section develops a formal arbitrage-free pricing model for the CAT bonds, which is loosely

based on previous contributions. In particular, the probabilistic framework follows roughly that of

Cox and Pedersen (2000), while the underlying index and interest rate dynamics are similar to those

in Zimbidis et al. (2007).

3.2.1 Probabilistic Structure

In this framework, there are two types of random variables. The natural catastrophe, or insurance,

variables are governed by the probability space:

(Ω1,F1,P1)
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where the three entries denote the state space, the natural filtration, and the historical probability

measure respectively. Similarly, financial market variables are governed by the triple:

(Ω2,F2,Q2)

Unlike P1, Q2 is a risk-neutral pricing measure. Later in this chapter, the relationship between

historical and risk-neutral probabilities is thoroughly discussed in subsection 3.3.3. The probability

space of the full model is denoted by the triple given below:

(Ω,F ,Q)

Under Q natural catastrophe and financial market variables are assumed to be independent. This

assumption is consistent with most of the existing literature on CAT bond pricing and can be

formalized following Cox and Pedersen (2000). A generic element (state) of the sample space Ω =

Ω1 × Ω2 takes the following form:

ω = (ω1, ω2) ω1 ∈ Ω1 ω2 ∈ Ω2

The probability of a generic state ω occurring is assumed to be given by the following product

structure:

Q(ω) = P1(ω1)Q2(ω2)

The above identity implies that the realization of state ω1 is independent of the realization of state

ω2. In other words, the above identity formally implies the independence between catastrophic and

financial risks.

3.2.2 Zero-Coupon CAT Bond

The pricing of the zero-coupon CAT bond only depends on the insurance variables governed by

the probability space (Ω1,F1,P1). A zero-coupon CAT bond pays its holder the face value FV at

maturity T contingent on the index process (It)t≥0, a stochastic process under P1, not exceeding
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the attachment point K before or at maturity date. Otherwise, if the CAT bond is triggered, the

investor redeems only a fraction of the principal. The CAT bond payoff can be expressed as the sum

of two contingent and mutually exclusive payments:

CT + Cτ (3.1)

where the first component CT is the contingent payoff at maturity and is defined as follows:

CT = FV 1τ>T (3.2)

The stopping time τ of the process (It)t≥0 is a random variable τ : Ω1 −→ [0,∞), formally determined

in (3.3).

τ = inf{t ∈ [0,∞) : It ≥ K} (3.3)

In other words, τ is the first date at which the index reaches the threshold K, which may occur

before, at, or after maturity. If and only if τ > T , the CAT bond is not triggered. This statement is

expressed by means of the indicator function 1τ>T : Ω1 −→ {0, 1}, which is determined as follows:

1τ>T =


1, if τ > T

0, if τ ≤ T
= 1− 1τ≤T (3.4)

The principal redemption at its full nominal value is conditional on the triggering event occurring

later than maturity. However, given that the CAT bond can be triggered at any time before or at

maturity, it is necessary to account for the scenario under which τ ≤ T . The payoff of the zero-coupon

CAT bond liquidated before maturity is determined as follows:

Cτ = (1− pτ )FV 1τ≤T (3.5)

where the payout ratio pτ to the sponsor is a random variable pτ : Ω1 −→ [0, 1] whose value is

determined as follows:
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pτ =


0, if τ > T

Iτ−K
U−K , if τ ≤ T ∧ K ≤ Iτ ≤ U

1, if τ ≤ T ∧ Iτ > U

(3.6)

where the exhaustion point U > K is a contractually specified threshold. Note that in the limiting

case in which U = K, the principal redemption reduces to a binary payoff structure. Finally, the

price of the zero-coupon CAT bond C0 is given in (3.7) as the present value of the expected payoff

under the two mutually exclusive scenarios described in equations (3.2) and (3.5).

C0 = B(T, r)EP1 [CT ] + EP1 [B(τ, r)Cτ ] (3.7)

Here, EP1 denotes the expected value under P1. The continuous time discount factor B(t, r) is based

on a constant risk-free interest rate r and is given by (3.8). Note that r should not be confused with

the LIBOR rate Rt, a random variable defined in the next subsection.

B(t, r) = e−rt (3.8)

3.2.3 Introducing Coupons

The payoff of a coupon paying CAT bond is determined by both the LIBOR and the natural cata-

strophe process. Hence, the pricing dynamics are governed by the probability space for the full model

(Ω,F ,Q). In particular, the LIBOR evolution is represented by the stochastic process (Rt)t≥0 under

Q2. A coupon CAT bond pays a stream of contingent cash flows up until the maturity date T . The

coupon payment dates are represented by the series n = (1, 2, ..., N). From date n = 1 to n = N − 1,

the investor receives either the coupon payment, which is conditional on the CAT bond not being

triggered, or the residual principal, in case the CAT bond is triggered. At maturity N , the principal

is repaid at its full nominal value along with the last coupon payment, conditional on the bond not

being triggered before or at maturity. While the underlying triggering event can occur continuously

at any point in time, the repayment of the residual principal only takes place at the next coupon
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date, i.e., if τ ∈ (n− 1, n], the residual principal is paid at date n. The principal redemption Cn in

(3.9) is determined analogously as in equation (3.5):

Cn =


(1− pτ )FV 1τ∈(n−1,n], if n < N

(1− pτ )FV 1τ∈(N−1,N ] + FV 1τ>N , if n = N

(3.9)

where pτ is determined as in the previous section, except that N replaces T . The coupon at date

n is composed of the (random) LIBOR-based interest payment RnFV , i.e. the n realization of the

LIBOR process (Rt)t≥0 scaled by the notional amount FV , and the fixed spread payment S collected

from the sponsor. The contingent coupon cash flow is determined as follows:

fn(Rn, τ) = (RnFV + S)1τ>n (3.10)

The full cash flow is expressed in (3.11) as the sum of coupon and principal redemption. Note that,

for n < N , the two components are mutually exclusive.

fn(Rn, τ) + Cn (3.11)

The price of the CAT bond is finalized as the sum of the present values of the expected cash flows.

The expected value is determined under the probability measure for the full model Q.

C0 =

N∑
n=1

B(n, r)EQ [fn(Rn, τ) + Cn] (3.12)

The expectation in (3.12) can be linearly decomposed as follows:

EQ [fn(Rn, τ) + Cn]

= EQ [fn(Rn, τ)] + EQ [Cn]

= EQ [(RnFV + S)1τ>n] + EQ [Cn]

(3.13)

As established earlier in this chapter, the random variable Cn is governed by the probability space

(Ω1,F1,P1) only; it follows that EQ [Cn] can be replaced by EP1 [Cn]. On the other hand, note that
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the expression (RnFV + S)1τ>n is governed by the probability space for the full model (Ω,F ,Q).

Under Q the indicator variable is assumed to be independent from the LIBOR rate. Moreover, the

quantities FV and S are constants. Based on these remarks, the final expression in (3.13) can be

further solved as follows:

EQ [(RnFV + S)1τ>n] + EQ [Cn]

= EQ2
[RnFV + S]EP1 [1τ>n] + EP1 [Cn]

= EQ2
[RnFV + S]P1(τ > n) + EP1 [Cn]

= FV EQ2
[Rn]P1(τ > n) + S P1(τ > n) + EP1 [Cn]

(3.14)

3.2.4 Monte Carlo Pricing

Assuming the expectation in (3.12) exists, the CAT bond price can be numerically approximated via

Monte Carlo methods, in case there is no closed-form solution for equation (3.12). Indeed, by the

law of large numbers, the higher the number of simulations, the closer the approximation to the true

value, that is:

C0 = lim
s→∞

C
(s)
0 (3.15)

where s denotes the number of simulations and C
(s)
0 is obtained by averaging across all simulated

outcomes, as shown below:

C
(s)
0 =

1

s

s∑
j=1

N∑
n=1

B(n, r)[f (j)
n (R(j)

n , τ (j)) + C(j)
n ] (3.16)

where f
(j)
n (·), R(j)

n , τ (j), and C
(j)
n denote the j-path realizations of fn(·), Rn, τ , and Cn respectively.

