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Zusammenfassung

Wireless Sensor Networks (WSNs) sind Netzwerke, welche sich aus Constrained Devi-
ces zusammensetzen. Diese verfügen definitionsgemäss über eingeschränkte Rechen- und
Speicherkapazität. Den Datenverkehr zwischen den einzelnen Netzwerkknoten durch Ver-
schlüsselung abzusichern, ist bei WSNs nicht trivial, da kryptographische Algorithmen
normalerweise sehr ressourcenintensiv sind.

In dieser Arbeit wird ECCforContiki präsentiert, ein Sicherheitsprotokoll für WSNs. ECC-
forContiki basiert auf Elliptic Curve Cryptography bei der Schlüsselerzeugung und beim
Schlüsselaustausch. Bei der eigentlichen Verschlüsselung kommen verschiedene Techni-
ken aus symmetrischen Verschlüsselungsverfahren zur Anwendung. Die Sicherheitslösung
benötigt keine Zertifizierungsstelle, sondern die öffentlichen Schlüssel werden vor der In-
betriebnahme auf die Netzwerkknoten geladen, wodurch die Authentizität gewährleistet
wird. Zudem können je nach Netzwerkgrösse verschiedene Optimierungen erfolgen: Bei
kleineren Netzwerken ist es aus Performance-Gesichtspunkten sinnvoll, aufwändige Schlüs-
selaustauschalgorithmen vor der Inbetriebnahme auszuführen, während dies bei grossen
Netzwerken (<1000 Sensoren) zu Speicher-Engpässen führt.

Das Protokoll wurde auf einem WSN-Prototypen mit insgesamt 4 Sensoren implementiert,
auf welchem das Aggregationsprotokoll TinyIPFIX auf dem Betriebssystem Contiki läuft.
Die Evaluation hat gezeigt, dass die präsentierte Lösung den Datenverkehr zwischen den
Netzwerkknoten erfolgreich absichert.

Mögliche Weiterführungen dieser Arbeit könnten das entwickelte Protokoll auf den er-
wähnten grossen Netzwerken mit Hilfe von Simulator-Software implementieren. Eine an-
dere mögliche Weiterentwicklung betrifft das Speichern der Schlüssel auf den einzelnen
Sensoren: Beim entwickelten Prototypen geschieht dies manuell, was bei grossen Netzwer-
ken schlecht möglich ist.
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Abstract

Wireless Sensor Networks (WSN) are networks composed of constrained devices. One
problem related to WSN is how to secure the communication between the nodes of such
a network, as cryptographic algorithms are usually resource intensive.

Therefore, in this thesis, ECCforContiki, a security solution for WSNs is presented. EC-
CforContiki uses elliptic curve cryptography (ECC) for key generation and key exchange,
and various symmetric key techniques for encryption between the network nodes. It does
not rely on a certificate authority to provide authenticity, but uses asymmetric pre-shared
keys. Depending oh the network size, different optimizations can be made: If the network
size is rather small (<1000 network nodes), it is advisable to perform the key exchange
before deployment, whereas with large networks (>=1000 nodes), this will lead to memory
shortage.

The solution was implemented on a small WSN prototype of 4 sensor nodes running
the aggregation protocol TinyIPFIX on the operating system Contiki. As shown by
the performed evaluation, the presented solution successfully secures the communication
between sensor nodes without a central certificate authority.

Possible future work entails implementation on the aforementioned large networks, pos-
sibly with the aid of simulation software. Another further development would be the
implementation of a key distribution service, which would make the deployment of a
larger network easier.
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Chapter 1

Introduction

Due to the growth of the Internet and increasing diversity of devices connected to the
Internet, the Internet of Things (IoT) has become a relevant theme in research and in-
dustry. IoT is not limited to Peer-to-Peer (P2P) networks and devices such as servers,
computers, and routers anymore, but also includes wireless sensor devices that form an
individual network, called a Wireless Sensor Network (WSN). Those devices present a
challenge for developers, because they are limited in memory, energy, and computational
capacities. In order to connect them with the Internet, they must support IP commu-
nication by using an IPv6 implementation called 6LoWPAN [30]. The possible topology
of WSNs can range from star topology to P2P topology, but usually a combination of
both topologies is common in WSN deployments. This means that the network consists
of Full-Function Devices (FFD) and Reduced-Function Devices (RFD) that both support
different functionalities, depending on their location in the WSN. This functionality can
range from simple data collection and forwarding to preprocessing. Usually the commu-
nication between nodes is performed wirelessly and over UDP. Furthermore, the packet
size is limited and due to existing IPv6 implementations, like 6LoWPAN, it is possible to
support packet fragmentation and compression in order to connect such limited devices
to the IoT. [10]

Many use cases for IoT involve the collection and transmission of sensitive data. Yet,
many deployments currently do not protect this data through suitable security schemes
[27]. Different end-to-end security schemes were built upon existing Internet standards,
specifically the Datagram Transport Layer Security protocol (DTLS), but might not be
applicable to WSNs due to the use of constrained devices with limited memory resourcse.
By relying on an established standard, existing implementations, engineering techniques,
and security infrastructure can be reused that enable easy security uptake from application
developers. [14] A promising approach to bring high security in constrained networks is to
use Elliptic Curve Cryptography (ECC) [13]. As is evident from figure 1.1, ECC requires
shorter keys to achieve the same level of security of solutions with longer key sizes.

