
TiltablePages
Augmenting tilted papers

Bachelor Thesis

People and Computing Lab
Department of Informatics
University of Zurich

Jan Gugler
14-716-849

Supervised by
Prof. Dr. Chat Wacharamanotham

Submission: 29 January 2019

iii

Contents

Zusammenfassung vii

Abstract ix

Acknowledgements xi

1 Introduction 1

2 Related work 3
2.1 Optical tracking . 3
2.2 Augmented and virtual reality . 4
2.3 Motion control in games . 6

3 Hardware and software setup 7
3.1 Tracking system . 7
3.2 Game related hardware . 11

3.2.1 Issues . 11
3.3 Game engine . 14

4 Tracking and Projection Pipeline 17
4.1 Off-axis perspective projection . 18
4.2 Calibration . 25
4.3 Keystone correction . 29

5 Game 33
5.1 Game development approach . 33

5.1.1 Prototyping phase . 34
5.1.2 Development phase . 37

5.2 Game structure . 40
5.2.1 Main menu scene . 41
5.2.2 Tracking scene . 42
5.2.3 Level 1 scene . 43

5.3 Scripts . 45
5.3.1 Player prefab scripts . 45
5.3.2 Level manager script . 48

iv Contents

6 Summary and future work 51
6.1 Summary and contributions . 51
6.2 Future work . 52

Bibliography 53

Index 59

v

List of Figures

3.1 Retro-reflective surfaces . 8
3.2 OptiTrack system setup . 9
3.3 Flex 13 tracking camera . 10
3.4 Box lid used for the augmented reality game 12
3.5 Marker placement on the box lid . 13
3.6 Comparison of the box lid surface . 14

4.1 Pipeline overview in Unity3D . 18
4.2 Unity setup for perspective projection . 19
4.3 Projection matrix example . 20
4.4 View plane positions and screen-local-axes . 23
4.5 View frustum and frustum extents . 23
4.6 Vectors to screen corners . 24
4.7 Unity structure of the calibration part . 26
4.8 Calibration interface . 27
4.9 Camera Inspector tab . 28
4.10 Projector offset . 30
4.11 Trapezoid shape of an image distorted by to keystone effect 30
4.12 Keystone correction in the Unity scene view . 31

5.1 “Myahm Agana Shrine” puzzle . 35
5.2 Rigidbody inspector tab . 35
5.3 Second prototype . 36
5.4 Taxi art asset . 37
5.5 Island art asset . 38
5.6 Objective markers . 39
5.7 Main menu . 41
5.8 About screen . 42
5.9 Tracking Scene . 43
5.10 New structure of the pipeline . 44
5.11 Player prefab . 46
5.12 Sphere gameobject used for controlling the taxi 46
5.13 Level manager sequence of events . 48

vii

Zusammenfassung

Augmented-Reality-Anwendungen werden in einer Vielzahl von Bereichen immer häufiger
eingesetzt. Die Verwendung von Augmented Reality im akademischen Kontext ist jedoch
begrenzt. In dieser Arbeit haben wir ein Tool entwickelt, mit welchem Forscher virtuelle Ob-
jekte in ihre Experimente einbinden können. Um dies zu ermöglichen, haben wir eine ein-
fach anpassbare Tracking und Projektions-Pipeline implementiert. Diese Pipeline besteht aus
drei Teilen: (1) außeraxiale perspektivische Projektion, (2) Kalibrierung und (3) Keystone-
korrektur. Die perspektivische Projektion wird anhand von Trackingdaten berechnet, wobei
eine 3-D-Illusion aus einer Fläche erzeugt wird. Das resultierende Bild wird auf die
gewünschte Projektionsfläche platziert und angepasst, um sicherzustellen, dass ein unverz-
errtes Endbild an den Projektor gesendet wird. Zusätzlich wurde in der Unity3D-Engine ein
Augmented-Reality-Computerspiel entwickelt, welches die Fähigkeiten der Pipeline präsen-
tieren, sowie ein unterhaltsames Spielerlebnis bieten soll.

ix

Abstract

Augmented reality applications are becoming increasingly commonplace in a variety of
fields. However, the use of augmented reality in an academic context is limited. In this the-
sis, we developed a tool which allows researchers to superimpose virtual objects onto their
experiment setups. For this purpose, we have implemented an easily adaptable tracking and
projection pipeline, consisting of three parts: (1) off-axis perspective projection, (2) calibra-
tion, and (3) keystone correction. This pipeline uses tracking data to compute the off-axis
perspective projection, which creates a 3D illusion out of a flat surface. The resulting image
is then aligned with the desired projection surface and skewed to ensure a non-distorted fi-
nal image is sent to the projector. Additionally, an augmented reality computer game was
developed in the Unity3D engine, to showcase the pipeline and provide a fun game-play
experience.

xi

Acknowledgements

I want to thank all the people who supported me in any way during this thesis. A big thank-
you goes to Prof. Dr. Chat Wacharamanotham, for allowing me to work on such a fun project
and for the valuable feedback provided during the implementation and writing of this thesis.
Furthermore, I would like to thank all the people who tested the game in different states.

A last thank-you goes to my family and friends who helped me to occasionally clear my
mind and return to work motivated.

1

Chapter 1

Introduction

“I’m excited about augmented reality because unlike vir-
tual reality, which closes the world out, AR allows indi-
viduals to be present in the world but hopefully allows an
improvement on what’s happening presently.”

- Tim Cook [2018]

The possibilities and opportunities provided by augmented reality
(AR) are becoming increasingly evident as technological advance-
ments are made. AR involves the superimposing of virtual objects
onto the user’s view of the real world, effectively augmenting our
current reality [Azuma, 1997]. AR systems are already in use in a
variety of fields, ranging from training apps for neurorehabilitation
[Ma et al., 2014] to aiding workers doing manual labor by display-
ing instructions onto their workspace [Boeing, 2018]. The future of
AR technology seems bright, as large corporations like Apple [Ap-
ple Inc., 2018] and Google [Google, 2018] continue to invest resources
into their own advanced augmented reality systems and applications.
Additionally, human interaction with these novel systems will likely
become an important research topic in the future [Bacca et al., 2014].

The majority of augmented reality applications currently available are The potential use of
AR in academic
studies

video game-related [Augmented Reality Games, 2019]. The entertain-
ment value of such video games and their use to show off this emerg-
ing technology should not be undervalued. However, augmented re-
ality systems could also be a valuable addition to the academic re-
search toolkit. The use of AR in studies could potentially help reduce

2 1 Introduction

the cost associated with acquiring or constructing one-off objects for
an experimental setup. Some of these objects could alternatively be
created digitally and superimposed onto the scene with a projector.

Based on the current research, this thesis aims to address the issueGoal 1: Create an
augmented reality

tracking and
projection pipeline

of a missing tool which allows researchers to use augmented reality
in their experiments. Thus, the first goal of this thesis is to develop
an augmented reality tracking and projection pipeline, which can be
easily adapted without changing the underlying programming code.
This pipeline involves the use of an optical tracking system to track
the position of both the user and the projection surface. The collected
tracking data is then used to manipulate a virtual object to create the
illusion of the object being 3D. The resulting image is then projected
onto the scene.

The second goal is to develop an augmented reality game, whichGoal 2: Develop an
augmented reality

video game
makes use of the tracking and projection pipeline. This game should
function as a showcase for the pipeline, as well as provide a fun game-
play experience.

To address these goals, the paper is structured as follows. To start
with, an overview of the related work is given in chapter 2. In the
following chapter, the hardware and software required to develop
both the pipeline and the game are presented. Subsequently, in chap-
ter 4, the function and implementation of the tracking and projection
pipeline are described. The augmented reality game, including its de-
velopment, structure, and systems, is described in chapter 5. In the
closing chapter, the conclusion is drawn and the future work is dis-
cussed.

3

Chapter 2

Related work

The goal of this thesis is to create a tracking and projection pipeline, as
well as an accompanying augmented reality computer game. There-
fore, the literature research consists of three main focus points. First,
the focus is placed on existing work done with optical tracking sys-
tems, as the implementation requires such a system. Second, existing
augmented and virtual reality applications are identified while detail-
ing the challenges their implementations provided. Lastly, the focus is
set on the use of motion control in games, due to the developed game
using a motion-based control scheme.

2.1 Optical tracking

Optical tracking is defined as a “3D localization technology which
is based on monitoring a defined measurement space using two or
more cameras” [PS-Tech, 2018]. In this section, literature describing
work done with optical tracking systems is presented. An emphasis is
placed on how these systems function and their various use-cases.

In their work, Ribo, Pinz & Fuhrmann [2001] present a stereo vision Blob detection
methodand marker-based tracking system for augmented and virtual real-

ity applications. They provide a detailed analysis of the technical re-
quirements for their system, focusing on accuracy, performance, and
robustness. To meet these requirements, specific hardware recommen-
dations are given. Additionally, Ribo et al. [2001] explain the method

4 2 Related work

used to extract the marker positions from the images recorded by the
infrared tracking cameras. This method, called “Blob Detection”, first
analyzes the images for bright white spots caused by infrared light
being reflected off of the markers. In a second step, the roundness of
the found white spots is used to determine if a given spot should be
categorized as a marker or if the spot is due to infrared interference.
A basic understanding of this method was required to identify the
causes of the tracking issues encountered during the implementation
of the pipeline.

De Amici, Sanna, Lamberti & Pralio [2010] point out the high cost ofImportance of
accurate tracking most commercially available tracking solutions. They show that ac-

ceptable tracking results can be achieved without a significant finan-
cial investment. For this purpose, they developed a low-cost tracking
system, which can be constructed for under a thousand US dollars us-
ing refurbished Nintendo Wii remotes. De Amici et al. [2010] empha-
size the importance of smooth tracking if users are required to interact
with the application. They declare that an accurate and low-latency
system is necessary to ensure the desired smooth tracking. Drawing
on these insights in relation to the practical work in this thesis, the
tracking system used for the pipeline and augmented reality game
was configured to provide the most accurate tracking data possible.

A look at a use-case for tracking systems is provided by Guerra-FilhoMinimizing infrared
interference [2005]. In his work, he examines how tracking systems are used in

the context of motion capture for the film industry. Motion capture
enables an actor’s movements to be tracked and later transferred to a
digital character. Similar to Ribo et al. [2001] the topics of marker de-
tection and infrared interference are examined. To combat the tracking
issues caused by infrared interference, special motion capture suits are
constructed out of a unique material which does not reflect infrared
light. The insights provided by Guerra-Filho’s work [2005] were fun-
damental in choosing tracking objects with suitable surface properties
to minimize infrared interference.