3.3 Assumptions

Aside from the independence assumption between financial market and insurance variables defined

earlier in this chapter, the pricing model and the numerical study in Chapter 5 rely on the following

restrictive assumptions.
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3.3.1 Generalized Extreme Value Distribution

Under P1, the random variable It : Ω1 −→ R follows a generalized extreme value (GEV) distribution

defined by the shape parameter ξ, the location parameter µ, and the scale parameter σ:

It ∼ GEV (ξ, µ, σ) (3.17)

The index continuous-time process (It)t≥0, can be then discretized by {Iti , i = 0, 1, 2...}, a sequence

of iid and GEV distributed random variables. A comprehensive statistical framework about the GEV

distribution and Extreme Value Theory is provided in Chapter 4, while a numerical application is

provided in Chapter 5.

3.3.2 Geometric Brownian Motion

Following Romaniuk (2003) and Zimbidis et al. (2007), the LIBOR interest rate process (Rt)t≥0 is

assumed to be driven by a geometric Brownian motion (GBM) under P2, the historical probability

measure for financial market variables, according to the following stochastic differential equation

(SDE):

dRt
Rt

= µRdt+ σRdWt (3.18)

where dRt is the (random) instantaneous increment of Rt, dt is the (deterministic) infinitesimal time

interval, µR and σR are the drift and volatility parameters respectively, and dWt is the (random)

instantaneous increment of Wt, a standard Brownian motion under P2. Equation (3.19) is the well-

known solution to the SDE in (3.18).

Rt = R0 exp

(
(µR − 1

2
(σR)2)t+ σRWt

)
(3.19)

Proof of the solution to the SDE can be found in Shreve (2004, p. 147-148). The above continuous

equation can be approximated using a discrete scheme. Further details are provided in Chapter 5.

Due to its simplicity and popularity, the GBM is chosen to model the stream of LIBOR cash flows.

What makes the GBM attractive is the log-normality of the process, which is given by the Brownian
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component. Other more advanced techniques, such as the CIR and Vasicek processes, retain the

Brownian component and include the property of mean reversion. Nevertheless, a comparison of

different interest rate processes is beyond the scope of this thesis.

3.3.3 No Arbitrage and Risk Neutral Pricing Measure

It is assumed that the market is arbitrage-free and hence there exists a risk-neutral pricing measure.

The LIBOR is a financial market variable and its movements can be replicated by existing securities,

such as interest rate derivatives. The LIBOR evolution is then modeled in a complete market

framework and hence there exists a unique risk-neutral pricing measure Q2 equivalent to P2. The

LIBOR process can be converted from the historical to the risk-neutral probability measure by

applying the Girsanov’s theorem to the geometric Brownian motion in (3.19). According to the

Girsanov’s theorem, if Wt is a standard Brownian motion under P2, then W̃t = Wt + µR−r
σR

is a

standard Brownian motion under Q2. The last identity can be rewritten in differential form as

dW̃t = dWt + µR−r
σR

dt. Proof of these results can be found in Shreve (2004, p. 214-216). The

dynamics of Rt can be then rewritten as follows:

dRt
Rt

= µRdt+ σRdWt

= µRdt+ σR(dW̃t −
µR − r
σR

dt)

= rdt+ σRdW̃t

(3.20)

Hence, under the risk-neutral measure, the drift of the LIBOR return is simply the risk-free rate.

Accordingly, the solution to the SDE becomes as illustrated below:

Rt = R0 exp

(
(r − 1

2
(σR)2)t+ σRW̃t

)
(3.21)

While it is straightforward for financial market variables to switch from the actual to the risk-neutral

measure, the same can not be said about insurance variables. Indeed, the underlying index is not

linked to a tradable financial asset. This means that the market is incomplete, as movements in

the underlying index can not be hedged by means of existing securities. Hence, the risk-neutral
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measure can not be obtained by means of the replicating portfolio and it is not uniquely defined.

Fortunately, however, the fact that natural catastrophes are largely uncorrelated to movements in

financial markets makes the pricing easier than it would have been otherwise (Cox and Pedersen,

2000). Indeed, Lee and Yu (2002) argue that the index dynamics retain their original distributional

characteristics when switching from the actual to the risk-neutral measure. The last statement can

be justified under the Sharpe (1964) Capital Asset Pricing Model. Let Q1 denote the equivalent

martingale measure to P1, and let rc denote the rate of return on the CAT bond. Assuming that Q1

exists, equation (3.22) holds:

EQ1
[rc] = r (3.22)

Let rm denote the return on the market portfolio and βc = Cov(rc,rm)
Var(rm) the CAT bond’s beta. The

expected CAT bond return under the physical measure can be then expressed as follows:

EP1 [rc] = r + βc EP1 [rm − r]

= EQ1
[rc] + βc EP1 [rm − r]

(3.23)

Assuming that βc = 0, the expected CAT bond return is the same under the two different probability

measures:

βc = 0 ⇐⇒ EP1 [rc] = EQ1
[rc] (3.24)

An economic interpretation of (3.24) is that investors are neutral towards catastrophic risk; hence,

the CAT bond expected return is simply the risk-free rate. Several contributions to the existing

literature support this view. Lee and Yu (2002) claim that because catastrophic risk is unsystematic,

the CAT bond expected return should not attach a risk premium. Similar arguments are provided by

Vaugirard (2003a), adding that the overall economy is only marginally influenced by localized natural

catastrophes and that investors are able to diversify away catastrophic risk by merely holding other

usual financial instruments. Both papers base their conclusions on the idea that catastrophic events

can be viewed as large discrete movements in the underlying index, known as jumps. Following the

Merton (1976) model, it can be assumed that jump risk is unsystematic.
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3.3.4 No Credit and Liquidity risk

CAT bonds are structured in a manner that the (in)solvency of the sponsor does not impact the

repayment of the principal to the investor. However, to model these instruments as default-free,

additional assumptions are required with respect to the SPV and the collateral account. It is assumed

that the SPV cannot default on its contractual obligations toward the investor and that the principal

invested in the collateral fund can be withdrawn, on demand, at its full nominal value. Moreover, in

case the CAT bond is issued below par, i.e. the actual price paid by the investor to the SPV is lower

than the face value, it is assumed that the remaining capital is provided by the sponsor, so that the

principal remains fully collateralized.

3.4 Chapter Summary

From the investor’s perspective, CAT bonds can be priced as contingent claims in an incomplete

market framework under the key assumption that the LIBOR rate and the triggering index are

independent random variables. The CAT bond price is the sum of the present values of expected

future cash flows, which consist of coupon payments and principal redemption. The latter only

depends on the triggering index, while coupon payments are sensitive to both the LIBOR rate (linear

payoff) and triggering index (binary payoff). In case there is no closed-form solution to equation

(3.12), the CAT bond price can be numerically approximated via Monte Carlo methods by averaging

across all simulated cash flow streams as in (3.16). Based on the model assumptions, the simulated

triggering index paths can be generated from the GEV distribution, whereas the simulation paths

with respect to the LIBOR rate can be generated from a geometric Brownian motion.
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Chapter 4
Extreme Value Theory

Extreme Value Theory (EVT) is a branch of statistics that deals with the behavior of rare and

extreme events found in the tail of distributions. One of the aims of EVT is to predict values that

lie well beyond the range of observable data. It finds applications in various fields of modern science,

especially hydrology and meteorology. Aside from natural sciences, the statistics of extremes has

drawn the attention of scholars and practitioners in the field of finance and insurance. This chapter

introduces the reader to classical EVT, which addresses the limiting behavior of maxima. Most of

the material covered in this chapter is based on the following textbooks:

1. Embrechts, Klüppelberg, and Mikosch (1997) (hereafter EKM)

2. Coles (2001)

3. McNeil, Frey, and Embrechts (2015, Ch. 5)

The applications of EVT on CAT bond pricing are thoroughly discussed in Chapter 5.