In this thesis, ECCforContiki is presented, a standard compliant security solution for
resource constrained sensor nodes, that is implemented on the application layer. The
solution was developed in conformity with an end-to-end security architecture. Moreover,
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2 CHAPTER 1. INTRODUCTION

Table 1.1: Recommended bit lengths for security levels 80, 128, 192, 265. [23]

the solution satisfies the paradigm of end-to-end security and supports two-way authen-
tication.

ECCforContiki’s main contribution will be a security solution with pre-shared keys for
Contiki, which emphasizes efficiency, compared to a key server solution, as the extra
traffic for key establishment via the key server will be unnecessary. Additionally, several
efficiency levels are introduced, which can be implemented, depending on the network size
and simplicity requirements. The detailed design decisions are discussed in Chapter 3.

The thesis is structured as follows: In Chapter 2, the theoretical bases for the solution
architecture are laid out, including an explanation of the used ECC components. In Chap-
ter 3, the solution design is presented, including the security goals and the cryptographic
functions provided. In Chapter 4, the implementation is explained. Chapter 5 presents
the evaluation of the implementation. Lastly, in Chapter 6, conclusions about the design
and the implementation are drawn, together with a pointer to future work.



Chapter 2

Background

In this chapter, the different basics and building blocks for ECCforContiki will be outlined
and explained. First, definitions for the types of devices and networks to which ECCfor-
Contiki applies are given. Next, Contiki, the operating system and its peculiarities on
which ECCforContiki is implemented are mentioned. Subsequently, Elliptic Curve Cryp-
tography and its cryptosystem components that are used for ECCforContiki are explained.
Lastly, several approaches that are related to ECCforContiki are analyzed.

2.1 Definitions

Internet of Things (IoT): Garcia-Morchon et al. define the Internet of Things as “the
interconnection of highly heterogeneous networked entities and networks that follow a
number of different communication patterns such as: Human-to-Human (H2H), Human-
to-Thing (H2T), Thing-to-Thing (T2T), or Thing-to-Things (T2Ts)” [7].

Constrained device/constrained node: A broad definition is the following by Borman
et al. [1]: “A node where some of the characteristics that are otherwise pretty much taken
for granted for Internet nodes at the time of writing are not attainable, often due to
cost constraints and/or physical constraints on characteristics such as size, weight, and
available power and energy.”

A conceptual subset of IoT are Wireless Sensor Networks (WSN), for which ECC-
forContiki is designed. Often, network nodes of WSNs are constrained devices, because
their task in WSNs (e.g. recording sensor data and sending it to a sink) are usually
resource-intensive. Providing more computational power or memory than needed would
be unnecessarily expensive.

2.2 Contiki

Contiki is an open-source, lightweight operating system written in C. It is especially
suitable for constrained devices, as it needs very little memory and energy resources (e.g.

3



4 CHAPTER 2. BACKGROUND

2KB of RAM and 60KB of ROM [4]). Two of its features are loadable programs even
for very constrained networks, and protothreads - lightweight, stackless threads, which
are implemented on top of the event-driven kernel. Protothreads combine the advantages
of event-driven systems (which do not require stacks, but cannot be preempted) with
preemptive threads. This is achieved by dynamically loading protothreads as a library
only for programs which explicitly require it. This makes an event-driven operating system
architecture possible even with constrained resources, which can be greatly exploited for
WSNs [5, 4].

2.3 Basic Cryptographic Notions

There are two basic possibilities to secure network traffic: (i) symmetric cryptography
(i.e, shared key), and (ii) asymmetric cryptography, also know as Public Key Cryptog-
raphy (PKC). With symmetric cryptography, two parties A and B have a common key
established, which is used for both encryption and decryption [23]. With PKC, each party
has two keys, a public key and a private key. To encrypt a message M , party A uses B’s
public key and its own private key. To decrypt the ciphertext C = encrypt(M), B uses
his private key and A’s public key. As the public key can be transmitted over an insecure
channel, the encryption algorithm should be easy in one direction and hard in the other,
so that attackers cannot decrypt the ciphertext, even if they have both the ciphertext
and the public key. These kinds of algorithms are called one-way function. Apart from
encryption, there are three other important PKC components [23]:

� Key establishment: A function that allows to establish cryptographic keys over an
insecure channel.

� Identification/Authentication: A function through which entities can be identified
irrefutably via cryptographic signatures.

� Nonrepudiation: With the help a nonrepudiation function, it can be made sure that
a message has not been changed after the sender has sent it.

Another important building block of ECCforContiki is the Cyclic Redundancy Check
(CRC), where a bit sequence is divided by a pre-defined binary polynomial. The remainder
is the resulting CRC check [32].