2.2 Augmented and virtual reality

In this section, different augmented and virtual reality applications,
and the challenges associated with their implementation, are pre-
sented. Many virtual reality systems have similar technical require-
ments and issues as augmented reality systems, as was ascertained

2.2 Augmented and virtual reality 5

in the extensive research on recent discoveries and findings in these
fields. Thus, research from both fields is presented below, though for
practical purposes a focus was placed on augmented reality applica-
tions.

Cruz-Neira et al. [1992] created the cave automatic virtual environ- Generalized
perspective
projection

ment (CAVE) interface. The CAVE is a cube-like space with displays
as walls. The user is allowed to move around freely inside the space.
The displayed images are adjusted continuously by the system to fit
the current perspective of the user, creating the illusion of being in-
side a virtual environment. To achieve this illusion, a mathematical
algorithm known as a perspective projection is required. The calcula-
tions used in this algorithm were later generalized by Kooima [2009].
His work enables the perspective projection algorithm to be used in
many different applications and games. The generalized perspective
projection was used as a basis for our implementation of the off-axis
perspective projection described in chapter 4.1 “Off-axis perspective
projection”.

In their research, Mine et al. [2012] describe how they are integrating Need for a calibration
solutionaugmented reality applications into Disney theme park attractions.

They emphasize the need for a robust calibration of both the tracking
system itself, as well as the application using the tracking data. The
specific context of their work presents additional constraints, such as
only being able to recalibrate the system during nighttime when the
park is closed. Nevertheless, they make a general recommendation
that a quick and straightforward calibration work-flow should exist
in every application. This recommendation by Mine et al. [2012] lead
to the implementation of a visual calibration tool for the pipeline.

In their work, Kruijff, Swan & Feiner [2010] discuss common percep- Perceptual
characteristicstual issues found in augmented reality applications and how they can

be fixed. They present their findings, showing that the color fidelity
and brightness of the image positively affect the immersion of the user.
Additionally, Kruijff et al. [2010] show the lack of a direct relationship
between the image resolution and the user’s ability to judge the depth
of a virtual object. Based on their findings, we decided to focus on
a vibrant color palette, rather than outright graphical fidelity while
developing the augmented reality game .

6 2 Related work

2.3 Motion control in games

This section describes literature related to motion control in games, as
well as how users perceive this novel control scheme. The specifics of
the goals for this thesis make the following knowledge necessary for
the implementation of the game.

In his work, Cummings [2007] presents an evolution of the game con-Evolution of game
controllers troller. He describes how the rise of specific game genres popularized

different input methods. Motion control, which has been around since
the arcade era with the ”light gun” [Kent, 2010], was greatly popular-
ized with the release of the Nintendo Wii and later the Wii U [Nin-
tendo, 2018b]. The Wii made use of a proprietary remote with multiple
accelerometers inside, allowing players to interact with their games
through movement alone. Cummings [2007] states that such complex
motion controllers require games to be developed from the ground up
with this control scheme in mind. He emphasizes that adapting an ex-
isting game to include motion controls will rarely lead to satisfactory
results. Thus, for our implementation of the augmented reality game,
motion control was used in all phases of development.

Bucolo, Billinghurst & Sickinger [2005] examined user experiencesDesign
recommendations with mobile game interfaces. Their study used a mobile game which

required players to navigate a ball through a maze using different in-
put methods. One of these input methods was motion control, allow-
ing users to tilt their phones to control the ball. Based on the results of
their study, Bucolo et al. [2005] recommend that overly precise move-
ments should be avoided. This recommendation is due to motion con-
trollers rarely allowing for exact control due to input latency.

The importance of using an intuitive game mechanic in motionIntuitive game
mechanics control-based video games is discussed by Champy [2007]. He rec-

ommends using a motion needed for everyday real-world tasks as the
basis for the motion required to control the game, hereby eliminating
the need for the player to learn any new skills. The recommendations
by Bucolo et al. [2005] and Champy [2007] were considered during
the prototyping phase of the game.

The findings in recent research presented in this chapter offer a strong
knowledge basis, which proved important in the practical implemen-
tation further detailed in the following chapters.

7

Chapter 3

Hardware and software setup

Specialized hardware and software are required to create an aug-
mented reality tracking and projection pipeline, and accompanying
computer game. For an augmented reality game to maintain the de-
sired illusion that a virtual object is real, the object should be viewable
from different angles. Thus, the game needs to be aware of the user’s
position, which requires a tracking system. The different tracking sys-
tem types, as well as the specific setup of the tracking system used, are
described in the following section. Furthermore, to create a complete
augmented reality game, some additional game-specific hardware is
required. This hardware and the related issues are described in sec-
tion 3.2 “Game related hardware”. The game itself is developed using
a game engine. The final section of this chapter provides an evaluation
of different game engines.

3.1 Tracking system

To obtain the tracking data required to create the illusion of a virtual
object being real, a tracking system is needed. There are many dif-
ferent approaches to tracking objects in 3D space, with the available
systems consisting of two main categories: (1) marker-less tracking
systems or (2) marker-based tracking systems.

Marker-less systems, such as the ones developed by Leap Motion Marker-less tracking
systems[Leap Motion, 2018] and Microsoft Kinect [Microsoft, 2018], use in-

8 3 Hardware and software setup

Figure 3.1: Reflective surfaces reflect light at an angle based on the
light ray’s entrance, whereas retro-reflective surfaces reflect light to
the source. Such retro-reflective properties are used for tracking mark-
ers.

frared cameras to generate depth maps of their environment. A depth
map is an image containing information relating to how far away
objects in the camera’s field of view are. Such marker-less systems
are relatively inexpensive, yet can only provide low accuracy position
data when used in large tracking volumes.

Marker-based tracking systems, like the OptiTrack system by Natu-Marker-based
tracking systems ralPoint [NaturalPoint, 2018b], utilize infrared cameras to track the

position of individual markers attached to objects. These markers are
coated with a special retro-reflective paint. The need for such a coating
is due to the way light behaves when it reflects off a surface. Normal
surfaces reflect light at an angle based on the angle of the entering light
ray, whereas retro-reflective surfaces always reflect light to the source
[Stamm, 1973], as shown in Figure 3.1. Thus, using a retro-reflective
coating on the tracking markers allows the infrared light, emitted by
an LED ring around the camera, to be directed back towards the lens
of the camera. By setting up multiple cameras, each with a different
viewpoint, a complex algorithm can calculate a very accurate position
of a given marker in 3D space.

Accurate position data is required for the augmented reality game and
pipeline to function correctly. Thus, a marker-based tracking system
was used. Specifically, the OptiTrack system by NaturalPoint shown
in Figure 3.2 was chosen, due to its availability at the ZPAC lab.

3.1 Tracking system 9

Figure 3.2: The OptiTrack system setup in the ZAPC Lab at the University of Zurich, showing
the positions of the cameras used for tracking the retro-reflective markers.

10 3 Hardware and software setup

Figure 3.3: The Flex 13 camera used by the OptiTrack system, showing
the illuminated LED ring around the lens which emits the infrared
light used to track the markers.

The setup of the OptiTrack system consisted of four Flex 13 camerasOptiTrack setup
[NaturalPoint, 2018a], shown in Figure 3.3. These four cameras were
placed on tripods at different corners of the desired tracking volume.
This non-permanent mounting solution allows for the cameras to be
moved easily, should the tracking volume change in the future. Ad-
ditionally, being able to mount the cameras fairly high, minimized in-
frared interference. Eliminating all possible infrared interference is
important, as even little interference can greatly reduce the tracking
accuracy of the overall system.

The OptiTrack system provides the necessary tracking data. How-
ever, some additional hardware is required for the augmented reality
pipeline and game to function. This hardware is described in the fol-
lowing section.

3.2 Game related hardware 11

3.2 Game related hardware

In addition to the OptiTrack tracking system, some additional hard-
ware is required to create the augmented reality game. This game-
related hardware consists of (1) a projector, (2) a table, and (3) a
tracked object, which acts as the controller for the game. The pro-
jector was mounted on a wooden beam above the tracking volume,
as shown in Figure 3.2, and was used to display the game. The ta-
ble acted as a second projection surface and was placed in the middle
of the tracking volume, below the projector. White cloth was draped
over the table, to ensure the colors of the projected image were not
distorted.

The third hardware item required for the game to function correctly is Requirements for the
object used to control
the game

the tracked object used to control the game. This object also functions
as the primary projection surface, to showcase the developed tracking
and projection pipeline. Thus, three factors had to be considered when
choosing the object:

• Weight - The object had to be light enough to be held for an
extended time while playing the game.

• Size - The object had to be large enough to have the game pro-
jected onto it while remaining maneuverable.

• Rigidity - The object was not allowed to flex while it was moved,
as this would distort the image projected onto its surface.

Based off of these three factors, a box lid was chosen, as it possessed
the required characteristics and was available in the ZPAC lab. The
box lid was fitted with retro-reflective markers, as shown in 3.4, which
allowed it to be tracked by the OptiTrack system. Tracking the box lid
was initially plagued with issues, which are described in the following
subsection.

3.2.1 Issues

The tracking issues experienced with the box lid needed to be resolved
to achieve the required tracking accuracy. Through trial and error, the
issues were deemed to be caused by the following two factors: (1)

12 3 Hardware and software setup

Figure 3.4: The box lid used as a projection surface and controller for
the augmented reality game, with the tracking markers glued to it.

the arrangement of the markers on the box lid and (2) the reflective
material out of which the box lid is constructed.

The arrangement of the markers on a tracked object is used by Op-Issue 1: Marker
arrangement tiTrack Motive software to determine the orientation of the object.

The software computes the distances between the individual mark-
ers, which are then compared to determine the pitch, roll, and yaw
of the object [Koch, 2016]. Thus, the distances between the markers
should not be equal, as this could result in the software computing a
constant incorrect orientation or rapidly switching between possible
orientations.

The initial marker arrangement on the surface of the box lid had equal
distances between markers. The arrangement consisted of four mark-
ers, with a marker in each corner, as shown on the left in Figure 3.5.
This symmetrical arrangement resulted in the Motive software not be-
ing able to reliably determine if the box lid was rotated 0, 90, 180, or
270 degrees, which produced unusable tracking data.

To fix the tracking issues produced by symmetrical marker arrange-
ments, a unique and non-congruent arrangement is recommended by
NaturalPoint [2018a]. We implemented such an arrangement by re-

3.2 Game related hardware 13

Figure 3.5: Left: The initial marker placement with four markers,
which caused tracking issues; Right: The final marker placement with
five markers, which fixed the tracking issues.

arranging the markers and adding a fifth marker. The new marker
arrangement is shown on the right in Figure 3.5.