4.1 Identifying Extremes

To identify extreme values, there are two main approaches, namely block maxima method (BMM)

and the peak over threshold (POT). The first method consists of dividing a time series into blocks

of equal size and selecting the highest value of each block. Thus, a new series of block maxima is
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created. The POT approach involves setting a (high) threshold and selecting all values that exceed

this threshold. The distinction between these two approaches is of key importance because not only

do the resulting sets of extreme values differ but they also follow two different classes of distribution

functions. More specifically, block maxima follow a generalized extreme value distribution, whereas

threshold exceedances follow a generalized Pareto. Gilli and Këllezi (2006) argue that the POT

approach uses data more efficiently than BMM. However, the same authors acknowledge the issue of

data scarcity arising from the use of the POT method. Indeed, on the one hand, the threshold should

be as high as possible to satisfy the asymptotic properties; but, on the other hand, a higher threshold

reduces the number of observations (i.e. values exceeding the threshold) available for estimation. For

this reason, in this thesis, the BMM path is chosen over the POT.

4.2 Fisher, Tippett, and Gnedenko Theorem

The Fisher and Tippett (1928) and Gnedenko (1943) convergence type theorem addresses the limiting

distribution of block maxima. In the following theorem Mn denotes the maximum of a sequence of n

independent and identically distributed (iid) random variables X1, ..., Xn. The following theorem is

taken from Embrechts et al. (1999), while an extensive proof can be found in Coles (2001, Ch. 7).

Theorem 4.1. (Fisher and Tippett, 1928; Gnedenko, 1943) Suppose X1, ..., Xn are independent and

identically distributed random variables with distribution function F , and an > 0, bn are constants

for some non-degenerate6 limit distribution G

lim
n→∞

P(
Mn − bn
an

≤ x) = G(x) x ∈ R (4.1)

Then G is one of the following types:

1. Fréchet

Φα(x) =


0, x ≤ 0

exp(−x−α), x > 0

α > 0 (4.2)

6 A non-degenerate distribution is one whose limiting distribution is not concentrated into a single point.
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2. Weibull

Ψα(x) =


exp(−(−x)α), x ≤ 0

1, x > 0

α > 0 (4.3)

3. Gumbel

Λ(x) = exp(− exp(−x)) x ∈ R (4.4)

In other words, theorem 4.1 states that the normalized block maxima Mn−bn
an

converge in distri-

bution to a variable having a distribution within one of the three families listed above as the block

size n increases.

4.2.1 Generalized Extreme Value Distribution

The three distribution functions in theorem 4.1 can be unified in one single function—the general-

ized extreme value (GEV) distribution. The generalized version has a three-parameter specification

(ξ;µ, σ), where the three entries denote the shape, location, and scale parameters respectively. The

GEV cumulative distribution function (DF) is determined as follows:

Hξ;µ,σ(x) =


exp
(
−(1 + ξz)

− 1
ξ

)
, ξ 6= 0

exp(− exp(−z)), ξ = 0

x ∈ R (4.5)

where z = x−µ
σ , σ > 0 and 1 + ξz > 0 . The GEV density (pdf) is obtained by differentiating the

distribution function in (4.5). The resulting pdf is shown below:

hξ;µ,σ(x) =


1
σ (1 + ξz)

− 1
ξ
−1

exp
(
−(1 + ξz)

− 1
ξ

)
, ξ 6= 0

1
σ (exp(−z)) exp(− exp(−z)), ξ = 0

x ∈ R (4.6)

The value of the shape parameter ξ indicates the class of the distribution. Indeed, the general-

ized representation reduces to one of the three classes of DF described in equations (4.2) to (4.4),

depending on the value of ξ. There are three distinct cases:

1. ξ = 1
α > 0 reduces to the Fréchet class (4.2)
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2. ξ = − 1
α < 0 reduces to the Weibull class (4.3)

3. The limiting case in which ξ = 0 reduces to the Gumbel class (4.4), as already noticeable in

equation (4.5)

In practice, neither the true value of the parameters (ξ, µ, σ) nor their estimate (ξ̂, µ̂, σ̂) is known

ex-ante. Hence, the parameters need to be estimated from the available data. For this purpose the

next section illustrate some popular estimation techniques within the EVT framework.

4.3 Inference on the GEV Distribution

This section discusses some of the most widely accepted estimation approaches in the context of

EVT. Maximum likelihood and the Hill estimator are illustrated in detail. Other estimators are also

briefly acknowledged, although a full comparison among different estimation techniques is beyond

the scope of this thesis.

4.3.1 Maximum Likelihood Estimation

The idea behind maximum likelihood estimation (MLE) is to maximize the likelihood function with

the given available data. Intuitively, the likelihood function measures how plausible the parameters

of a distribution are based on the evidence of the available data. MLE is an optimization problem,

which consists of determining the values of a set of parameters that maximize the likelihood function.

More formally, let x ∈ Rm be an m-element vector of observed data, and let θ ∈ Rj be a j-element

vector of the true (but unknown) parameters of a generic probability density function f(x | θ). The

likelihood function of θ given x is defined as follows:

L(θ;x) = f(x | θ) (4.7)

Assuming the elements of x are iid observations, equation (4.7) reduces to the following product

structure:

L(θ;x) =
m∏
i=1

f(xi | θ) (4.8)
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The computations can be further simplified by taking the natural logarithm on both sides of the

above equation. Indeed, by switching from the level to the log specification, equation (4.8) can be

converted from a product to a more convenient summation structure:

logL(θ;x) = log[
m∏
i=1

f(xi | θ)] =
m∑
i=1

log f(xi | θ) (4.9)

Finally, the MLE estimate θ̂ is the value of θ for which the log-likelihood function is maximized.

The last statement can be formalized in the equation (4.10):

θ̂ = argmax
θ
{logL(θ;x)} (4.10)

The application of MLE requires an ex-ante sample of observed values as well as an assumption

about the class of a pdf. In the context of classical EVT, the input data is that obtained by means

of the BMM approach, while the pdf is the one defined in (4.6). The set of true, resp. estimated,

parameters is denoted as θ = (ξ, µ, σ), resp. θ̂ = (ξ̂, µ̂, σ̂). In practice, no reasonable assumptions can

be made about the sign of the shape parameter ξ, ex-ante. For this reason, it is best to apply MLE to

the generalized representation rather than picking one of the three classes (Gilli and Këllezi, 2006).

By combining (4.9) and the density in (4.6), the log-likelihood function of the GEV parameters is

determined as follows:

logL(ξ, µ, σ;x) =


−m log σ − (1 + 1

ξ )
∑m

i=1 log[1 + ξzi]−
∑m

i=1[1 + ξzi]
− 1
ξ , ξ 6= 0

−m log σ −
∑m

i=1 zi −
∑m

i=1 exp(−zi), ξ = 0

x ∈ Rm

(4.11)

where zi = xi−µ
σ , provided that 1+ξzi > 0. Properties of the MLE estimator include consistency (i.e.

limm→∞ θ̂ = θ) and asymptotic normality. In the context of the GEV distribution, a study by Smith

(1985) concluded that when ξ > −1
2 , the MLE estimator retains its usual asymptotic properties.

4.3.2 Hill Estimator

Unlike the multivariate MLE estimator, the Hill (1975) approach only estimates the shape parameter

ξ and its reciprocal α. Before reading the estimation formula in (4.14), it is key to understand under

Pricing Catastrophe Bonds Using Extreme Value Theory



4.3. INFERENCE ON THE GEV DISTRIBUTION 32

which conditions the Hill estimator applies. Hence, this section introduces the maximum domain of

attraction (MDA) conditions before moving on to the Hill estimator and its properties.