2.4 Number Theory

In the following section,various number theory concepts needed for ECC will be defined.
All definitions, unless otherwise noted, were taken from Understanding Cryptography by
C. Paar and J. Petzl [23].

Group: A set of elements plus an operation (◦). The operation must satisfy the four
group axioms:
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� Closure: For all elements of the group G, the result of the group operation on any
two elements has to be in G as well.

� Associativity: For any a, b and c in G: (a ◦ b) ◦ c = a ◦ (b ◦ c)

� Identity element: There is one element e in G such that, for every element a in G,
e ◦ a = a holds.

� Inverse element: For each a in G there is an inverse element a-1 in G such that
a ◦ a-1= e.

An abelian group is a group where a fifth axiom, commutativity, always holds
(a ◦ b = b ◦ a).

Congruence (class): The modulo operation can be considered a congruence relation.
Two integers a and b are congruent modulo n if a and b have the same remainder when
divided by n. This relation is written as follows:

a ≡ b (mod n)

The respective congruence class consists of integers that are congruent modulo n. [34]

Field: A group on which the addition and multiplication operations are defined (cf. the
group definition).

� For each element, there exists an additive and a multiplicative inverse.

� For both addition and multiplication, there exists an identity element (“0”resp. “1”).

� The associativity axiom must be satisfied, similar to above.

� Both addition and multiplication are commutative.

� Finally, the distributivity axiom must be satisfied, i.e. a ◦ (b+ c) = (a ◦ b) + (a ◦ c),
as known from basic algebraic rules.

A finite field or Galois field is a field with a finite number of elements, where the
number of elements is called the order of the field. A field of order m exists, if m = cn,
where n is a positive integer and c is a prime number called the characteristic of the field.
A prime field is a finite field of order p where p is prime and the operations are done
modulo p (0, 1, ... p-1).

The additive and multiplicative group of a field F: As the addition and mul-
tiplication are defined, the field forms an abelian group under addition, resp. under
multiplication. These groups are called additive group resp. multiplicative group of F.
An example of a multiplicative group is the multiplicative group of integers modulo n
(Z/nZ)*, which means, roughly speaking “take two integers from the group and check
that they are coprime (i.e. their greatest common divisor is 1). If they are, calculate
modulo n on the product of the two and you will see that the result is in the group.”
(Z/nZ)* is the basis of a number of cryptosystems, such as RSA and Diffie-Hellman key
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exchange. (Z/nZ)* is defined as the integers 0, ..., n− 1 that are coprime to n. Now, if it
is really a group, multiplying two members and calculating mod n on the result will in
turn result in a group member (closure). Associativity is given by the multiplication; 1 is
obviously the identity element. Now, what is the inverse? - The inverse of each element
can be computed using the extended Euclidean algorithm, which to explain would go
beyond the scope of this thesis.

The multiplicative group of a finite field GF (q), q = p2 is another important example of
a multiplicative subgroup of a field.

The order n of an element a of a group G with group operation ◦ is the smallest
possible integer k such that k times a applied to itself (a ∗ k) equals the identity element.

Cyclic group: A group G which contains an element a with maximum order = |G| is
said to be cyclic. a is then called generator or primitive element. Less formally: If there
is an element that generates all elements, it is a cyclic group. Example: a = 2 for Z11. If
|G| is prime, then all elements except the identity element are generators.

Discrete logarithm problem (DLP): Given a cyclic group (Z/nZ)*, its generator a
and some element b from (Z/nZ)*, solve

ax ≡ b mod n

or, more informal: which power of a is congruent to b mod n? When a and n resp.
(Z/nZ)* are chosen correctly, the DLP is considered intractable, i.e. a computation takes
very long, even with huge resources. Figure 1.1 in the previous chapter shows what
“correctly” means in this context: To achieve a security level of 80 bit, i.e. for the best
known attack to need 280 steps, the recommended key length, i.e. the order (i.e. “size”
= n) of (Z/nZ)*, for the discrete logarithm problem is 1024 bit.

2.5 Elliptic Curves

An elliptic curve EK defined over a field K of characteristic c 6= 2 or 3 is the set of
solutions (x, y) ∈ K2 to the equation 2.1 plus a “point at infinity” [13].

y2 = x3 + ax+ b, a, b ∈ K (2.1)

Additionally, the discriminant ∆ = 4a3 + 27b2 cannot be 0 for the elliptic curve to be
non-singular (roughly speaking, this means that the curve cannot have “special” points
like intersections, cusps or isolated points). [34]