Having solved the first factor causing tracking issues, the second fac- Issue 2: Reflective
surface materialtor was examined: the reflective material out of which the box lid was

constructed. This material caused a large amount of infrared inter-
ference, as its reflective properties meant that it scatters the infrared
light emitted by the tracking cameras. The interference resulted in
the Motive software not being able to reliably extract the position of
the retro-reflective markers from the images recorded by the tracking
cameras, shown in Figure 3.6. Thus, the software could not reliably
track the box lid.

To eliminate the infrared interference, the reflective material of the box
lid needed to be covered. We used a black colored felt fabric, as it
has a similar texture to the fabric used to create motion capture suits,
which are specifically designed not to reflect any infrared light [Sulli-
van et al., 2015]. The use of such fabric eliminated all infrared interfer-
ence, though the dark color of the felt made the image projected onto
the box lid difficult to see. To make the image more visible, we cov-
ered the felt with thin white cloth. The resulting box lid allowed the
player to clearly see the projected image, while still minimizing the in-
frared interference. These alterations resulted in the Motive software
being able to reliably extract the positions of the markers, as shown in
Figure 3.6. Thus, the tracking issues with the box lid were resolved,

14 3 Hardware and software setup

Figure 3.6: Comparison between (1) the box lid covered in black felt
fabric and a thin white cloth on the left, and (2) a regular white box lid
on the right, as seen by the tracking cameras.

and the tracking system produced the desired accurate tracking data.
This data, as well as the presented hardware, is then used by the game
engine, which is described in the following section.

3.3 Game engine

The tracking and projection pipeline and the accompanying game are
both developed using a game engine. A game engine is a software
development tool, which abstracts the details of game-related pro-
cesses, such as rendering the image or calculating physics simulations
[Ward, 2008]. This abstraction allows the people making games (such
as programmers, artists, designers, and scripters) to focus on creating
a fun and meaningful game-play experience, instead of having to im-
plement basic systems from scratch for every new game [Lewis and
Jacobson, 2002].

As only a small amount of people who work on video game are usu-Visual editor
ally programmers, most popular game engines include a visual edi-

3.3 Game engine 15

tor. A visual editor allows for large parts of the game and pipeline to
be constructed and expanded without requiring programming knowl-
edge. As the design goal of the tracking and projection pipeline is to
allow future users to change its parameters without changing the un-
derlying code, a good visual editor is especially important.

The most popular game engines which include a good visual editor Engine comparison
[TNW, 2016] and their respective characteristics are as follows:

• Unreal Engine 4 (UE4), the newest iteration of the Unreal En-
gine, is developed by the American software and game studio
Epic Games [Epic Games, 2018] and is free for non-commercial
use. UE4 is known for its photo-realistic rendering and parti-
cle systems, which enable developers to create visually impres-
sive games [Karis and Epic Games, 2013]. However, to use these
systems to their full potential, a significant learning effort is re-
quired [Thinkwik, 2018]. Thus, the Unreal Engine 4 is consid-
ered poorly suited for beginner game developers.

• The CryEngine is developed by the German studio Crytek
[Crytek, 2018] and requires a monthly fee payment, even for
non-commercial use. Thus, given the financial investment re-
quired, only large studios can afford to develop a game with the
CryEngine. Its popularity can be attributed to the versatility of
its architecture, which allows it to be used for games of many
different genres.

• Unity3D is developed by Unity Technologies [Unity Technolo-
gies, 2018c] and is the most popular engine currently available
[Thinkwik, 2018]. This popularity can be attributed to it be-
ing free for non-commercial use, as well as its shallow learn-
ing curve for novice game developers. Unity uses easy-to-learn
C# as its scripting language instead of the commonly used C++
[Xie, 2012]. Additionally, the architecture utilizes an entity com-
ponent system of gameobjects, which was constructed to allow
most adjustments to be made directly in the visual editor [Unity
Technologies, 2018a].

Based on these characteristics and our prior experience working with
different game engines, the Unity3D engine was chosen for the imple-
mentation of the tracking and projection pipeline, as well as for the
augmented reality game. The shallow learning curve for novice game
developers and the emphasis on a good visual editor would allow

16 3 Hardware and software setup

the pipeline to be adjusted with minimal programming knowledge
required.

Additionally, due to the popularity of the Unity Engine, an OptiTrackOptiTrack plug-in for
Unity plug-in exists for it [NaturalPoint, 2018b]. This plug-in allows for easy

integration of real-time tracking data directly into Unity. The use of
this plug-in allowed us to focus on the development of the pipeline
and game, rather than on the complex task of integrating the tracking
data into Unity.

To summarize, the chosen hardware and software consists of the
OptiTrack tracking system, the game related hardware, and the
Unity game engine. The development of the tracking and projection
pipeline, as well as the accompanying game, was enabled by using
this hardware and software. The pipeline and its implementation are
described in the following chapter.

17

Chapter 4

Tracking and Projection
Pipeline

An augmented reality game requires a specific sequence of processes
to correctly track the user’s movements and display the desired im-
age. This sequence is called the tracking and projecting pipeline. The
pipeline uses the OptiTrack system and Unity, which are introduced in
the previous chapter. As the setup at ZPAC may change in the future,
it is essential that the pipeline can easily be adjusted. Therefore, the
design goal of the pipeline is to allow future users to change the ma-
jority of parameters without needing to change the underlying code.
To achieve this, the developer should be able to make the changes in
Unity’s visual editor, as it is an easy to understand visual interface.
The interface uses a hierarchical structure, which makes it is easy to
distinguish between the different parts of the pipeline.

The pipeline consists of the three connected parts shown in Figure 4.1: Pipeline overview
off-axis perspective projection, calibration, and keystone correction.
The off-axis perspective projection is used to create a 3D illusion out of
a flat screen, by using tracking data and mathematical calculations to
transform the image. The next section describes this technique and its
specific implementation in Unity. The calibration part uses the image
generated by the perspective projection and aligns it to match up with
the projection surface. The implementation of the calibration solution
is described in section 4.2 “Calibration”. The third part, the keystone
correction, skews the final image to ensure a non-distorted image is
sent to the projector. The technique used to achieve this keystone cor-
rection in Unity is described in the final section of this chapter.

18 4 Tracking and Projection Pipeline

Figure 4.1: An overview of the whole pipeline showing the three parts in the scene view of
the Unity3D editor. The names of the visible gameobjects are annotated, to provide a visual
guide as to which gameobjects belong to what part.

4.1 Off-axis perspective projection

The first step of the pipeline is the off-axis perspective projection,Foreshortening effect
which creates a perspective illusion, were the player sees a 3D ob-
ject when looking at a flat display or projection surface [Başar et al.,
2009]. To avoid confusion between the mathematical projection and
the projection done by a projector, we will refer to projection sur-
faces as screens in this section, as the principles used apply to both.
The perspective projection makes use of the foreshortening effect,
which refers to how big humans perceive objects at different distances
[Kooima, 2009]. An object far away appears smaller than an object up
close, even if both are actually the same size. The foreshortening ef-
fect generated by the perspective projection is commonly used in vir-
tual reality systems and environments [Heuser, 2008]. An example of
such a virtual reality system is the cave automatic virtual environment
(CAVE) by Cruz-Neira et al. [1992] as described in chapter 2.2 “Aug-
mented and virtual reality”. The perspective projection used by the
CAVE system is a traditional perspective projection, were the screens
position is fixed in 3D space.

4.1 Off-axis perspective projection 19

Figure 4.2: Unity setup used for perspective projection, showing the
hierarchical structure of the gameobjects and their attached scripts.

More advanced virtual reality systems allow for the screen position On-axis vs. off-axis
perspective
projection

to change. An example of such a system is the Oculus Rift [Facebook
Technologies, 2018], which uses a head-mounted display to track the
user’s head position in 3D space. The tracking data is subsequently
used to compute the perspective projection from the user’s viewpoint.
The possibility of the screen moving requires the screen position to be
implemented as a variable, rather than a fixed value, for the perspec-
tive projection calculations. Due to both the screen and the user’s head
position being able to move in our desired application, an off-axis per-
spective projection implementation was used. A simpler on-axis per-
spective projection would only work if the player’s head stayed in line
with the symmetry axis of the screen [Kooima, 2009]. This approach
would be too limiting for the desired application, as the player should
be able to move more freely, to make use of the tracking systems ca-
pabilities. An off-axis perspective projection allows for arbitrary head
movements and screen positions.

For the off-axis perspective projection calculations to be executed cor- Structure in Unity
rectly, a specific structure in Unity is needed. We set up the structure
through a tree of Unity gameobjects as shown in Figure 4.2. At the
root of the tree is the OptiTrack client gameobject. This gameobject
has two children: (1) the surface gameobject and (2) the head track-
ing gameobject, which both have an OptiTrack rigidbody script at-
tached. This rigidbody script allows Unity to use the coordinates of

20 4 Tracking and Projection Pipeline

Fi
gu

re
4.

3:
Le

ft
:

N
o

pe
rs

pe
ct

iv
e

pr
oj

ec
ti

on
;M

id
dl

e:
Pe

rs
pe

ct
iv

e
pr

oj
ec

ti
on

ap
pl

ie
d;

R
ig

ht
:

Pe
rs

pe
ct

iv
e

pr
oj

ec
ti

on
vi

ew
ed

fr
om

th
e

tr
ac

ke
d

he
ad

po
si

ti
on

4.1 Off-axis perspective projection 21

specific rigid bodies streamed from the Motive software, to control
the gameobject to which the script is attached [NaturalPoint, 2018b].
The head tracking game object has a camera child object, which has
the projection matrix script attached to it. The projection matrix script
is used to calculate the perspective projection from the viewpoint of
the camera. The surface gameobject has two children: a cube art asset
with a calibration pattern on it, and a plane gameobject, which is used
in the calculations in the projection matrix script.

The projection matrix script computes the off-axis perspective projec- Projection matrix
scripttion and thereby creates the 3D illusion on a flat screen, as can be seen

in Figure 4.3. The mathematical formulas needed are described by
Robert Kooima [2009]. For their specific implementation in Unity the
“Projection for Virtual Reality” Unity Wikibook [2017] was used as a
guide. Together they create the basis for our implementation of the
projection matrix script.