Let F̄ (x) denote the right-hand tail of a generic distribution function F (x), i.e., F̄ (x) = 1−F (x).

Consider the standard form of the Fréchet distribution Φα(x) in (4.2) and recall that α > 0. Note

that the Fréchet tail Φ̄α(x) = 1−exp(−x−α) can be approximated by a power function for sufficiently

large x, given that the two functions are asymptotically equivalent:

lim
x→∞

Φ̄α(x)

x−α
= 1 ⇐⇒ Φ̄α(x) ≈ x−α as x→∞ (4.12)

A generalization of the asymptotic behavior of Φ̄α(x) is represented by the following class of functions:

F̄ (x) = x−αL(x) x > 0 α > 0 (4.13)

For some slowly varying7 function L(x). Any distribution function Fα(x), whose tail behavior sat-

isfies (4.13), is said to be in the maximum domain of attraction of the Fréchet distribution (Fα ∈

MDA(Φα)). In other words, MDA(Φα) represents a class of DF whose tail decays according to a

power function. Aside from the Fréchet, the DF in this category include, but are not limited to,

the Pareto, Student-t and log-gamma (McNeil et al., 2015, p. 140). Note that the other two types

of GEV distribution do not belong to the Fréchet MDA, as the Gumbel DF has an exponentially

decaying tail, while the Weibull has a finite right endpoint (see equations (4.4) and (4.3)).

The rate of decay α = 1
ξ is referred to as the tail index and can be estimated via the Hill (1975)

method. Indeed, for any function Fα ∈ MDA(Φα), the Hill estimator for the tail index and the shape

7 A Lebesgue-measurable function L(x) is slowly varying at ∞ if it satisfies:

lim
x→∞

L(cx)

L(x)
= 1 c > 0

A Lebesgue-measurable function h(x) is regularly varying at ∞ if it satisfies:

lim
x→∞

h(cx)

h(x)
= cρ c > 0 ρ ∈ R

Remark: If L(x) is slowly varying, then F̄ (x) = x−αL(x) is regularly varying. For further details, see McNeil
et al. (2015, p. 139).
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parameter is given as follows:

α̂hillk,m =
1

ξ̂hillk,m

=

(
1

k

k∑
i=1

log
x(i)

x(k)

)−1

2 ≤ k ≤ m (4.14)

where {x(i), i = 1, ...,m} is the sequence of the observed block maxima sorted in decreasing order

x(1) ≥ x(2)... ≥ x(m). There are several ways to derive the Hill estimator (see EKM, Ch. 6); the most

straightforward derivation can be found in McNeil et al. (2015, p. 158). EKM demonstrate that the

tail index estimator is consistent, albeit biased, and asymptotically normal:

√
k(α̂hillk,m − α)

d−→ N (b(α), α2) (4.15)

where b(α) denotes the size of the bias and
d−→ denotes convergence in distribution, which is achieved

when the following conditions hold:

1. k = k(m) −→∞ i.e. for a sufficiently large order statistic.

2. k
m −→ 0 as m −→∞ i.e. for k tending at infinity at a slower rate than m.

Similarly, de Haan and Peng (1998) show that the asymptotic distribution for the shape parameter

estimator is as follows:
√
k(ξ̂hillk,m − ξ)

d−→ N (b(ξ), ξ2) (4.16)

The main challenge of the estimation via the Hill method is the choice of the order statistic k,

which represents a trade-off between variance and bias. Indeed, for small level of k, the variance

ξ2

k is too large. On the other hand, large values of k increase the bias of the Hill estimator. It is

generally recommended to select k by identifying a stable region in the Hill plot, which is the set

of points {(k, ξ̂hillk,m), k = 2, ...,m}. However, Hill plots are notoriously volatile, and the search of a

stable region can prove challenging. To address this issue, Resnick and Stărică (1997) propose an

averaging technique to smooth the Hill plot and reduce the variance of the new estimator. This

approach, although simple and obvious, proves effective in reducing the range of the plot and helps

in identifying a stable region to choose k from. A more systematic method of threshold selection is

proposed by Hall (1990) and later refined by Danielsson et al. (2001). This last approach selects the
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level k that minimizes the asymptotic mean squared error (MSE). Given the sample size m and the

auxiliary order statistic kaux,m = 2
√
m, the MSE of the shape parameter estimator is given in (4.17).

MSE(m, k) = E
[
(ξ̂hillk,m − ξ̂hillkaux,m)2|x(1), ..., x(m)

]
(4.17)

The MSE is calculated numerically using bootstrapping replications of the original sample. Finally,

the optimal level k0 is the solution to the following minimization problem:

k0 = argmin
k

MSE(m, k) (4.18)

4.3.3 Other Estimators

Other tail index estimators that apply under the Fréchet MDA conditions include Pickands (1975)

and Dekkers, Einmahl, and De Haan (1989). These two estimators are compared against the Hill

approach by de Haan and Peng (1998), and are found to have similar asymptotic properties. Other

multivariate estimators for the GEV parameters include the Bayesian framework proposed by Coles

(2001, Ch. 9), which requires a specification of a prior multivariate distribution for the set of GEV

parameters without reference to data.
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4.4 Chapter Summary

The statistical framework presented in this chapter determines a distribution of extreme values,

which are defined as block maxima. Assuming that data obtained by means of the BMM approach

are iid and GEV distributed, the distribution parameters can be estimated via maximum likelihood.

Once the estimate of the shape parameter is known, the generalized representation reduces to one of

the three types, which is determined by the Fisher, Tippett, and Gnedenko theorem. Provided that

the Fréchet MDA conditions are satisfied, the shape parameter and the tail index can be obtained

via an alternative method, namely the Hill estimator. One challenge of this approach is the selection

of the optimal order statistic, which represents a typical trade-off between bias and variance. To

address this issue Hall (1990) and Danielsson et al. (2001) propose a solution that minimizes the

asymptotic mean squared error of the estimated shape parameter.
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Chapter 5
Numerical Study

The following case study involves a recently completed CAT bond deal, and it is taken and adapted

from Artemis.bm, a comprehensive provider of news, facts, and figures about CAT bonds as well as

other Insurance-Linked Securities. The purpose of this case study is to determine a fair price of a

CAT bond based on the following elements:

1. The pricing model developed in Chapter 3

2. The statistical framework presented in Chapter 4

3. Initial data from different sources

5.1 CAT Bond Deal

The Federal Emergency Management Agency (FEMA) is a United States government institution

founded on April 1, 1979 via an executive order signed by President Jimmy Carter. Since its founda-

tion, FEMA has coordinated the federal government’s role in preparing for, preventing, mitigating the

effects of, responding to, and recovering from all domestic disasters, whether natural or man-made.

One of the mandates of FEMA is the administration of the National Flood Insurance Program, which

provides affordable insurance to property owners in an attempt to reduce the impact of flooding on

private and public structures. For the first time in its history, FEMA considers reducing the financial

exposure of its flood insurance program by entering the CAT bond market. For this purpose, FEMA
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Table 5.1 – CAT bond deal summary. Source: Artemis (2018)

FloodSmart Re Ltd. (Series 2018-1)

Tranche Class A Class B

Sponsor FEMA

SPV Flood Smart Re Ltd.

Attachment Point (USD billion) 7.5 5

Exhaustion Point (USD billion) 10

Spread over LIBOR (p.a.) 11.5%

Issuance date July 31, 2018

Maturity date July 31, 2021

Territory/Peril US/Flood

Trigger Type Industry Loss Index

approaches Flood Smart Re Ltd., a Bermuda-based company, to structure a CAT bond deal. The

CAT bond contract structured by Flood Smart Re Ltd. functions as follows: The SPV sells the CAT

bond, based on an industry loss trigger8 and on flood events occurring anywhere in the United States

(hereafter US/Flood), to investors in the two different tranches. Investors of both tranches would

bear losses up to an exhaustion point (UAB) of $10 billion. The Class A tranche bears an attachment

point (KA) of $7.5 billion, while the Class B tranche bears an attachment point (KB) of $5 billion.