In cryptography, the most common choice of the field K are prime fields (see section 2.4).
An example of an elliptic curve by Paar et al. [23] would then be

y2 = x3 + 2x+ 2 mod 17
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How can points on the curve be added, such that the group axioms are satisfied? Recall,
the result of the operation must be an element of the group again, so performing a scalar
addition is not possible, as the result may lie anywhere and not necessarily in the group
resp. on the curve. The group operation is defined as follows: Two points on the curve
are added by drawing a line through them. The point where the line intersects the curve
again is mirrored on the x-axis, and that point is defined as the sum of the first two points.
For an illustration see Figure 2.1. If a point P is added to itself, i.e. 2P is to be computed,
the tangent is used instead to intersect the curve. The inverse of a point P is defined as
the point mirrored on the x-axis (−P ). Now, to make use of elliptic curves for the DLP,
a cyclic group is needed. Under certain conditions, all points on an elliptic curve defined
over a finite field form a cyclic group, which means that all points are generators [23]. A
point P on the elliptic curve added to itself results in the next element in the group (at
2P ). If P is again added to the second element, 3P will be the next result and so forth.
If all the points on the curve form a cyclic group, eventually P will be the result.

2.5.1 The Standard NIST curves

The National Institute of Standards and Technology (NIST) published a list of ellip-
tic curves with pre-defined parameters, which are especially suitable to quickly perform
computations on. All NIST curves are so-called Koblitz curves, on which the Frobenius
expansion has been performed, such that computations them are faster because the field
that the curve is defined on are now smaller. Recall that the order m of a field is equal to
c* n, where c is the characteristic of the field. If the c= 3, then n can be represented in
64 bits, which is an advantageous size for cryptographic computations and makes them
faster. [16]

2.5.2 The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The DLP for elliptic curves will be “Given two points P and Q, how many hops does P
have to make to get to Q?”, or more formal: given an elliptic curve E, defined over a
finite field F with order m, and two points P and Q, find an integer x such that Q = xP.
This does not seem like a particularly difficult problem. Considering that the key size
(i.e. the secret factor x) should be at least 160 bits (see Figure 1.1), it is easy to see that
computing all possibilities of x can take a long time.

2.6 Elliptic Curve Cryptosystems

In the following section, the three cryptographic functions with ECC that will be used
for implemented solution will be described, namely the Elliptic-curve Diffie-Hellman key
exchange (ECDH), the Elliptic Curve Integrated Encryption Scheme (ECIES) and the
Elliptic Curve Digital Signature Algorithm (ECDSA).
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Figure 2.1: Illustration of the point addition on elliptic curves [15]

2.6.1 Key exchange

The ECDH key exchange is similar to the regular Diffie-Hellman key exchange, in that
each party chooses private and a public key, fetches the public key from the other party
and computes the shared key with the other party’s public key and their own private key.
The main difference to the regular DH protocol is that the basis of ECDH are points of
an elliptic curve. The input of the protocol, also called the domain parameters, are the
following items:

� An elliptic curve E, defined by its parameters a and b over a field F

� The field F. If F is a prime field, it is defined by the prime number p

� The generator Q of the additive group G of F

The protocol has the following steps [23]:

1. The three domain parameters E, p, Q a openly agreed to by both parties. They do
not pose a vulnerability.

2. Each party chooses a private key x, such that 1 < x < n, where n is the number of
points on the curve E. Naturally, x cannot be made public under any circumstances.

3. Both parties compute their public key, R = xQ, i.e. they multiply the published
generator Q with their private key x, considering the multiplication rules shown
above. Each public key consists of E, Q and R.
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4. Finally, each party computes the shared key by calculating x * R, where x is their
own private key and R is the other party’s public key.

2.6.2 Encoding and Decoding Points on a Curve

To perform a key exchange, an option to store and transmit a representation of a point on
an elliptic curve is required. To represent a point in a straightforward and unambiguous
manner, it has to be mapped to an integer or other simple data structure. The question
arises how to obtain this mapping function.

There are several ways to represent a (two-dimensional) point on an elliptic curve (e.g.
as an integer or byte array), of which two will be mentioned, both of which are described
in Jivsov, 2014 [9].

A rather intuitive mapping function works as follows: If the curve and its parameters, as
well as the x coordinate are known, the y coordinate can almost be inferred by solving the
elliptic curve equation, as there are two points per x value on a curve. Hence it suffices to
represent the y coordinate in a very compressed way, e.g. a sign bit. As Jivsov explains,
this approach has several drawbacks, such as wasting an entire byte for the one bit that
is needed, and the fact that the resulting representation is not an actual integer, but a
pre-defined sequence of sequence of bytes. Luckily, for some protocols, such as ECDH,
the y value is not even needed, the key exchange works with only the x values, hence the
x value of a point is an unambiguous representation of it.

An alternative way to uniformly map points on an elliptic curve to integers would look as
follows: The key generation algorithm is modified in the following manner:

1. Generate a key pair (k,Q = k ∗G), where k is the private key and Q the public key.

2. if y! = min(y, p− y), where p is the order of the finite field of the elliptic curve) go
to step 1

3. return the key pair (k,Q)

As half the points on a curve have a negative y value, the expected number of iterations
is 2.