Our projection matrix script requires three inputs: (1) the camera po-
sition, (2) the screen plane and (3) the screen dimension. The screen
plane is defined as the screen’s surface, in our case, this is the surface
of the box lid. All art assets on the screen plane will have the perspec-
tive projection applied to them. By adjusting the z-position of the art
assets relative to the screen plane, different types of perspective illu-
sions can be achieved. Using the island art asset from the final game
(which can be seen in Figure 4.3) as an example, if the screen plane is
at the height of the roads, anything above this height (such as build-
ings and trees) will appear to come out of the box lid. If the screen
plane is positioned at the height of the building rooftops, it creates the
illusion of depth, as if one could look into the box lid. However, it is
vital that the position and orientation of the screen plane match the
position and orientation of the real world screen. Otherwise, the cal-
culated perspective will be wrong. Thus, the plane gameobject is used
for the screen plane, as its tracked position and orientation inside of
Unity reflect the real world position and orientation of the box lid used
as the projection surface. The size of the box lid defines the screen di-
mensions, which the plane gameobject is scaled to match. By using
the dimensions of a Unity gameobject instead of hard-coding them in
the projection matrix script, the screen can easily be changed by resiz-
ing the gameobject in the Unity GUI without needing to change the
underlying code.

The projection matrix script first needs to gather the required values.
Thus, the coordinates of three corners of the plane game object are

22 4 Tracking and Projection Pipeline

read and assigned to variables. This is done as follows:

1 Vector3 pa = plane.transform.TransformPoint(new Vector3
(-5.0f, 0.0f, -5.0f)); // lower left corner in Unity
world coordinates

2 Vector3 pb = plane.transform.TransformPoint(new Vector3
(5.0f, 0.0f, -5.0f)); // lower right corner

3 Vector3 pc = plane.transform.TransformPoint(new Vector3
(-5.0f, 0.0f, 5.0f)); // upper left corner

4 Vector3 pe = transform.position; // eye position

Only three corner positions (pa, pb and pc) are needed, as the location
of the fourth one is implicit due to the rectangular shape of the screen.
Additionally the camera position is read. We called the camera posi-
tion the eye position pe in our implementation, as the camera ”sees”
the view plane and to make it easier to distinguish from the camera
gameobject in the code.

Having the required positions, a way for describing points relative toScreen-local-axes
the screen is needed. To achieve this, we need to calculate the screen-
local-axes vu, vr and vn. They are calculated as follows:

vr =
pb − pa
||pb − pa||

vu =
pc − pa
||pc − pa||

vn =
vr × vu
||vr × vu||

Together they are the orthonormal basis of the screen, as can be seen
in Figure 4.4. The vector vu points up, vr points to the right, and vn
points out of the screen. vn is also the vector normal to the screen.

Now that we can describe all points relative to the screen, we want toFrustum extents
construct a perspective projection matrix which can later be used to
create the desired foreshortening effect. To create this projection ma-
trix some additional values are needed: (1) the frustum extents and (2)
the distance to the clipping planes. The frustum extents are the dis-
tances from the screen-space-origin to the edges of the screen. They
are defined l (left), r (right), b (bottom) and t (top) as shown in Fig-
ure 4.5. They are calculated using the vectors from the eye position
to the respective screen corners, which are shown in Figure 4.6. The

4.1 Off-axis perspective projection 23

Figure 4.4: The eye position and corner positions of the view plane,
with the screen-local-axes emanating from the middle of the screen.
Using these axes all points can be described relative to the screen.

Figure 4.5: The view frustum from the eye position to the corners of
the screen, with the frustum extents shown. The frustum extents are
needed to create the perspective projection matrix.

calculation is as follows:

l = (vr ∗ va)n/d r = (vr ∗ vb)n/d
b = (vu ∗ va)n/d t = (vu ∗ vc)n/d

The second set of values needed for the perspective projection matrix Clipping planes

24 4 Tracking and Projection Pipeline

Figure 4.6: The vectors from the eye position to the screen corners.

are the distances to the near and far clipping planes, which are de-
fined as n and f . Clipping planes mark the distance range in which
the camera renders vertices [RealIlusion, 2018]. Everything before the
near clipping plane and everything after the far clipping plane will not
show up in the final rendered image. In our implementation, these
values are set inside of Unity and read by the script, to allow easy
editing of parameters in the visual editor.

We can now construct the perspective projection matrix:

P =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −f+n
f−n − 2fn

f−n
0 0 −1 0

The desired foreshortening effect requires the x and y values of everyDivision by the z

component vertex to be divided with the value of its z component. As Kooima
[2009] stated, this is easiest to do by making use of the fourth compo-
nent of homogeneous three-dimensional vectors. When such a vector
is multiplied by the -1 in the fourth row of P , the negative z value is
moved to the w-component of the resulting vector. Thus, if the result
is collapsed down, the division by z implicitly occurs.

The mathematical implementation of our perspective projection ma-
trix has two issues: (1) the view frustum cannot be rotated and (2) the
eye position cannot be moved horizontally or vertically. Both of these
issues need to be resolved for the off-axis perspective projection to be
useful for our desired application.

4.2 Calibration 25

To solve the issue of not being able to rotate the view frustum, we Issue 1: Rotating the
view frustumsimply rotate the screen in the opposite direction by the same amount.

This rotation is done via a transformation matrix M , with the screen-
local-axes vectors vr, vu and vn as columns:

M =

vrx vux vnx 0
vry vuy vny 0
vrz vuz vnz 0
0 0 0 1

The transpose of M : MT is multiplied with the perspective projec-
tion matrix P to resolve the issue of not being able to rotate the view
frustum.

The second issue that the eye position cannot be moved horizontally Issue 2: Moving the
eye positionor vertically, is due to the way the division by z functions. Our solu-

tion is similar in approach to the first issue: we move the screen in the
opposite direction. This requires the following translation matrix T :

T =

1 0 0 −pex
0 1 0 −pey
0 0 1 −pez
0 0 0 1

P is multiplied with T to resolve the second issue. Therefore the final Final matrix
matrix P ′ is calculated as follows:

P ′ = PMTT

The result of P ′ is an image with the off-axis perspective projection ap-
plied, which functions correctly regardless of the user’s head position
and the position of the screen.

The transformed image is the final result of the projection matrix script
and also of the first part of the tracking and projecting pipeline. While
the application is running, the image is rendered to a texture, called a
render texture. This render texture is then used in the next part of the
pipeline, the calibration.

4.2 Calibration

The second part of the tracking and projecting pipeline is the calibra-
tion, which aligns the image generated in the first part, with the real

26 4 Tracking and Projection Pipeline

Figure 4.7: The structure of the calibration part as seen in Unity,
shown in the context of the whole pipeline.

world projection surface. This alignment is needed, as in the first part
of the pipeline only the relative distances between the tracked objects
were considered. Thus, the virtual positions of the tracked objects
need to be matched up with their real-world counterparts. As the de-
fault unit of measurement in Unity is the same as a meter in the real
world [Unity Technologies, 2018g], the setup in the ZPAC lab can be
easily reconstructed inside of Unity by measuring the dimensions and
distances with a measuring tape.

The resulting structure inside of Unity consists of a camera and twoStructure in Unity
different sized plane gameobjects, as can be seen in Figure 4.7. The
camera represents the mounted projector and films the scene. The
large plane gameobject represents the table, around which the track-
ing system is set up in the ZPAC lab. The box lid is represented by the
small plane gameobject, onto which the render texture from the first
part is mapped. A benefit of mapping the render texture onto another
plane is that only the area on top of the box lid has the perspective pro-
jection applied. This mapping allows for non-3D user interface (UI)
elements to be displayed on the rest of the available projection surface
on the table. We created the large plane gameobject, representing the
table first. This plane acts as the baseline for the camera’s position.
The position of the camera is adjusted to ensure it is the same distance
above the large plane, as the mounted projector is above the table. The
positions of the large plane and the camera are fixed after the initial

4.2 Calibration 27

Figure 4.8: The calibration user interface for translating the tracking origin, with the arrows
on the left. A good calibration is shown, with the image matching the box lid.

adjustment. However, the small plane’s position is controlled by the
tracking data of the box lid.

While the projector could be manually moved until the projected im-
age of the small plane matches up with the real world box lid, this
is not feasible and goes against our design goal of making an easily
adaptable system. If the projector were to be moved, either by acci-
dent or if the OptiTrack calibration square is placed at a different loca-
tion on the table during startup, the projected image will no longer be
aligned. As this is relatively common and needs to be accounted for,
a quick way to calibrate is required. Thus, a solution inside of Unity
was implemented.

The calibration tool we implemented makes use of the fact that the Translation of the
tracking origintracking origin can be moved. Moving the tracking origin also moves

all of the tracked objects, namely the small plane with the render tex-
ture mapped to it. The tracking origin inside of Unity is defined by
the position of the OptiTrack client gameobject. Thus, to adjust the
tracking origin, the OptiTrack client gameobject is translated on the X
and Y axes. The Z-axis will never need to be adjusted, as the tracking
origin in Unity and the tracking origin in the Motive software cannot
differ in their height.

28 4 Tracking and Projection Pipeline

Figure 4.9: The Unity inspector tab of the camera used for adjusting
camera parameters, with the field of view parameter highlighted.

Based on the fact that the tracking origin only needs to be adjustedVisual calibration tool
in four directions (up, down, left, right), the implemented visual cal-
ibration tool uses arrows, as can be seen in Figure 4.8. This tool al-
lows users to move the tracking origin around in the X and Z axes
by pressing arrow buttons until the desired result is reached. Adjust-
ments to the position are made during runtime, so the view is updated
in real time, providing immediate feedback to the user. The calibra-
tion is complete when the projected image of the small plane, with the
mapped render texture, aligns with the box lid.

A complete calibration is saved for further sessions. The saving pro-
cess was implemented through the Unity PlayerPrefs system, which
stores the desired data in a plain-text file [Unity Technologies, 2018d].
Upon start of the application, this text file is read and the position of
the OptiTrack client is adjusted automatically to the saved position.
This saving process eliminates the need for calibration every time the
application starts.

The presented calibration solution allows for correct alignment whenCamera parameters
the box lid is placed on the table. For the calibration to remain intact
when the box lid is picked up, the camera parameters need to be cor-
rectly adjusted during the initial setup. These adjustments are made
in the camera gameobject’s inspector tab shown in Figure 4.9. The
field of view parameter is especially important, as if it is set correctly,

4.3 Keystone correction 29

the small plane will always match up with the dimensions of the box
lid. To determine the correct field of view parameter for the camera,
the projector’s field of view (found in the projector’s manual) is used
as a baseline and adjusted based on the output. If the projected image
of the small plane becomes too large to fit on the box lid when the box
lid is moved closer to the projector, the camera’s field of view needs
to be increased. If the projected image does not take up the available
space on the box lid, the field of view needs to be decreased. The pa-
rameter is set correctly when the projected image always matches the
dimensions of the box lid, regardless of how close the box lid is held to
the projector. When the box lid is tilted, the camera distorts the small
plane based on its perspective, which allows it to remain aligned.

If the calibration solution is used successfully and the parameters are
set correctly, the calibration will remain intact regardless of how the
box lid is moved. At the end of the second part of the pipeline, the
image is positioned at the correct location. This image is again ren-
dered to a texture, which is then used in the final part of the pipeline,
described in the following section.