The two tranches only differ in terms of the attachment point and are otherwise equivalent. The

contract provides a three year single-event coverage to FEMA starting from July 31, 2018. In return,

the federal agency is required to pay the SPV a yearly spread worth 11.5%9 of the notional amount.

The SPV, in turn, will transfer the spread payments to the investor along with yearly floating rate

payments based on the 12-month LIBOR based on US Dollar (hereafter 12-Month USD LIBOR),

generated from a risk-free collateral fund. Table 5.1 summarizes the FloodSmart Re Ltd. Series

2018-1 (hereafter FloodSmart) transaction sponsored by FEMA.

8 In the original source provided by Artemis (2018), the CAT bond is based on an indemnity trigger. In this thesis
however, the CAT bond has been adapted to an industry loss trigger for reasons of data availability.

9 In the original source provided by Artemis (2018), the two tranches are supposed to be issued at par and differ in
the spread. In this study however, it is assumed that both tranches pay the same spread and consequently differ
in the price.
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5.2 Objective and Methodology

The aim of this numerical study is to price the FloodSmart CAT bond from the perspective of an

investor. The solution to this case study involves the following steps:

1. Gather historical data about US/Flood industry-wide losses. Using the BMM approach, derive

a sequence of annual maxima. Adjust BMM loss data for inflation, if necessary.

2. Perform a Maximum Likelihood Estimation using the BMM data and assuming the industry

loss index follows a GEV distribution. Discuss the accuracy the estimated GEV parameters.

3. Estimate the parameters of the GEV distribution via the Hill method. Compare this approach

to the standard MLE optimization with the help of graphical tools. Select the most accurate

fitted GEV model between the two.

4. Assuming the LIBOR rate is driven by a geometric Brownian motion, derive the average

volatility from historical data and select an appropriate risk-free rate for the drift parameter.

By means of a Monte Carlo simulation, determine the expected LIBOR rate at the end of each

year.

5. Given the fitted GEV distribution obtained via the chosen approach, simulate the loss process

and its impact on the CAT bond payoff. Finally, the price is obtained by averaging across all

the simulated discounted payoffs, as shown in equation (3.16).

6. Based on the fitted GEV distribution, calculate the relevant risk measures associated with the

industry loss index and its impact on the CAT bond payoff.

7. Summarize the key findings of the numerical analysis

5.3 Data

The initial data are obtained from the NatCatSERVICE of Munich Re. The data set comprises of

36 observations of US/Flood insured losses. Each observation is the annual maximum insured loss,

in nominal terms, caused by a single US/Flood event. There is no need to filter the data via the
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BMM approach, as this was already applied by Munich Re NatCatSERVICE in the first place. The

data are adjusted for inflation as follows:

It =
Inominalt × 100

CPIt
(5.1)

where Inominalt denotes the nominal industry loss at time t, as originally reported by Munich Re

(2018), CPIt denotes the Consumer Price Index at time t. The US Dollar based CPI annual values

(CPALTT01USA661S) are obtained from Federal Reserve Economic Data (FRED), the database

provided by the Federal Reserve Bank of St. Louis. Table 5.2 reports the full inflation-adjusted data

set.

Table 5.2 – Annual maximum US/Flood single-event insured losses ($ billion). Inflation adjusted (in
2015 values). Sources: Munich Re (2018); Federal Reserve Bank of St. Louis (2018)

Index Year 0.0870 1989 0.0228 1999 0.2935 2009

0.0518 1980 0.0507 1990 0.4085 2000 1.0537 2010

0.1043 1981 0.1149 1991 0.1417 2001 0.7742 2011

0.0123 1982 0.2079 1992 0.2008 2002 N/A 2012

0.3808 1983 2.0220 1993 N/A 2003 0.2340 2013

0.0502 1984 0.5893 1994 0.4491 2004 0.5406 2014

0.0551 1985 1.4028 1995 0.3410 2005 0.7000 2015

0.1233 1986 0.4362 1996 0.5144 2006 3.3576 2016

0.0581 1987 0.4838 1997 0.1431 2007 0.0774 2017

0.0325 1988 0.3441 1998 0.5524 2008

The GEV model requires block maxima to be independent and identically distributed. A source

of dependence may arise from inflation; however, to tackle this effect, the data have already been

adjusted for inflation as in (5.1). Furthermore, by adopting blocks of large size, such as years,

seasonality trends are largely eliminated (Gilli and Këllezi, 2006). Based on these considerations,

there is no reason to doubt that the iid assumption is satisfied.
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5.4 Maximum Likelihood Estimation

Using the package qrmtools from the statistical software R (R Core Team, 2014), it is possible to

find the MLE estimates for the GEV distribution. The MLE algorithm returns the following set of

estimated parameters:

θ̂ = (ξ̂, µ̂, σ̂) = (0.8657, 0.1387, 0.1557) (5.2)

For which the likelihood is logL(θ̂;x) = −6.5958, and the covariance matrix of the parameters is

given in (5.3). The covariance matrix is approximated via the Hessian of the log-likelihood function

with respect to the GEV parameters. The detailed procedure can be found in the Appendix section B.

V (θ̂) =


0.06690741 −0.002953476 0.0001916235

−0.002953476 0.001039755 0.001044335

0.0001916235 0.001044335 0.001440196

 (5.3)

By the properties of consistency and asymptotic normality, the MLE estimates follow approximately a

multivariate normal with mean θ and variance V (Coles, 2001). Given that θ̂ ∼ N (θ,V ), symmetric

95% confidence interval can be constructed for each parameter θ̂i as follows:

θ̂i ± 1.96× SE (5.4)

The parameters standard errors SE can be obtained as the square root of the diagonal elements of

V (θ̂). Accordingly, table 5.3 reports the corresponding confidence intervals.

Table 5.3 – 95% confidence intervals of the MLE estimates. Standard errors in parentheses. Source:
personal research

Confidence interval

Parameter Estimate 2.5% 97.5%

ξ 0.8657(0.2587) 0.3588 1.3727

µ 0.1387(0.02645) 0.0755 0.2019

σ 0.1557(0.03358) 0.08128 0.23
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From the above table, it is clear that the shape parameter is subject to a high degree of uncer-

tainty, given a high SE and consequently a wide confidence interval. The high standard error can

be attributed to the small sample size of available data. The next section considers an alternative

approach—the Hill estimator for the shape parameter.

5.5 Hill Estimator

The Hill estimator requires the GEV distribution to be of the Fréchet type. Based on the MLE

estimates in the previous section, there is sufficient evidence that the Fréchet MDA conditions are

satisfied, as the confidence interval for ξ in table 5.3 does extend below 0. Moving on to the Hill

approach, in an attempt to overcome the limitations of the MLE approach, the MLE estimate

for the shape parameter is replaced by the Hill estimator. Once the Hill estimator is given, the

MLE optimization is performed with respect to µ and σ, taking ξ = ξ̂hillk0,m
as given. The order

statistic k and the corresponding Hill estimate are selected according to the Hall (1990) bootstrapping

approach. Table 5.4 summarizes the outcome of the Hill estimation performed with respect to the

shape parameter using the R package tea.

Table 5.4 – Hill estimator. Threshold selection based on the Hall (1990) bootstrapping algorithm.
Source: personal research

Sample size m 36

Bootstrapping replications 1000

Auxiliary order statistic kaux 12

Optimal order statistic k0 10

Estimated tail index α̂hillk0,m
1.5261

Estimated shape parameter ξ̂hillk0,m
0.6553

Standard error of ξ 0.2072

95% Confidence interval [0.2491,1.0614]

The standard error in the above table is calculated as the square root of the asymptotic variance

ξ̂hillk0,m
/k0 based on the solution of de Haan and Peng (1998). Confidence interval are determined based
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on the property of asymptotic normality. From the above table, it is clear that the Hill estimator

produces a lower SE for the shape parameter and consequently a narrower confidence interval. For

this reason, in this context, the Hill estimator is preferable to the MLE estimate for ξ. To estimate the

remaining two parameters of the GEV distribution, the MLE optimization is repeated with respect

to the parameters µ and σ, taking ξ = ξ̂hillk,m = 0.6553 as given. The R package evd allows to perform

MLE for the GEV distribution while keeping one or more parameters fixed. Table 5.5 reports the

MLE estimates for µ and σ with corresponding standard errors and 95% confidence intervals.