To encode (= map) a point as an integer, the x value is returned. To decode a point
represenentation, compute the following values are computed:

1. y′ = sqrt(C(x)), where C(x) is the Weierstrass equation of the curve, e.g. C(x) =
y2 + a ∗ x+ b

2. y = min(y′, p− y′), where p is the order of the finite field of the elliptic curve

3. Q = (x, y)

Evidently, this method is“backwards compatible”with simply using the x value of a point,
which suffices for ECDH.
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2.7 Related Work

In the following section, several related approaches to ECCforContiki are reviewed and
contrasted with this thesis.

Many of the better-known security approaches for constrained networks use symmetric-
key cryptography, of which a few important ones will be cited.

Karlof, Sastry and Wagner designed TinySec [11], “the first fully-implemented link layer
security architecture”. It secures communication between nodes with symmetric block
ciphers and Message Authentication Codes (MAC) to ensure confidentiality and integrity.
It allows an authentication-only mode, where encryption is not deemed necessary, in case
speed and energy efficiency is prioritized over confidentiality.

Eschenauer and Gligor [6] also opt for symmetric key cryptography, as they consider public
key cryptography to be impractical for constrained networks. Their contribution is a key
pre-distribution scheme, which randomly distributes a set of keys per sensor node. After
the key distribution, the nodes broadcast their set of nodes which are reachable during
the path discovery phase. At a certain size of the set (e.g. 250 for a sensor network of
10’000 nodes), paths between any two sensor nodes can be established during it. Key ring
(= key set) revocation mechanisms ensure resilience against node capture attacks.

Zhu, Setia and Jajodia [35] designed LEAP+ (Localized encryption and Authentication
Protocol), which implements security mechanisms for various ranges of communication.
On the smallest level, between two neighboring nodes, pairwise symmetric keys are used.
Within a cluster, which is smaller than the entire network, the nodes share a cluster key,
which is used for local broadcasts. The global key is used for global broadcasts. As the
entire network can be compromised if an attacker can find out the global key, there is a
protocol in place for replacing the global key securely. Finally, for communication between
a node and the base station, each node shares an individual key with the base station.
The individual key, the pairwise shared key with the neighbors and the cluster key can be
computed incrementally by only loading each node with an id, the same initial key and
various key generation algorithms: First a master key for each node is generated with the
initial key (which will be deleted after a while as a defense against node cloning attacks)
and the id, then two neighbors compute a pairwise shared key, then a cluster key is agreed
by a number of neighbors. The global key is preloaded and there is a rekeying algorithm
in place, namely the one of µTesla, which will be discussed next.

SPINS (Security Protocols for Sensor Networks) [24] by Perrig et al, is the last of the
symmetric cryptography protocols to be examined. It is designed to secure base station-to-
sensors-broadcasts, base station-to-sensors individual messages and node-to-base stations
communication. It consists of two building blocks, SNEP and µTesla, the latter of whose
purpose is securing broadcasts. SNEP uses a block cipher in counter mode and message
authentication codes (MAC) to ensure confidentiality, integrity, replay protection and
semantic security. µTesla also uses symmetric cryptography together with a hash chain
to protect the broadcasts against replay attacks: A block cipher in cipher block chaining
is repeatedly calculated on an initial number. Each result is used as a verification key,
such that the verification key for the MAC of each broadcast message is sent with the
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next message. The nodes store the message and with the next one, they can verify the
previous MAC.

Each of these papers deem asymmetric cryptography unusable for constrained networks.
In contrast, Ma et al. propose a“Certificateless Searchable Public Key Encryption Scheme
for Industrial Internet of Things”. For their approach, a user’s identifying information
serves as the public key, and the private key is in part generated by a Key Generation
Center (KGC) and in part chosen by the user, which mitigates problems with a malicious
KGC.[18]

This approach is promising, but unusable for our scenario, as, even though it is not ex-
plicitly stated, the concerned parties seem to not have to deal with constraints concerning
computational power or restricted memory; additionally, the parties in the ECCforContiki
protocol are sensor nodes, which likely do not have enough distinctive features that might
serve as a public key space.

Du and Ning [3] propose an asymmetric design with pre-shared public keys. The avoid
the problem of scarce memory, which aggravates with the number of concurrently com-
municating nodes by using hash trees to authenticate the pre-loaded public keys: Of each
node’s public key, the hash is computed. That hash value constitutes the label of a leaf
in a hash tree. Now the hash tree is built in the following fashion: each internal node is
labelled the hash value of its two children, up to the root, whose label is stored on every
node. If some node wants to authenticate another node’s public key, it requests the public
key of the node and its sibling, then it computes the hash value of the two, and so forth,
up to the root, which should be the same value as the computed one. The intermediate
hash values can be cached on the authenticating node. If there are n nodes in the network
and the size of a hash is L, the cache will be at most L * log n. Now, if not all nodes need
to communicate with each other, there can be separate, smaller hash trees, which reduces
the computation and communication cost.

Finally, a few more basic solutions for sensor networks with less extreme requirements
regarding the number of nodes are explained, or where not all nodes are required to com-
municate with each other. This makes special solutions for key management unnecessary.