4.3 Keystone correction

The third and final part of the tracking and rendering pipeline is the
keystone correction, which skews the image generated in the second
part, to ensure that a non-distorted final image is sent the projector.
This part is required as the projector is not positioned precisely above
the middle of the table, as illustrated in Figure 4.10. Therefore, the
camera used to generate the image in the calibration part is offset as
well.

Due to the slight offset from the middle, the projector is not perpen- Keystone effect
dicular to the projection surface, which results in a distorted image.
This distortion of the image, with the lower part of the image being
wider than the top part, creates a trapezoid shape as shown in Fig-
ure 4.11. This distortion is known as the keystone effect [Yadav and
Agrawal, 2013]. The amount of distortion can be approximated using
the following formula:

cos(ε− α
2)

cos(ε+ α
2)

ε is defined as the angle between the screen and the central light ray

30 4 Tracking and Projection Pipeline

Figure 4.10: The offset of the mounted projector, which causes the
keystone effect.

Figure 4.11: The trapezoid shape of the image when the keystone ef-
fect is present. The arrows show the skewing done by the keystone
correction to create a non-distorted image.

of the projector, and α defines the width of the focus, which is de-
termined by the projector’s lens. The formula shows, that with an
increasing angle, the amount of distortion will increase as well.

The distortion caused by the keystone effect is a common issue found
in many commercial projection setups. This is due to mounting con-
straints. An example for this, is mounting a projector to the ceiling at
an angle and having it project onto a nearby wall. To fix the keystone

4.3 Keystone correction 31

Figure 4.12: To correct the keystone effect the plane is rotated along
the perpendicular axis to the camera in the Unity scene view.

effect, most modern projectors make use of built-in software [Yadav
and Agrawal, 2013]. The projector used in the ZPAC lab is equipped
with such software and can correct the distortion. This correction is
done by digitally skewing the inputted image so that the projected
image will appear rectangular on the projection surface, as shown in
Figure 4.11

However, the keystone effect is still an issue for the image generated
by the camera in the calibration part of the pipeline. As the camera
is offset slightly from the two plane gameobjects, the captured image
will be distorted. This distortion is caused by how cameras deal with
perspective. The camera cannot be moved to the middle, as its exact
point of view is needed to ensure consistent calibration. Therefore, the
keystone effect on the render texture needs to be fixed using a different
method before the final image is sent to the projector.

The solution we implemented requires two additional gameobjects: Keystone correction
approach(1) a plane gameobject, with the same dimensions as the large plane

used in the calibration part of the pipeline, and (2) a camera. The
plane gameobject has the render texture mapped onto it and is filmed
by the camera. To fix the keystone effect, the plane is rotated along the
perpendicular axis to the camera until the distortion is canceled out.
This rotation is done in the Unity scene view, as shown in Figure 4.12.
Our approach uses the same camera issue which originally distorted

32 4 Tracking and Projection Pipeline

the image, to create a non-distorted final image. This resulting image
is then sent to the projector.

To summarize, the tracking and projecting pipeline consists of three
parts: off-axis perspective projection, calibration, and keystone cor-
rection. A 3D illusion is created by applying the off-axis perspective
projection. The resulting image is then correctly aligned with the real
world setup during the calibration part. Lastly, the image is skewed
in the keystone correction part, with a non-distorted image being sent
to the projector. The design goal set for the implementation of the
pipeline was met, as the majority of the parameters can be changed
without needing to adjust the underlying code. Therefore the pipeline
can easily be reconfigured for a different setup and used for a variety
of use cases. One of these use cases is the game developed to show off
the pipeline. The game itself, as well as how it was implemented is
described in the following chapter.

33

Chapter 5

Game

An augmented reality computer game was developed in Unity. The
game uses the tracking and projection pipeline, introduced in the pre-
vious chapter, and the OptiTrack system introduced in the chapter 3.1
“Tracking system”. The design goal of the game is to showcase the
tracking capabilities of the OptiTrack system and the 3D illusion cre-
ated by the pipeline, while providing a fun game-play experience.

The implementation of the game was done using a two-phase ap-
proach, consisting of a prototyping phase and a development phase.
This approach and the work done during the phases are described in
the next section. For the final game to function as intended, we im-
plemented a specific structure in Unity. This structure is described in
section 5.2 “Game structure”. Using this structure, scripts are imple-
mented to control player movement and game-logic. These scripts are
described in the final section of this chapter.

5.1 Game development approach

To successfully develop a large software, like a game, a suitable ap-
proach needs to be defined. A good approach helps developers stay
focused on the required tasks and allows deadlines to be met. A com-
monly used game development approach was defined by Erik Bethke
[2003]. His approach consists of: (1) the preproduction phase, (2) the
prototyping phase, (3) the development phase, and (4) the post-release

34 5 Game

phase. The preproduction phase involves creating a game concept and
an accompanying vision document, which can be presented to game
publishers. The prototyping phase involves finding suitable game me-
chanics and controls for the game concept through testing. The devel-
opment phase uses the chosen mechanics and expands them into a
fully featured game, making use of established game design princi-
ples. At the end of the development phase, the game is released. The
last phase, the post-release phase, describes the period after the game
has been released and focuses on updating the game with additional
content.

Due to the short time frame for completing the game as part of a bach-
elor thesis, the long approach defined by Bethke [2003] was not feasi-
ble. Additionally, as there would be no further updating of the game
after its completion, the post-release phase was not needed. Thus, the
approach we chose consisted of two phases: (1) the prototyping phase
and (2) the development phase. These phases and the work accom-
plished during them are described in the following subsections.

5.1.1 Prototyping phase

The prototyping phase consists of testing out game mechanics and
controls with the goal of finding a fun combination [Sicart, 2008]. As
part of the design goal of the game is to make use of the OptiTrack
system’s tracking capabilities, we decided upon using the projection
surface itself as the controller. Thus, the tracked box lid functions as
the controller for the game, with its movement, as well as pitch, jaw,
and roll being the input.

With the control scheme chosen, a suitable game mechanic needed toInspiration
be found. An early idea was to recreate the tilting maze platform of the
“Myahm Agana Shrine” puzzle from the game “The Legend of Zelda:
Breath of the Wild” [Nintendo, 2018a], shown in Figure 5.1. The puz-
zle consists of a floating maze-like platform and a physics-controlled
ball. The goal of the puzzle is to successfully tilt the platform, allowing
the ball to roll through the maze, while avoiding falling off the sides
of the platform. Controlling the tilt of the platform is done by using
the accelerometer inside of the Nintendo Switch console. The tilt of
the hand-held console controls the tilt of the platform in real-time. As
the platform is similar in shape to the rectangular box lid, developing
a similar game mechanic seemed plausible.

5.1 Game development approach 35

Figure 5.1: The “Myahm Agana Shrine” puzzle in the game “The Leg-
end of Zelda: Breath of the Wild” [Nintendo, 2018a].

Figure 5.2: The rigidbody inspector tab in Unity, which is used to ad-
just the drag parameters.

To test this potential game mechanic, a prototype was built in Unity. First prototype
The setup consisted of (1) a plane gameobject, (2) a sphere gameobject,
and (3) four cube gameobjects. The plane functioned as the platform
and was controlled by the tracking data from the box lid through the
OptiTrack system. The sphere was used as the ball and had a rigid-
body component attached to it. This rigidbody component allowed
the ball to be controlled by the Unity physics engine, making it roll to
the lowest point due to the effects of gravity. The four cube gameob-
jects were placed on the plane to act as obstacles.

With the prototype complete, it could be tested regarding the design
goals of the game. During testing, it became clear that the ball rolled
very fast, which made it difficult to control finely by tilting the box

36 5 Game

Figure 5.3: The second prototype as seen in the Unity scene view,
showing the walls added to the sides of the platform. Additionally,
the ball and the obstacles can be seen.

lid. This was fixed by increasing the drag parameter in the rigidbody
inspector tab, shown in Figure 5.2, which increased the air resistance
applied to the ball. The stronger air resistance slowed the movement
of the ball, which made it easier to control and lead to the prototype
being more fun. However, the possibility of the ball rolling off the
edge of the platform was still a source of frustration. Thus, while the
prototype did meet the design goal of making use of the OptiTrack
system’s capabilities, it did not provide a fun game-play experience
due to the numerous fail states.

We implemented a second iteration of the prototype and removed theSecond prototype
frustrating fail states by adding walls to the sides of the platform, as
shown in Figure 5.3. As navigating the ball around the platform was
no longer challenging, due to not being able to fall off, a new challenge
was needed. After a brainstorming session, we decided on having
the player fight the clock. A score would be increased through the
repeated completion of an action before a timer ran out.

5.1 Game development approach 37

Figure 5.4: The taxi art asset, which replaced the ball used to test the
game mechanic in the prototyping phase.

The specific action needed to increase the score was decided to be nav-
igating the ball to different points on the platform as quickly as possi-
ble. Tilting the box lid without needing to worry about the ball falling
off the platform, while still providing the player with a challenge,
resulted in the desired fun game-play experience. Having found a
suitable game mechanic, which met the design goals of the game, the
prototyping phase was completed. The mechanic was then expanded
upon in the development phase.

5.1.2 Development phase

After completing the prototype phase, the decided game mechanic is
used as the basis for the full game. This involves creating an environ-
ment in which the chosen mechanic makes sense by using established
game design principles to create a consistent and fun game.

To create a believable environment, an in-game reason for making the Game environment
player repeatedly traverse the available space on the platform, needed
to be found. Upon further reflection, we concluded that a taxi fare sys-
tem would match the chosen mechanic well. Taxis drive to a specific
location to pick up a passenger, then drive to another location to drop

38 5 Game

Figure 5.5: The final game environment showing the island art asset including as environ-
mental art assets and the road network, as seen in the Unity scene view.

them off and then repeat the process. Thus, the ball was replaced with
a taxi art asset, shown in Figure 5.4.

Following the same logic, the platform was replaced by an island art
asset, which features a road network for the taxi to drive on, as shown
in Figure 5.5. The roads also help signify where the taxi is allowed
to drive. Having the game be set on a water-surrounded island also
implicitly solves the issue of needing to explain why the taxi is not
able to drive off the edges of the play-area. The chosen island art asset
also features tall buildings to emphasize the 3D illusion created by the
perspective projection described in chapter 4.1 “Off-axis perspective
projection”.

Choosing the correct size of the island art asset is very important, as itSizing of the island
art asset can have a substantial effect on the way the game is experienced. The

game design principle known as “spacing” describes the importance
of sizing game elements correctly. The principle refers to having an
understanding of how much space will be available, both inside the

5.1 Game development approach 39

Figure 5.6: The colorful objective markers signaling the pickup and
drop-off points, which create a clear goal for the player to work to-
wards.

virtual world, as well as on-screen space [Allmer, 2009]. It also urges
developers to take the spatial relationships of elements into consider-
ation, as well as what happens when those spaces are adjusted.