Table 5.5 – Maximum likelihood estimation for location and scale parameter, with ξ = ξ̂Hill
k,m = 0.6553.

Standard errors in parentheses. Source: personal research

Confidence interval

Parameter Estimate 2.5% 97.5%

µ 0.1502(0.03082) 0.08984 0.2107

σ 0.1593(0.03609) 0.08861 0.23

From the above table, it is interesting to note that the overall approach considerably reduces

the standard error of the shape parameter but slightly increases those of the location and scale

parameters. To further compare the two GEV models in terms of accuracy, the next section relies

on graphical tools.

5.6 Diagnostic Plots

An informal, yet effective, method of assessing the accuracy of a fitted model is the use of graphical

tools. For this reason, this section includes some relevant diagnostic plots for both fitted GEV models

that were obtained via the two different approaches illustrated in the previous sections, namely the

standard MLE algorithm and the Hill method (combined with MLE).

5.6.1 Density Plot

The density plot compares the empirical density, i.e. the actual density obtained by the data, against

the theoretical probability density function given by the estimated parameters. Figure 5.1 provides
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the density plot for both fitted GEV models.

Figure 5.1 – Empirical (histogram) and theoretical (red line) density functions, under standard MLE
approach (left panel) and Hill estimator (right panel). Source: personal research

From the above chart, it appears that, in this context, the Hill approach is an improvement to

standard MLE techniques. Indeed, in the right-hand panel, the theoretical density appears to better

fit the histogram of actual data, given the lower height of the density function.

5.6.2 Distribution Plot

The distribution plot compares the theoretical cumulative distribution function against the empirical

distribution given by the actual data. The distribution plot is provided in figure 5.2 for both fitted

GEV models.

Figure 5.2 – Empirical (set of points) and theoretical (red line) cumulative distribution functions, under
standard MLE approach (left panel) and Hill estimator (right panel). Source: personal research
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From the above chart, the Hill approach appears to better fit the actual data. In particular, both

fitted models underestimate the probability of observing quantiles in the upper end. However, the

error is considerably reduced when adopting the Hill estimator.

5.6.3 Q-Q Plot

Given the sequence of block maxima {x(i), i = 1, ...,m} sorted in increasing order x(m) ≥ x(m−1)... ≥

x(1), and
{
H−1

θ̂

(
i
m

)
, i = 1, ...,m

}
, the sequence of theoretical quantiles observable with probability

i
m , the quantile-quantile (Q-Q) plot comprises of the following set of points:

{(
x(i), H−1

θ̂

( i
m

))
, i = 1, ...,m

}
(5.5)

In other words, the Q-Q plot compares the observed (empirical) quantiles {x(i), i = 1, ..,m} against

those predicted by the fitted model via H−1

θ̂
, the inverse of the theoretical GEV distribution function

Hθ̂. The highest accuracy is reached when the set of points perfectly aligns to a reference 45-degree

line. Figure 5.3 includes the Q-Q plot for both fitted GEV models.

Figure 5.3 – Q-Q plots under standard MLE approach (left panel) and Hill estimator (right panel).
Source: personal research

From a visual inspection, the Hill approach appears to better predict quantiles. Both approaches

overestimate quantiles in the upper range, although the error is smaller in the right-hand panel. As

a final remark, note that the point
{(
H−1

θ̂

(
1
)
, x(m)

)
, i = m

}
is missing in both plots, as it is not

finite.
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5.6.4 Model Selection

Because of the lower standard error for the shape parameter and the better accuracy assessed from

a visual inspection of the above diagnostic plots, the fitted GEV model based on the Hill estimator

is chosen over the one obtained via standard MLE. Hence, the following sections of this numerical

study rely on the distribution GEV (ξ̂Hill = 0.6553, µ̂ = 0.1502, σ̂ = 0.1593).

5.7 Monte Carlo Pricing

The first step of the risk neutral Monte Carlo pricing is the selection of the risk-free rate. The latter

is assumed to be constant and plays two important roles in the simulation. First, it represents the

drift of the LIBOR process, which is assumed to be driven by a geometric Brownian motion. Second,

it is required to discount the cash flows of the CAT bond. The US 3-year treasury rate is chosen

as a benchmark risk-free rate, which is equal to 2.77% as of July 31, 2018 (U.S. Department of the

Treasury, 2019). Given that the industry loss index and the LIBOR rate are assumed to be driven by

independent processes, they are simulated separately. First, the LIBOR rate is simulated according

to a GBM, and the expected values at the end of each year are collected and added to the fixed

spread payments of the CAT bond. This way, the full coupon payments for each year are obtained.

Next, the industry loss index is simulated as a sequence of iid random variables along with its impact

on coupon payments (binary payoff) and principal redemption (proportional payoff).

5.7.1 LIBOR

As established in chapter 3, the CAT bond coupons are sensitive to the LIBOR rate, which is assumed

to be driven by a geometric Brownian motion. Under risk-neutral pricing, the drift of the GBM is

the risk-free rate. Recalling equation (3.19), the solution to the GBM stochastic differential equation

under the risk-neutral measure Q2 is as follows:

Rt = R0 exp

(
(r − 1

2
(σR)2)t+ σRW̃t

)
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In this numerical study, the above equation can be replaced by the following discrete approximation

(Zimbidis et al., 2007):

Rt+∆t = Rt exp

(
(r − 1

2
(σR)2)∆t+ σR

√
∆tεt

)
(5.6)

where ∆t replaces dt and denotes a non-infinitesimal time interval, and εt ∼ N (0,∆t) is a martingale

under Q2. The sequential form in (5.6) is known as Euler scheme. The drift is the risk-free rate,

while volatility, which is also assumed to be constant, can be estimated using historical data by

taking the standard deviation from the series of the LIBOR relative increments. For this purpose,

a daily time series of the 12-Month USD LIBOR (USD12MD156N) is downloaded from FRED. The

sample period lasts 3 years (with 252 trading days per year), from July 31, 2015 to July 31, 2018.

The length of the sample period reflects the maturity of the CAT bond. The standard deviation of

the LIBOR increments from the time series, annualized via the square root rule, yields the following

estimate for the volatility parameter:

σ̂R = 0.1114 (5.7)

Using the R package sde, the LIBOR process can be simulated according to the Euler scheme in

(5.6) with ∆t = 1. The simulation is composed of 756 time steps (3 years of 252 trading days each)

and 50,000 simulation paths. The starting value of the LIBOR rate is the last value of the historical

series (on date July 31, 2018), which is R0 = 0.02827. Given that the CAT bond pays LIBOR-based

cash flows at the end of each year (i.e. on July 31, 2019, 2020, 2021), the simulated distributions

at these dates are required to determine the CAT bond payoff from financial variables. From the

simulated paths, the expected LIBOR rate at each year-end is shown below:

EQ2
[R] = (0.02907, 0.02989, 0.03073) (5.8)

Where R ∈ R3 is a random vector denoting the realizations of Rt at the end of year 1, 2, and 3.
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5.7.2 Industry Loss Index

The GEV assumption regarding the industry loss index implies that, in this framework, the values

of the index are only extremes. This means that the ordinary values of the loss index are ignored.