P. Lowack [17] implemented TinySAM, an asymmetric security solution, for TinyOS, an
operating system for constrained networks, which has a similar purpose as Contiki. The
solution uses a certificate authority for authenticity. S. Siffert [31] developed a similar
approach which uses public keys with a certificate authority, but for Contiki instead of
TinyOS. M. Noack [22]finally implemented an ECC-based two-way-security solution on
TinyOS, using pre-shared keys for authenticity. This last approach will serve as a basis
for ECCforContiki.

ECCforContiki is roughly based on Noack’s approach, which was implemented on TinyOS,
whereas ECCforContiki will be implemented on Contiki. Furthermore, Noack’s solution
will be simplified, respectively enhanced:

1. Noack’s key exchange will be simplified: Noack pre-loaded identifying data on each
node and implemented a multi-step handshake to ensure authenticity, which can be
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greatly simplyfied while keeping the same security level, by directly preloading the
public key to the nodes. Authentic data packets cannot be forged, as an attacker
does not have the shared key corresponding to the pre-shared public key.

2. Noack used ECC encryption, which can be rather resource-intensive. For this reason,
the encryption step in ECCforContiki will be symmetric for better performance.

3. Finally, instead of a signature, a hash value will be computed over each message,
which further saves resources compared to an asymmetric signature computation
and verification.



Chapter 3

Solution Design

A widely used scheme for securing wireless sensor network communications is symmetric
key cryptography with preloaded keys, which are distributed to the sensor nodes before
deployment [11, 35]. One drawback, apart from the fact that with this approach is that
the nodes have to store one shared key per sensor node that they communicate with, which
can fill up the memory quickly. With PKC, storing the public keys of the communication
partners is not necessary, as the public keys needed for encryption can be fetched from
the nodes for each session and authenticated against a hash of one or several public keys,
thus saving space, as shown by Du and Ning [3]. Hence, public key cryptography is in
some cases the better, more viable solution, especially with very large networks, which is
why public key cryptography will be chosen for the design of ECCforContiki.

3.1 Network topology

The prototype network consists of four different groups of devices with regard to their
role in the network. For a network schema see Figure 3.1. On the network runs an
implementation of the TinyIPFIX protocol, which is a push-protocol for WSN, suited for
collecting sensor data [26]. The network is comprised of four type of devices:

� Collectors: They record sensor data (e.g. temperatures) and send it to the aggre-
gators (see below). They perform the IPFIX Exporting Process. In the case of
ECCforContiki, the data will be encrypted before sending it to the aggregator via
UDP. In order to encrypt the data, each collector has its aggregator’s public key
stored [2] [26].

� Aggregators: They register the data sent by the collectors (IPFIX Collecting Pro-
cess), perform an aggregation function on the received data and send the aggregated
data as a single data point to the border router [2] [26]. ECCforContiki will decrypt
the data, deliver it to the aggregation function and encrypt the aggregated data
again, before it the data is sent to the border router via UDP. Each aggregator
stores the public keys of the collectors that are allocated to this aggregator. The

13
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aggregator uses these keys for decrypting the received packets and the public key of
the server for encrypting the aggregated data.

� Border router: Generally, there is one border router per WSN. It is plugged into the
server, where the data is processed further. The border router receives all aggregated
data from the aggregators and forwards it without alterations to the server via the
Serial Line Internet Protocol. [29]

� Server: The server is a configuration, management and data handling framework
called CoMaDa and is written in Java. It collects the data from the aggregators,
saves it into an SQL database and renders it via a visualization module, which can
be accessed via a web browser. [25] It also contains an ECCforContiki Java module,
which decrypts the received data before processing it further. It has the public key
of each aggregator stored.

Figure 3.1: Network topology [31, p. 4]

3.2 Security goals

For security sensitive network communication, there are three main security goals, which
are guaranteed by the chosen design:

� Confidentiality: The two communication partners should be able to communicate
confidentially, i.e. a third party should not get access to the exchanged information,
and it should be ensured that the communication partners are the intended ones.
Confidentiality is achieved by encrypting the packets that are exchanged between
collectors and aggregators, resp. between aggegators and the server. This ensures
that only the intended party can access the data being sent.

� Integrity: A third party should not be able to alter the message without the intended
receiver noticing. Integrity is ensured by attaching a hash - a CRC16 check, precisely
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- of the message, which serves as a MAC, after the message itself, and encrypting
the message together with its hash. By choosing hashes instead of signatures, the
relatively costly signature generation and verification can be avoided, which would
put a heavy load on the rather small processors of the collectors and aggregators.

� Authenticity: A third party should not be able to participate in the communication.
In our case, this means that it should be impossible for an attacker to send fake
sensor data to the aggregator or impersonating an aggregator to send fake data
to the border router (with the goal of skewing the aggregated data). [11] This
includes re-sending legitimate messages by either party. Authenticity is ensured by
encrypting the data with the shared key of the two parties, which is only known
or can only be computed by holders of the private-public key pair. Re-sending a
legitimate packet is prevented by attaching a counter to the message. If the received
counter is not new with each message, the message is rejected.