Space on-screen consists of the surface of the box lid, onto which the
island is projected. Due to this limited space, the game environment
needs to be sized accordingly. A small island would have less space
for roads, but it would allow for the whole art asset to be scaled up
to fit the available space on the box lid. A large island would have
more space for roads but would require scaling down to fit the box
lid. As the design goal of a fun game-play experience cannot be met
if the player has difficulties seeing what is happening in the game, a
smaller island art asset was chosen, which was then scaled up.

Having sized the island art asset, the specific locations the player is Objective markers
expected to navigate the taxi to, in order to increase his score, needed
to be defined. These locations function as the objectives in the game,
providing players with a goal they can work towards. More concrete
goals are usually deemed better if high player participation is desired
[Stillman, 2014]. Thus, colorful cube gameobjects were placed onto the
road network, to act as objective markers. These cube gameobjects,
shown in Figure 5.6, signal where the player should navigate the taxi
to. The colors of the markers denote the type of marker: yellow mark-
ers are passenger pickup points, and purple markers are passenger

40 5 Game

drop-off points. Having these two marker types enforces a sequence
which the player has to follow: a passenger must first be picked up,
before he can be dropped off. To decrease the fatigue of being required
to follow the same game-play sequence repeatedly, the marker loca-
tions are chosen in a pseudo-random fashion during run-time. The
script used for choosing the marker locations is described in section
5.3.2 “Level manager script”.

For the game to be considered complete, additional elements like the
menu and settings screens needed to be added. We implemented these
screens in the final step of the development phase. These screens are
described in section 5.2.1 “Main menu scene”.

At the end of the development phase, the game was considered com-
plete. However, for the game to look and function as described above,
we implemented a specific structure inside Unity. This structure is
described in the following section.

5.2 Game structure

To develop the augmented reality game, using the game mechanics
and art assets described in the previous section, we implemented a
specific structure. This structure was primarily determined by the
way the Unity 3D engine is constructed, and the way our game should
function. Unity uses files called “scenes”, which can be thought of as
unique parts of the game. All elements of the game need to be placed
within such a scene [Unity Technologies, 2018f]. Thus, each scene
file can contain, for example, the menu screens or a specific level in
a game.

The use of scenes allows for the game to be structured as parts, allow-Unity scenes
ing developers to build up the game one part at a time. Additionally,
this segmentation reduces the clutter in the Unity’s visual editor, as
only the gameobjects and art assets for a specific scene are displayed.
If this were not the case, large games would require developers to
search through an extensive list of gameobjects every time a parame-
ter needs to be changed for a specific gameobject. Many large games
have upwards of fifty scenes, consisting of one scene per level and sev-
eral for the menus. However, this number can vary greatly, depending
on the type of game and if procedural elements are used.

5.2 Game structure 41

Figure 5.7: The main menu scene which greets the player when start-
ing the game, showing the five buttons.

During the implementation of the game, we created three scenes:
(1) the main menu scene, (2) the tracking scene, and (3) the level 1
scene. The main menu scene contains the different menu screens and
is shown after starting the game. The scene’s structure and how it
functions is described in the following subsection. The tracking scene
is loaded to align the projected image of the island with the surface
of the box lid. This scene is described in subsection 5.2.2 “Tracking
scene”. After navigating the menu and ensuring good calibration, the
level 1 scene can be loaded. It contains the game itself and is described
in the final subsection.

5.2.1 Main menu scene

The main menu scene is used to display the main menu, shown in
Figure 5.7, when the player starts the game. The scene uses a back-
ground image to make the main menu more visually appealing and to
connect it to the theme of the game. The menu itself consists of user in-
terface (UI) elements, such as buttons and labels. Unity requires all UI
elements to be placed into a canvas gameobject. This canvas gameob-
ject controls their position on the screen, and ensures the buttons do
not overlap regardless of the screen’s aspect ratio [Unity Technologies,
2018h].

42 5 Game

Figure 5.8: The about text is shown after the about button is pressed
on the main menu screen, with the back button to navigate back the
main menu shown.

There are five buttons displayed when the main menu scene is loaded.
These buttons are: (1) start, (2) calibrate, (3) help, (4) about, and (5)
quit. The “start” button loads the level 1 scene, which then starts the
game. The “calibrate” button additively loads the tracking scene into
the main menu scene. The “help” and “about” buttons both open an-
other canvas gameobject, which displays additional information to the
user in the form of text, as shown in Figure 5.8. The “quit” button
stops the game and returns window focus to the Unity visual editor.

5.2.2 Tracking scene

The tracking scene is used to align the projected image of the island
onto the surface of the box lid. To accomplish this calibration, the
tracking scene contains a simple version of the tracking and projection
pipeline introduced in chapter 4 “Tracking and Projection Pipeline”.
Thus, the calibration tool can be displayed to allow the player to cal-
ibrate the pipeline and to save the parameters. These calibration pa-
rameters are then used by the full version of the pipeline in the level 1
scene during game-play.

The calibrate button in the main menu scene triggers the additive

5.2 Game structure 43

Figure 5.9: The calibration user interface displayed when the tracking
scene is loaded additively, showing the text and buttons, which use
the main menu scene canvas.

loading of the tracking scene into the main menu scene. This results
in both scenes being active at the same time, which is only done is cer-
tain special cases. The reason we implemented the tracking scene to
load this way, is to allow the canvas gameobject from the main menu
scene to be used to display the text and arrow buttons.

5.2.3 Level 1 scene

The level 1 scene is loaded when the start button is pressed on the
main menu. This scene contains all the art assets, game-play scripts,
and UI elements required for the game itself. Thus, it is considered
the scene in which the actual game is stored and played.

The name of the scene, “level 1”, was chosen to allow for an easy to Nomenclature
understand nomenclature if the game is ever expanded. This expan-
sion could potentially come in the form of new islands, with different
road networks. Each of these islands would require its own scene.
These additional scenes could then be named “level 2”, “level 3”, and
so forth, to allow for easy distinction.

The structure of the level 1 scene inside of Unity is similar to the struc- Structure in Unity
ture of the tracking and projection pipeline introduced in chapter 4
“Tracking and Projection Pipeline”, as the game uses this pipeline.
The main difference is a change in the structure of the off-axis per-
spective projection part. The cube art asset is replaced with all art

44 5 Game

Figure 5.10: The new structure of the off-axis perspective projection, so it applies the 3D
illusion to all the art assets and gameobjects during game-play. The new parts are shown in
purple.

assets and gameobjects needed for the game, as the 3D illusion should
be applied to them. This new structure is shown in Figure 5.10. Thus,
the surface gameobject has four new children: (1) the island art asset,
(2) the player prefab, (3) the drop-off points group, and (4) the pickup
points group. The player prefab consists of the taxi art asset and the
scripts required for the taxi to move, which are described in detail in
section 5.3.1 “Player prefab scripts”. The drop-off and pickup points
groups each contain four colored objective markers.

Each objective marker is made out of a cube gameobject and a colliderObjective marker
structure component. A Unity collider component is used to detect collisions

with other gameobjects [Unity Technologies, 2019]. Thus, this collider
component is used to detect if the player has successfully navigated
the taxi to an objective marker.

In addition to the gameobjects and art assets which have been addedUser interface
elements as children of the OptiTrack client gameobject, the level 1 scene also

uses various UI elements which are contained in a canvas gameobject.
These elements include (1) a start timer, (2) a countdown timer, and
(3) a score indicator. The start timer is displayed when the scene is
loaded, to allow the player some seconds to adjust his focus before
the taxi can be moved. The countdown timer is placed in the top left
corner of the available projection space and shows the time remaining.
The score indicator is placed below the countdown timer and shows
the current score of the player.

The games’ structure inside of Unity allows the game to function as

5.3 Scripts 45

intended and to meet the design goal of showcasing the tracking and
projection pipeline. Using this structure, scripts to control the player
movement and the overall game-logic were implemented, which are
described in the following section.

5.3 Scripts

To create a fun and complete game-play experience, different scripts
were implemented. These scripts make use of the game’s structure
to control and define the way the game functions during run-time.
While many different scripts were implemented, two are especially
important: (1) the scripts contained in player prefab, as they define
how the taxi moves, and (2) the level manager script, containing the
game-logic. These scripts are described in the following subsections.

5.3.1 Player prefab scripts

The player prefab is a Unity prefab asset containing the taxi. Unity
prefabs are reusable assets, which can contain multiple gameobjects
and their components, parameters, and scripts [Unity Technologies,
2018e]. Such prefabs allow for a single item to be instantiated during
run-time, instead of having to instantiate every gameobject and script
separately.

The player prefab is comprised of: (1) a sphere gameobject and (2) the Structure of the
player prefabtaxi art asset, as shown in Figure 5.11. The sphere gameobject has a

rigidbody component attached to it, allowing it to be controlled by
the Unity physics engine. The taxi art asset has two scripts attached
to it, which define how the taxi drives around on the island.

As the player should see only the taxi art asset during game-play, the
mesh renderer of the sphere is disabled. Disabling the mesh renderer
prohibits the camera from rendering the surface mesh of the sphere,
thus making the sphere invisible.

The sphere gameobject is used to control the driving behavior of the Sphere gameobject
taxi. As the Unity physics engine manages the sphere gameobject, it
will constantly roll to the lowest point of the island when the player
tilts the tracked box lid. This mechanic is used to control the driving

46 5 Game

Figure 5.11: The player prefab asset, with the gameobject and art asset
it is comprised of shown. Everything inside of a prefab can be instan-
tiated with a single command during run-time.

Figure 5.12: The sphere gameobject used for controlling the taxi, with
its mesh renderer enabled for visualization purposes.

of the taxi by updating the taxi art asset’s position to match that of the
sphere, as shown in 5.12.