In classical EVT, extremes are defined as block maxima, and the block length is set at one year in

this numerical study. In other words, the extremes of the loss process are expected to occur once

per year. For this reason, the number of time steps in the Monte Carlo simulation is 3, as the CAT

bond matures in 3 years. The number of simulated paths is 50,000. Accordingly, random numbers

from the distribution GEV (ξ̂Hill, µ̂, σ̂) can be generated using the package qrmtools. The full coupon

payments are obtained by summing expected values of the LIBOR payments, which result from a

separate simulation algorithm, with fixed spread payments of $11.50, based on a face value of $100.00.

Recall equations (3.15) and (3.16) from Chapter 3:

C0 = lim
s→∞

C
(s)
0

C
(s)
0 =

1

s

s∑
j=1

N∑
n=1

B(n, r)[f (j)
n (R(j)

n , τ (j)) + C(j)
n ]

The CAT bond price C0 can be numerically approximated as the average sum of discounted coupons

and principal redemption across all the simulated scenarios. The Monte Carlo algorithm returns the

price as $131.82 for Class A and $131.32 for Class B. As expected, the Class A tranche is more

valuable than the Class B, given that the former has a higher attachment point than the latter.

For a more comprehensive picture, the chart in figure 5.4 plots the FloodSmart CAT bond prices

under different attachment points. Indeed, the CAT bond price increases monotonically with the

trigger level, since the higher the threshold, the less likely the CAT bond is to be triggered. This

implies a higher expected payoff, which is ultimately reflected in the price. However, the CAT bond

price increment shrinks as the attachment point increases. This concave property can be explained

by the fact that a higher trigger level reduces the gap between the exhaustion and the attachment

point. Recalling from equation (3.6) that the ratio of principal redemption to the investor decreases

proportionally with this gap, investors lose their principal more quickly once the CAT bond is

triggered at higher thresholds.
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Figure 5.4 – FloodSmart CAT bond price per $100.00 of face value, evaluated at increasing attachment
points ($ billions) and exhaustion point of $10 billion. Source: personal research

5.8 Risk Metrics

This section provides some key risk measures associated with the FloodSmart CAT bond based on

the GEV distribution estimated in the previous section. Some values can be easily calculated via a

closed-form solution, while others require Monte Carlo methods.

5.8.1 Exceedance Probabilities

To estimate the probability of both tranches being triggered, resp. exhausted, there is no need to

rely on Monte Carlo methods. Indeed, given the fitted GEV model, the probabilities can be obtained

via a closed-form solution. The probability of the industry loss index I exceeding a generic threshold

u in one trial (i.e. within a 1 year period) is determined as follows:

P1(I1 > u) = 1− P1(I1 ≤ u) = 1−Hξ̂Hill,µ̂,σ̂(u) (5.9)
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To determine the probability of the threshold being exceeded within a period of multiple years, recall

that the index values are assumed to be iid. Based on this assumption, the probability of the index

exceeding the threshold at least once within a period of m years is determined as follows:

P1(max(I1, ..., Im) > u)

= 1− P1(I1, ..., Im ≤ u)

= 1− (P1(I1 ≤ u))m

= 1− (Hξ̂Hill,µ̂,σ̂(u))m

(5.10)

With reference to the pricing model in Chapter 3, setting the number of blocks m equal to the

number of coupon dates N , and the last coupon date equal to the CAT bond’s maturity T , the

expression in (5.10) is equivalent to:

P1(max(I1, ..., IN ) > K) = P1(τ < T ) (5.11)

That is the probability of the CAT bond being triggered. The FloodSmart CAT bond has a maturity

of 3 years, while extreme index values potentially exceeding the attachment point of $5 billion, or

even the exhaustion point of $10 billion, are expected to occur once a year (BMM approach). The

probabilities are then calculated accordingly over a period of 3 years. The value Hξ̂Hill,µ̂,σ̂(u) is

computed using the package qrmtools. Table 5.6 reports the exceedance probabilities of the industry

loss index over the 3-year horizon.

Table 5.6 – Probability of exceeding the attachment, resp. exhaustion, points over multiple years, based
on the distribution GEV (ξ̂Hill = 0.6553, µ̂ = 0.1502, σ̂ = 0.1593). Source: personal research

Threshold u ($ billion) Exceedance probability

1 year 2 years 3 years

KB = 5 0.009591726 0.01909145 0.02850006

KA = 7.5 0.005225958 0.01042461 0.01559609

UAB = 10 0.003387909 0.006764341 0.01012933
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To interpret the above table with a few examples, the Class B tranche of the FloodSmart CAT

bond is expected to be triggered within the first year of the contract, with a probability of 0.96%.

Within the same year, the Class A tranche is less likely to be triggered, with a probability of 0.52%.

Investors of both tranches should expect to lose the entire principal by the maturity date, with a

probability of 1.01%.

5.8.2 Return Period

Closely related to the exceedance probabilities is the return period m(u). The latter is defined as the

expected number of blocks required to observe a loss, exceeding a threshold u. The return period is

estimated as follows:

m(u) =
1

1−Hξ̂,µ̂,σ̂(u)
(5.12)

The following table reports the return periods corresponding to the three relevant thresholds of the

FloodSmart CAT bond according to the estimated GEV distribution.

Table 5.7 – Return period based on the distribution GEV (ξ̂Hill = 0.6553, µ̂ = 0.1502, σ̂ = 0.1593),
rounded to the nearest integer. Source: personal research

Threshold u ($ billion) Return period m(u)

KB = 5 104 years

KA = 7.5 191 years

UAB = 10 295 years

To interpret the above table with a few examples, the Class B tranche is expected to be triggered

on average once within a period of approx. 104 years. As expected, the Class A tranche is safer,

given the longer attachment period of approx. 191 years. Investors of both tranches would expect an

event, which causes them to lose the entire capital, to occur on average once in approx. 295 years.

In other words, the exhaustion point of $10 billion can be interpreted as the one in 295 years loss,

or the 295-year return level.
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5.8.3 Expected Loss

While the two previous risk metrics pertain exclusively to the industry loss index, expected loss is

focused on the impact that the index has on the principal redemption of the CAT bond. The CAT

bond loss is calculated as the fraction of the principal that is transferred to the sponsor and hence

lost by the investor. Forgone coupon payments are not accounted for when calculating losses, nor

do accrued coupons compensate for losses in the principal redemption. The expected loss is the

expected value of the difference between the full face value and the actual principal redemption.

Based on equations (3.6) and (3.5) for the zero-coupon CAT bond, the expected loss EL per $1 of

face value can be derived as follows:

EL = EP1 [pτ ] (5.13)

The conditional expected loss is defined as the expected loss, conditional on the CAT bond being

triggered by the maturity date. In other words, it is the average loss incurred across all the scenarios

in which the CAT bond is triggered. Recalling equation (3.6), the conditional expected loss CEL

can be defined as follows:

CEL = EP1 [pτ |τ ≤ T ] (5.14)

The expected and conditional expected loss are related to each other according to the following

proposition:

Proposition 5.1. Let EL = EP1 [pτ ] and CEL = EP1 [pτ |τ ≤ T ], where the random variables τ :

Ω1 −→ [0,∞) and pτ : Ω1 −→ [0, 1] are defined in (3.3) and (3.6) respectively. The following

relation holds:

EL = P1(τ ≤ T )CEL (5.15)

Proof. See Appendix section A.

Hence, if either between EL and CEL is known, the other can be estimated closed-form. Nevertheless,

both EL and CEL are estimated via Monte Carlo methods in this section. Table 5.8 reports the

(conditional) expected losses for both tranches of the FloodSmart CAT bond, while the charts in
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figure 5.5 plot the (conditional) expected losses across different attachment points.