3.3 Basic Cryptographic Functions

In this section, the coverage of the basic functions of public key cryptography by ECC-
forContiki - identification (authentication), encryption, key establishment and nonrepu-
diation - will be discussed.

3.3.1 Identification/Authentication

In general, authenticity is provided by signatures or message authentication codes, but
either of these alone do not suffice. Consider the following scenario: A wants to commu-
nicate securely and in an authenticated manner with B. A sends B a certificate with his
public key and a digital signature and requests in turn B’s public key. Upon reception,
A can encrypt a message with his private key and B’s public key. But how does B know
it was in fact A who sent the certificate with the public and the encrypted message?
This can be achieved by using a designated certificate authority, whose task it is to issue
certificates. [23]

In the case of the present work, this would require a designated node and would induce an
overhead caused by the certificate transmissions. Moreover, a previously authenticated
channel would be required, which is not a trivial task.

But a peculiarity of WSNs can be exploited here: Other than with, for example, the
Internet, where the communication partners are not known from the beginning, with
WSNs, the sensor nodes that will be in the network are known, and before the deployment,
the communication channel is supervised and therefore authenticated. During this pre-
deployment phase, certain information (such as keys) can be distributed.

For these reasons, the chosen design will entail a pre-shared keys architecture, as for
example Du et al [3] suggest, instead of one with a certificate authority.
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With a network this small, hard-coding the shared keys is the most efficient solution
and there are no security-wise drawbacks. For networks with significantly more nodes
( 500-1000 collectors per aggregator), there are advantages in storing the public keys in
a condensed form like a hash tree, but if there are only a handful of nodes, the overhead
would be unnecessarily large. As the key exchange mechanisms are already in place,
expanding the security mechanism to the ‘authenticate against hash tree’ approach would
be simple.

As for the server: it does not have significant memory restrictions, which favors directly
saving the shared keys. An important precondition for this decision is that access to the
server is restricted to few persons, which can safely be assumed as servers can usually not
be accessed unrestrictedly.

3.3.2 Encryption

For efficiency considerations, the actual encryption is done by XORing the message to-
gether with the counter and its hash with the shared key, instead of encrypting it with
the elliptic curve encryption algorithm. This sort of hybrid approach can be found in the
Elliptic Curve Integrated Encryption Scheme (ECIES), where only signatures and key
exchange are ECC-based, and the actual encryption is done in a symmetric manner [8].

M. Noack [22] measured the performance of ECC algorithms on the OpenMote-CC2518
(see Figure 3.1), on which the ECCforContiki prototype is implemented (see Chapter
4). The speed of computation lead to the decision not to implement ECC encryption for
ECCforContiki, but to choose a hybrid design, where for the key exchange protocol ECDH
is chosen, but for the actual encryption a symmetric approach will be implemented.

The encryption algorithm is an simplification of AES, which has been preferred over the
full-fledged AES approach for performance considerations.

Table 3.1: Measured performance of ECC operations
on TelosB (collectors, third column) and OpenMote-
CC2538 (aggregators, second column) sensor nodes, on
the latter of which the ECCforContiki prototype is im-
plemented [22]
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This setup offers protection against any kind of eavesdropping attack or man-in-the-middle
attack, ensuring authenticity of the received data. There is no possibility to decrypt the
traffic, and the messages cannot be tampered with, as they are signed.

3.3.3 Nonrepudiation

An assumption made with the design is that the sensors are operating in a secure envi-
ronment, i.e. there is no possiblity for an attacker to get ahold of a sensor and copy its
contents or change the behavior of a sensor. This assumption is important when discussing
a possible nonrepudiation function of the architecture.

Nonrepudiation becomes relevant when dealing with legal ramifications of an application,
for example when it has to be ensured that a message has not been changed after sending.
A possible scenario is the exchange of contracts or legal statements. As the sensor nodes
of the network simply record sensor data and send it off to the server, there are no legal
consequences of any sort. Furthermore, a node “retracting” their message would require
a mechanism to somehow modify the already recorded data, which is nonexistent. This
fact renders the nonrepudiation discussion superfluous.
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Chapter 4

Implementation

In this chapter, the implementation of the chosen solution is explained, and the hardware
on which the solution is deployed is presented.

4.1 Hardware

The prototype of ECCforContiki was deployed on OpenMotes, more precisely a combina-
tion of the OpenMote-CC2538 Rev.E and the OpenUSB Rev.B. The OpenMote-CC2538
consists of the CC2538 Texas Instruments processor with 512KB storage and 32KB mem-
ory. It has three LEDs (red, yellow and green). The OpenUSB is equipped with a USB
port, sensors for light, temperature, humidity, and acceleration. The sensor node can be
powered on via the USB port or with two AA batteries. [33] [31]

This particular hardware combination does not have a I/O interface, which means that it
is not directly feasible to debug via the command line. Debugging is hence done via the
LEDs.