Updating the position of the taxi art asset based on the position ofDriving script
the sphere gameobject is handled by the driving script, which is at-
tached to the taxi art asset. To ensure the position is updated correctly

5.3 Scripts 47

every frame, the code in the driving script is placed in the LateUp-
date function. The Unity LateUpdate function is only executed after
all physics calculations have completed Unity Technologies [2018b].
Thus, the position of the physics controlled sphere will have been up-
dated before the driving script accesses these values. The code we
implemented in the driving script is as follows:

1 void LateUpdate () {
2 spherePositionTemp = sphere.transform.position; //

Fill a temporary variable with the sphere’s
current position

3 spherePositionTemp.y = spherePositionTemp.y -
downwardsAdjustment; //As the sphere’s origin is
higher up then the taxi’s origin, the temporary
variable’s y value is adjusted downwards. This
adjustment ensures the wheels of the taxi art
asset look like they are touching the ground

4 transform.position = spherePositionTemp; //The taxi
gameobject’s position is assigned the values
stored in the temporary variable

5 }

The second script attached to taxi art asset, the FaceDirectionOfMove- FaceDirectionOfMovement
scriptment script, ensures that the art asset is always rotated correctly based

on the direction it is moving in. This rotation is required, as a real-life
taxi can only drive in the direction it is facing, which should also be
the case in the game. To determine the required rotation, the velocity
vector of the sphere gameobject is used, as the movement direction
can be determined from it. The code used to rotate the taxi art asset is
as follows:

1 void LateUpdate () {
2 Vector3 movement = GameObject.Find("Sphere").

GetComponent<Rigidbody>().velocity; //Get the
velocity of the sphere, as the movement direction
can be determined from it

3 transform.rotation = Quaternion.Slerp(transform.
rotation, Quaternion.LookRotation(movement), 0.3F)
; //Rotate the taxi gameobject based on the sphere
’s movement direction and add some smoothing to
the rotation by using the slerp function

4 }

Together both scripts allow the player to think that by tilting the box
lid, he is directly controlling the taxi when navigating to the objec-

48 5 Game

Figure 5.13: The sequence of events, in which the level manager script
selects a new objective marker, showing when the score is updated.

tive markers. These objective markers are controlled by the script de-
scribed in the following subsection.

5.3.2 Level manager script

The level manager script defines the majority of the game-logic and
is executed as soon as the level 1 scene is loaded. The level manager
script has three main functions: (1) to control which objective marker
should be shown to the player, (2) to increase the score if a passenger
is successfully picked up and dropped off, and (3) end the game when
the countdown timer finishes.

To control which objective marker is shown to the player, the levelControlling which
objective marker is

shown to the player
manager script first adds all pickup and drop-off points into separate

5.3 Scripts 49

arrays. All of these points are then set to inactive, making them invisi-
ble to the player. When the start timer is finished, the script randomly
selects a pickup point and sets it to active, allowing the player to see
the first objective marker. As the player navigates the taxi into this
objective marker, a collision occurs between the rigidbody component
of the sphere (introduced in section 5.3.1 “Player prefab scripts”) and
the collider component of the objective marker. This collision triggers
the level manager script to set the objective marker to inactive, and
randomly select a drop-off point from the corresponding array, which
it then sets to active. This sequence of events is shown in Figure 5.13,
for collisions with pickup points, as well as with drop-off points. The
code we implemented for the sequence of events when the player col-
lides with a drop-off point objective marker, including updating the
score, is as follows:

1 //Check if a drop-off happened
2 for(int i = 0; i < dropoffPoints.Length; i++) { //For

each drop-off point check if a collision occurred
3 DropoffTrigger dropoffTrigger = dropoffPoints[i].

GetComponentInChildren<DropoffTrigger>();
4 if (dropoffTrigger.droppedOff) { //Enter if drop-off

occured
5 dropoffTrigger.droppedOff = false; //So it is only

triggered once per collision
6 dropoffPoints[i].SetActive(false); //Set the marker

to inactive, making it invisible
7 score += 100; //Update score
8 pickupPoints[Random.Range(0, pickupPoints.Length-1)

].SetActive(true); //Randomly select a new
pickup point and make it active

9 }
10 }

In addition to controlling which objective marker is shown to the Ending the game
player, the level manager script also ends the game when the count-
down timer is finished. After ending the game, a message is dis-
played, showing the score achieved by the player. To allow the player
enough time to read his score, a five-second delay was implemented
before restarting the game. Restarting the game is accomplished by
reloading the level 1 scene, which also reloads the level manager
script.

To summarize, we developed the game using a two-phase approach,
consisting of the prototyping phase and the development phase. This

50 5 Game

approach allowed for the game to be completed in the given time
frame. The final game utilizes a specific structure inside of Unity con-
sisting of three scenes. Using this structure, scripts were implemented
to control player movement and game-logic. The design goals set for
the game were met. The OptiTrack system’s tracking capabilities are
showcased through use of the tracked box lid as a controller. The 3D
illusion generated by the tracking and projection pipeline is used to
transform the games’ island art asset. Additionally, the game provides
a fun game-play experience, meeting the final design goal.

51

Chapter 6

Summary and future work

6.1 Summary and contributions

As a recapitulation, a summary of this thesis is presented in this fi-
nal chapter. This thesis showed that it is possible to develop a tool
which allows researchers to use augmented reality in their experimen-
tal setup. The tool consisted of the tracking and projection pipeline.
This pipeline is made up of three connected parts: (1) off-axis perspec-
tive projection, (2) calibration, and (3) keystone correction. The struc-
ture of the pipeline is such that it can be easily adapted to be used in
future studies, without needing to change the underlying code. The
pipeline developed in this thesis could potentially contribute to di-
minishing the cost of expensive experiment setups, by allowing diffi-
cult to construct objects to be digitally superimposed onto the scene.

To showcase this tracking and projection pipeline, as well as the track-
ing capabilities of the OptiTrack system, an accompanying augmented
reality game was developed. The final game allows players to control
a virtual taxi through the tilting of a tracked surface. The objective of
the game is to achieve a high-score, by picking up and dropping off as
many passengers as possible in the given time limit.

52 6 Summary and future work

6.2 Future work

Considering the software developed in this thesis, notably the
pipeline and the game, there are some aspects which could be ex-
panded upon in future work. These aspects are: (1) the visual cali-
bration interface of the pipeline and (2) the game’s features.

The visual calibration interface of the tracking and projection pipeline,Visual calibration
interface introduced in chapter 4.2 “Calibration”, allows for the tracking origin

to be translated on two axes. The third axis, the z-axis, cannot be ad-
justed through the interface, as such an adjustment would only be re-
quired in rare cases. Nonetheless, a visual method for this adjustment
could be added, to make the pipeline even more versatile.

Additionally, future work could also include the development of ad-Game features
ditional features for the augmented reality game. To further showcase
the tracking capabilities of the OptiTrack system, additional objects
could be tracked and used to interact with the game. An example of
this could be fitting small cardboard cubes with tracking markers and
attaching these cubes to the surface of the box lid. The cubes could act
as roadblocks for the taxi, forcing the player to find alternative routes
to the objective markers.

Another possible extension of the game could be the inclusion of
different types of taxis. In addition to the yellow taxi currently in
the game, players could be given a choice between different vehicles
when starting the game. For example, a taxi-van could move slower
but reward the player with more points per fare. Experimenting with
different vehicle types and adjusting the game-play accordingly, could
further increase player engagement.

53

Bibliography

Matt Allmer. The 13 basic principles of gameplay design, Febru-
ary 2009. URL https://www.gamasutra.com/view/feature/
132341/the 13 basic principles of .php.

S. De Amici, A. Sanna, F. Lamberti, and B. Pralio. A wii remote-
based infrared-optical tracking system. Entertainment Computing,
1(3):119 – 124, 2010. ISSN 1875-9521. doi: https://doi.org/10.1016/
j.entcom.2010.08.001. URL http://www.sciencedirect.com/
science/article/pii/S1875952110000054.

Apple Inc. Arkit 2, 2018. URL https://developer.apple.com/
arkit/.

Augmented Reality Games. Current state of the augmented real-
ity technology, 2019. URL https://www.augmented-reality-
games.com/technology.php.

Ronald T Azuma. A survey of augmented reality. Presence: Teleopera-
tors & Virtual Environments, 6(4):355–385, 1997.

Uğur Başar, Vahit Sahiner Ali, and Barış Fidaner Işık. Off-axis stereo
projection and head tracking for a horizontal display. 2009.

Jorge Bacca, Silvia Baldiris, Ramon Fabregat, Sabine Graf, et al. Aug-
mented reality trends in education: a systematic review of research
and applications. 2014.

E. Bethke. Game Development and Production. Wordware game devel-
oper’s library. Wordware Pub., 2003. ISBN 9781556229510. URL
https://books.google.ch/books?id=m5exIODbtqkC.

Boeing. Boeing tests augmented reality in the factory, January
2018. URL https://www.boeing.com/features/2018/01/
augmented-reality-01-18.page.

https://www.gamasutra.com/view/feature/132341/the_13_basic_principles_of_.php
https://www.gamasutra.com/view/feature/132341/the_13_basic_principles_of_.php
http://www.sciencedirect.com/science/article/pii/S1875952110000054
http://www.sciencedirect.com/science/article/pii/S1875952110000054
https://developer.apple.com/arkit/
https://developer.apple.com/arkit/
https://www.augmented-reality-games.com/technology.php
https://www.augmented-reality-games.com/technology.php
https://books.google.ch/books?id=m5exIODbtqkC
https://www.boeing.com/features/2018/01/augmented-reality-01-18.page
https://www.boeing.com/features/2018/01/augmented-reality-01-18.page

54 Bibliography

Sam Bucolo, Mark Billinghurst, and David Sickinger. User experi-
ences with mobile phone camera game interfaces. In Proceedings
of the 4th International Conference on Mobile and Ubiquitous Multi-
media, MUM ’05, pages 87–94, New York, NY, USA, 2005. ACM.
ISBN 0-473-10658-2. doi: 10.1145/1149488.1149503. URL http:
//doi.acm.org/10.1145/1149488.1149503.

Adam S Champy. Elements of motion: 3d sensors in intuitive game
design. Analog Dialogue, 41(2):11–14, 2007.

Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V
Kenyon, and John C Hart. The cave: audio visual experience auto-
matic virtual environment. Communications of the ACM, 35(6):64–73,
1992.

Crytek. Cryengine, 2018. URL https://www.cryengine.com/.

Alastair H Cummings. The evolution of game controllers and control
schemes and their effect on their games. In The 17th annual university
of southampton multimedia systems conference, volume 21, 2007.

Epic Games. What is unreal engine 4, 2018. URL https:
//www.unrealengine.com/en-US/what-is-unreal-
engine-4.

Facebook Technologies. Oculus rift, 2018. URL https://
www.oculus.com/rift/.

Michelle Fitzsimmons. Apple’s tim cook: ’ar has the ability to amplify
human performance’, February 2018.

Google. Google glass, 2018. URL https://www.x.company/
glass/.

Gutemberg Guerra-Filho. Optical motion capture: Theory and imple-
mentation. RITA, 12(2):61–90, 2005.

Nicolas Heuser. ”window into a virtual world” screen concept - home-
made cave environments. 2008.

Brian Karis and Epic Games. Real shading in unreal engine 4. Proc.
Physically Based Shading Theory Practice, pages 621–635, 2013.