Table 5.8 – (Conditional) expected loss for the FloodSmart CAT bond. Source: personal research

Tranche Attachment point K ($ billion) EL CEL

Class A KA = 7.5 1.25% 81.12%

Class B KB = 5 1.72% 59.09%

Figure 5.5 – Expected loss (%, left panel) and conditional expected loss (%, right panel) of the FloodS-
mart CAT bond, evaluated at increasing attachment points (in $ billion) and exhaustion point of $10
billion. Source: personal research

From table 5.8 and the above charts, a clear pattern can be identified. As established in the

previous subsection, the Class A tranche is less likely to be triggered than the Class B. This is

ultimately reflected in the expected loss, which is accordingly lower for Class A. Indeed, the chart in

figure 5.5 shows that the expected loss decreases with the attachment point. On the other hand, the

conditional expected loss increases almost linearly with the attachment point, which would explain

why the increment in the CAT bond value is diminishing as the attachment point increases in figure

5.4. It is again due to the fact that, at higher thresholds, the gap between the exhaustion and

attachment point shrinks and so does the recovery rate of the principal, once the CAT bond is

triggered.
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5.8.4 Return Level

The return level is calculated with respect to the industry loss index. It is the loss that is expected to

be exceeded on average once within a given number of blocks. For example, in the previous section,

the return period of a loss of $10 billion was estimated at approx. 295 years. Conversely, the 295

year return level corresponds to roughly $10 billion. The return level is defined by the following

GEV quantile function:

L̂m = H−1

ξ̂,µ̂,σ̂
(1− 1

m
) = µ̂− σ̂

ξ̂
(1− (− log

(
1− 1

m

)
)−ξ̂) ξ̂ > 0 (5.16)

Note that the return level should not be confused with the popular value at risk metric. Although

both are quantile estimators, return level is a measure of maximum loss , a more conservative measure

than value at risk (Gilli and Këllezi, 2006).

A return level plot of the function in (5.16) for the industry loss index is provided in figure 5.6.

The plot shows the return level up to a number of blocks m = 300 for the fitted GEV distribution.

Figure 5.6 – Return level plot based on the distribution GEV (ξ̂Hill = 0.6553, µ̂ = 0.1502, σ̂ = 0.1593).
Source: personal research

The return level predictions should be accompanied by the corresponding confidence intervals.

Pricing Catastrophe Bonds Using Extreme Value Theory



5.9. CHAPTER SUMMARY 54

This is however not possible in this study, since the covariance matrix of the parameters estimates

is needed to determine the confidence interval (Coles, 2001, p. 56). In this approach however the

covariances between the Hill estimator and the MLE estimates for µ and σ can not be determined.

5.9 Chapter Summary

In this numerical study, two tranches of the FloodSmart CAT bond are priced by means of a Monte

Carlo simulation, based on the pricing model developed in Chapter 3 and the statistical theory

presented in Chapter 4. The two tranches have different attachment points but are otherwise equi-

valent. As anticipated, the tranche bearing a higher trigger level is safer (i.e. less likely to be

triggered) and thus more valuable. This is further confirmed by the finding that Class A has a lower

expected loss than Class B. In addition to the attachment points of Class A and B tranches, the

Monte Carlo algorithm is replicated on other values for the threshold to determine price and (condi-

tional) expected loss as a function of the attachment point. The outcome is graphically displayed in

figures 5.4 and 5.5. This result further confirms the initial speculation that CAT bonds with higher

triggering thresholds, maintaining everything else equal, are expected to be priced higher and bear

a lower expected loss albeit a higher conditional expected loss. The key findings of this numerical

study are summarized in table 5.9.
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Table 5.9 – Valuation summary. Source: personal research

FloodSmart Re Ltd. (Series 2018-1)

Tranche Class A Class B

Estimated GEV parameters (ξ̂Hill, µ̂, σ̂) (0.6553, 0.1502, 0.1593)

Attachment Point ($ billions) 7.5 5

Attachment Probability (within 3 years) 1.56% 2.85%

Attachment Period (in years) 191 104

Exhaustion Point ($ billions) 10

Exhaustion Probability (within 3 years) 1.01%

Exhaustion Period (in years) 295

Expected Return (p.a.) 2.77%

Expected Loss 1.25% 1.72%

Conditional Expected Loss 81.12% 59.09%

Spread over LIBOR 11.5%

Price (per $100 of Face Value) $131.82 $131.32
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Conclusion and Further Research

This thesis successfully develops a general pricing framework for CAT bonds, which is consistent

with no-arbitrage constraints. The contingent claim pricing model can be adjusted for pricing CAT

bonds with different payoff structures. For example, in the pricing model, the principal redemption

follows a proportional payoff; however, it can be simplified to a binary payoff structure by setting

the attachment level equal to the exhaustion point. For simplicity, the LIBOR process was modeled

as a geometric Brownian motion, and it would be interesting to switch to more advanced techniques

such as the mean reverting CIR and Vasicek processes.

The numerical study is easily reproducible and can be replicated to evaluate other CAT bond

deals based on natural catastrophe data, such as insured losses (both at industry and individual

level) and physical parameters. In this study the Hill estimator for the shape parameter outperforms

the MLE estimator owing to lower variance and better accuracy in terms of in sample forecasting.

However, the same result is not guaranteed when replicating this study to other data. Furthermore,

the Hill estimator should be applied only if there is sufficient evidence that the GEV distribution is

of Fréchet type. It would also be interesting to compare the classical EVT approach employed in this

study against one based on threshold exceedances. It would be then useful to assess whether the two

models applied to the FloodSmart CAT bond produce similar results at an appropriate threshold

selection for the POT approach.
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Appendix

A Proof of Proposition 5.1

Let EL = EP1 [pτ ] and CEL = EP1 [pτ |τ ≤ T ], where the random variables τ : Ω1 −→ [0,∞) and

pτ : Ω1 −→ [0, 1] are defined in (3.3) and (3.6) respectively. The following relation holds:

EL = P1(τ ≤ T )CEL (5.17)

Proof. Let {Ai, i = 1, 2} be a finite partition of the sample space Ω1 such that {A1 : τ ≤ T} and

{A2 : τ > T}. By the law of total expectations, EL can be expressed as the following sum:

EL = EP1 [pτ ] =
∑
i

EP1 [pτ |Ai]P1(Ai) (5.18)

It follows:

EL = EP1 [pτ ]

= EP1 [pτ |τ ≤ T ]P1(τ ≤ T ) + EP1 [pτ |τ > T ]P1(τ > T )

= EP1 [pτ |τ ≤ T ]P1(τ ≤ T ) (by definition of pτ in (3.6))

= P1(τ ≤ T )CEL
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B Approximation of the Covariance Matrix of the MLE Estimator

The R package qrmtools by Marius Hofert, Kurt Hornik, and Alexander J. McNeil approximates

the covariance matrix of the MLE estimator for the GEV distribution as follows. First, it derives

the Hessian matrix of the log-likelihood function. The Hessian matrix is the matrix of the second

order partial derivatives of the log-likelihood function with respect to the GEV parameters. Let

` = logL(θ;x), then a generic element of the Hessian in (5.19) takes the following form: Hi,j(θ) =

∂2`
∂θi∂θj

`.

H(θ) =


∂2`
∂ξ2

∂2`
∂ξ∂µ

∂2`
∂ξ∂σ

∂2`
∂µ∂ξ

∂2`
∂µ2

∂2`
∂µ∂σ

∂2`
∂σ∂ξ

∂2`
∂σ∂µ

∂2`
∂σ2

× ` (5.19)

The elements of H(θ) evaluated at the corresponding MLE estimates yield the following matrix:

H(θ̂) =


−30.27836 −331.4788 244.395

−331.4788 −7169.102 5242.66

244.395 5242.66 −4528.496

 (5.20)

The observed information matrix is the negative of the MLE Hessian I(θ̂) = −H(θ̂). Finally, an

approximate covariance matrix of the MLE estimates can be obtained via inversion of the observed

information matrix:

V (θ̂) = I−1(θ̂) =


0.06690741 −0.002953476 0.0001916235

−0.002953476 0.001039755 0.001044335

0.0001916235 0.001044335 0.001440196

 (5.21)
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