S.L. Kent. The Ultimate History of Video Games: Volume Two: from
Pong to Pokemon and beyond...the story behind the craze that touched
our li ves and changed the world. Crown/Archetype, 2010. ISBN
9780307560872. URL https://books.google.ch/books?id=
PTrcTeAqeaEC.

http://doi.acm.org/10.1145/1149488.1149503
http://doi.acm.org/10.1145/1149488.1149503
https://www.cryengine.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.oculus.com/rift/
https://www.oculus.com/rift/
https://www.x.company/glass/
https://www.x.company/glass/
https://books.google.ch/books?id=PTrcTeAqeaEC
https://books.google.ch/books?id=PTrcTeAqeaEC

Bibliography 55

Peter Koch. Optitrack for vr and unity3d, November 2016.
URL http://talesfromtherift.com/optitrack-for-vr-
and-unity3d/.

Robert Kooima. Generalized perspective projection. J. Sch. Electron.
Eng. Comput. Sci, 2009.

Ernst Kruijff, J Edward Swan, and Steven Feiner. Perceptual issues
in augmented reality revisited. In Mixed and Augmented Reality (IS-
MAR), 2010 9th IEEE International Symposium on, pages 3–12. IEEE,
2010.

Leap Motion. Documentation - Technology Overview, 2018. URL https:
//developer.leapmotion.com/documentation.

Michael Lewis and Jeffrey Jacobson. Game engines. Communications
of the ACM, 45(1):27, 2002.

Minhua Ma, Lakhmi C Jain, Paul Anderson, et al. Virtual, augmented
reality and serious games for healthcare 1, volume 1. Springer, 2014.

Microsoft. Kinect for windows, 2018. URL https://
developer.microsoft.com/en-us/windows/kinect.

Mark R Mine, Jeroen van Baar, Anselm Grundhöfer, David Rose,
and Bei Yang. Projection-based augmented reality in disney theme
parks. IEEE Computer, 45(7):32–40, 2012.

NaturalPoint. Rigid Body Tracking, February 2018a. URL
https://v20.wiki.optitrack.com/index.php?title=
Rigid Body Tracking.

NaturalPoint. OptiTrack Unity Plugin, September 2018b. URL
https://v20.wiki.optitrack.com/index.php?title=
OptiTrack Unity Plugin.

NaturalPoint. Flex 13, 2018a. URL https://optitrack.com/
products/flex-13/.

NaturalPoint. Optitrack, 2018b. URL https://optitrack.com/.

Nintendo. The legend of zelda: Breath of the wild, 2018a. URL
https://www.zelda.com/breath-of-the-wild/.

Nintendo. Wii u, 2018b. URL https://www.nintendo.com/wiiu/
what-is-wiiu.

PS-Tech. Optical tracking explained, 2018. URL http://www.ps-
tech.com/3d-technology/optical-tracking.

http://talesfromtherift.com/optitrack-for-vr-and-unity3d/
http://talesfromtherift.com/optitrack-for-vr-and-unity3d/
https://developer.leapmotion.com/documentation
https://developer.leapmotion.com/documentation
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://v20.wiki.optitrack.com/index.php?title=Rigid_Body_Tracking
https://v20.wiki.optitrack.com/index.php?title=Rigid_Body_Tracking
https://v20.wiki.optitrack.com/index.php?title=OptiTrack_Unity_Plugin
https://v20.wiki.optitrack.com/index.php?title=OptiTrack_Unity_Plugin
https://optitrack.com/products/flex-13/
https://optitrack.com/products/flex-13/
https://optitrack.com/
https://www.zelda.com/breath-of-the-wild/
https://www.nintendo.com/wiiu/what-is-wiiu
https://www.nintendo.com/wiiu/what-is-wiiu
http://www.ps-tech.com/3d-technology/optical-tracking
http://www.ps-tech.com/3d-technology/optical-tracking

56 Bibliography

RealIlusion. Clipping planes of the camera, 2018. URL
https://www.reallusion.com/iclone/help/iclone3/
10 Scene/Camera/Clipping Planes of the Camera.htm.

M. Ribo, A. Pinz, and A. L. Fuhrmann. A new optical tracking system
for virtual and augmented reality applications. In IMTC 2001. Pro-
ceedings of the 18th IEEE Instrumentation and Measurement Technology
Conference. Rediscovering Measurement in the Age of Informatics (Cat.
No.01CH 37188), volume 3, pages 1932–1936 vol.3, May 2001. doi:
10.1109/IMTC.2001.929537.

Miguel Sicart. Defining game mechanics. The International Jour-
nal of Computer Game Research, 8(2), December 2008. URL http:
//gamestudies.org/0802/articles/sicart.

R Stamm. Retroreflective surface, January 1973. US Patent 3,712,706.

Daniel Stillman. Seven principles of game design and
five innovation games that work, October 2014. URL
http://www.thedesigngym.com/seven-principles-of-
game-design-and-five-innovation-games-that-work/.

Steve Sullivan, Kevin Wooley, Brett A Allen, and Michael Sanders.
Visual and physical motion sensing for three-dimensional motion
capture, September 2015. US Patent 9,142,024.

Thinkwik. Cryengine vs unreal vs unity: Select the best game
engine, April 2018. URL https://medium.com/@thinkwik/
cryengine-vs-unreal-vs-unity-select-the-best-
game-engine-eaca64c60e3e.

TNW. This engine is dominating the gaming industry right now,
2016. URL https://thenextweb.com/gaming/2016/03/24/
engine-dominating-gaming-industry-right-now/.

Unity Technologies. GameObject, November 2018a. URL https://
docs.unity3d.com/Manual/class-GameObject.html.

Unity Technologies. MonoBehaviour.LateUpdate(), November 2018b.
URL https://docs.unity3d.com/ScriptReference/
MonoBehaviour.LateUpdate.html.

Unity Technologies. Unity3d, 2018c. URL https://unity3d.com/.

Unity Technologies. PlayerPrefs, November 2018d. URL https://
docs.unity3d.com/ScriptReference/PlayerPrefs.html.

https://www.reallusion.com/iclone/help/iclone3/10_Scene/Camera/Clipping_Planes_of_the_Camera.htm
https://www.reallusion.com/iclone/help/iclone3/10_Scene/Camera/Clipping_Planes_of_the_Camera.htm
http://gamestudies.org/0802/articles/sicart
http://gamestudies.org/0802/articles/sicart
http://www.thedesigngym.com/seven-principles-of-game-design-and-five-innovation-games-that-work/
http://www.thedesigngym.com/seven-principles-of-game-design-and-five-innovation-games-that-work/
https://medium.com/@thinkwik/cryengine-vs-unreal-vs-unity-select-the-best-game-engine-eaca64c60e3e
https://medium.com/@thinkwik/cryengine-vs-unreal-vs-unity-select-the-best-game-engine-eaca64c60e3e
https://medium.com/@thinkwik/cryengine-vs-unreal-vs-unity-select-the-best-game-engine-eaca64c60e3e
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://thenextweb.com/gaming/2016/03/24/engine-dominating-gaming-industry-right-now/
https://docs.unity3d.com/Manual/class-GameObject.html
https://docs.unity3d.com/Manual/class-GameObject.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
https://unity3d.com/
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Bibliography 57

Unity Technologies. Prefabs, November 2018e. URL https://
docs.unity3d.com/Manual/Prefabs.html.

Unity Technologies. Scenes, November 2018f. URL https://
docs.unity3d.com/Manual/CreatingScenes.html.

Unity Technologies. Transforms, November 2018g. URL https://
docs.unity3d.com/Manual/Transforms.html.

Unity Technologies. Vertical Layout Group, November 2018h.
URL https://docs.unity3d.com/Manual/script-
VerticalLayoutGroup.html.

Unity Technologies. Collider, January 2019. URL https://
docs.unity3d.com/Manual/CollidersOverview.html.

Jeff Ward. What is a Game Engine?, April 2008. URL
http://www.gamecareerguide.com/features/529/
what is a game .php.

Wikibooks. Cg programming/unity/projection for virtual
reality, June 2017. URL https://en.wikibooks.org/
w/index.php?title=Cg Programming/Unity/
Projection for Virtual Reality&oldid=3231767.

Jingming Xie. Research on key technologies base unity3d game en-
gine. In Computer Science & Education (ICCSE), 2012 7th International
Conference on, pages 695–699. IEEE, 2012.

Devvrat Yadav and Shashikant Agrawal. Keystone error correction
method in camera-projector system to correct the projected image
on planar surface and tilted projector. International Journal of Com-
puter Science & Engineering Technology, 4(2):142–146, 2013.

https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/Transforms.html
https://docs.unity3d.com/Manual/Transforms.html
https://docs.unity3d.com/Manual/script-VerticalLayoutGroup.html
https://docs.unity3d.com/Manual/script-VerticalLayoutGroup.html
https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/CollidersOverview.html
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Projection_for_Virtual_Reality&oldid=3231767
https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Projection_for_Virtual_Reality&oldid=3231767
https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Projection_for_Virtual_Reality&oldid=3231767

59

Index

3D illusion, 2, 17, 38

Augmented Reality, 1, 4, 5

Blob detection method, 4

Calibration, 5, 17, 25–29, 42
Clipping planes, 24
Collider component, 44
CryEngine, 15

Depth map, 8

Frustum extents, 22
Future work, 52

Game development approach, 33–40
- Development phase, 37–40
- Prototyping phase, 34–37

Game engine, 7, 14–16
Gameobject, 15, 19, 21, 31, 39, 46

Hardware, 7

Infrared interference, 4, 10, 13

Keystone correction, 17, 29–32
Keystone effect, 29

Latency, 6
LateUpdate function, 47

Marker-based tracking, 8
Marker-less tracking, 7
Motion Control, 6

Objective marker, 39, 49
Optical tracking, 3, 7

Perspective projection, 17–25

60 Index

Projection matrix script, 21

Rigidbody component, 35, 36, 49

Summary, 51

Tracking and projection pipeline, 2, 17–32
Tracking origin, 27

Unity3D, 15, 19, 26, 40, 43
Unreal Engine 4, 15

View frustum, 24

Typeset January 27, 2019

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Related work
	Optical tracking
	Augmented and virtual reality
	Motion control in games

	Hardware and software setup
	Tracking system
	Game related hardware
	Issues

	Game engine

	Tracking and Projection Pipeline
	Off-axis perspective projection
	Calibration
	Keystone correction

	Game
	Game development approach
	Prototyping phase
	Development phase

	Game structure
	Main menu scene
	Tracking scene
	Level 1 scene

	Scripts
	Player prefab scripts
	Level manager script

	Summary and future work
	Summary and contributions
	Future work

	Bibliography
	Index