4.2 TinyIPFIX

TinyIPFIX is a push protocol for transmitting sensor data in a power saving fashion. It is
based on IPFIX and reduces redundancy by separating data and header information and
sending the header information, which stays the same for a long time, only periodically.
There are two processes, the Exporting Process and the Collecting Process, the former of
which records, for example, sensor data and pushes it to the Collecting Process. Similar
to IPFIX, TinyIPFIX allows the reduction of messages by aggregating the data received
by the Collecting Process [26] [2].

19
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4.3 ECC Library

The ECC library that was used for ECCforContiki is micro-ecc by Kenneth MacKay [19].
It was chosen over OpenSSL [12] with regard to the very small resources of the nodes and
because it solves exactly the needs of the problem at hand, while OpenSSL is a rather
comprehensive solution for various problems. The micro-ecc library has implementations
for key generation, ECDH (key exchange) and ECDSA (digitial signature generation and
verification), and different optimization levels, 0 being “unusably slow for most applica-
tions” [19]. It supports 5 standard NIST curves (see Chapter 2) from which the secp256k1
is used for computing the keys.

4.4 Protocol Implementation

In the ECCforContiki prototype, there are four physical sensor nodes available in total,
one of which is the border router, which means there are two collectors and one aggregator.
The two collectors record their data and after a certain interval, they encrypt it and send
it to their aggregator (in bigger networks, there may be more than one aggregator and
the collectors have one designated aggretagor to which they send their data). According
to the IPFIX protocol, the data is split into template and data packets. The aggregator
checks which collector each packet comes from and decrypts it with the correct shared
key. It aggregates the data according to the aggregation function chosen at deployment,
encrypts it again and sends it to the border router, which forwards all packets to the
server without modification.

During each encryption and decryption step, several algorithms are performed: Before
encrypting a packet, the sender computes a CRC checksum on the message, which takes
two bytes. The message counter is updated and serves as replay attack protection. The
checksum, the message counter and the message are concatenated and the padding length
is computed as the number of missing bytes to the next full block, i.e. block size -
(message length + checksum length + counter length), where the block size is a multiple
of the shared key length, depending on the length of the original message. The message
together with the CRC checksum is then padded with random characters. In the last byte
of the padded block the padding length is stored. The entire padded message is encrypted
(message length/block size) times. Finally, the first four bytes of the sender’s public key
is stored in the first four bytes of the packet.

Figure 4.1: ECCforContiki packet schema.

After receiving a message, the aggregator or server first checks the first four bytes for a
matching public key. If it matches with one that is stored, it decrypts the rest of the
packet with the appropriate shared key. Next, it checks the message counter received. If
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it is higher than the stored counter, it proceeds with removing the padding by reading
the padding length on the end of the message. Finally, it computes the CRC check on the
message and compares it with the one found in the packet. If they match, the message is
returned to the next protocol layer, TinyIPFIX. (See Listing 5.1 for debug output of this
process.)

If an attacker tries to forge a message by copying the first four bytes and sending some
random bytes with the rest of the message, it would be rejected at the checksum stage
latest, as the attacker cannot forge a message where the - decrypted - third and fourth
byte randomly matches the CRC check of the message, if the whole packet is encrypted.

One peculiar detail should be noted: The first four bytes of the message correspond
to the sender’s public key. They serve as an ID to the receiver of the message. This
design choice is especially convenient as it is not dependent on the network addresses
assigned by TinyIPFIX, and thus the two protocol layers are completely independent.
Another advantage is that if the network grows very large, the public keys can simply be
appended in their entire length and the key authentication can be made more efficient by
implementing hash trees, as suggested by Du and Ning [3].

4.4.1 Protocol function calls

The protocol implementation resides in the ecc_crypto.c file in the ECC_Protocol

folder. For easier re-keying, there are two different encryption and decryption meth-
ods for the collector resp. the aggregation process, even though the encryption al-
gorithm is exactly the same for both types of sensor nodes. These process-specific
methods are located in collector-openmote/ECC_encrypt_collector.[c|h], respec-
tively aggregator/ECC_encrypt_aggregator.[c|h]. These files contain the specific
keys for each sensor and have to be updated with new keys before deployment. The
ECC_encrypt_[type]() method (and ECC decrypt collector() method for aggregators)
in the sensor type specific files call the protocol methods ecc_udp_sendto() and, in
the case of the aggregator, decrypt(). This sensor specific function call can be seen in
Listing 4.1.

The ecc_udp_sendto() method, called in line 16 of Listing 4.1, in the ecc_crypto.c

file encrypts and packages the cleartext as described in Section 4.4: It computes and
attaches the CRC check on the input data together with the sender’s public key, updates
and attaches the current message counter, adds the padding, so that the packet has the
correct length, encrypts the entire message, adds the first four bytes of the public key of
the sender and finally sends it to the address given by the to parameter via UDP..

The decrypt() method, called in line 28 of Listing 4.1, mirrors the ecc_udp_sendto(), so
to speak: It decrypts the cleartext with the given shared key, checks if the message counter
is higher than the one that is currently stored on the sensor node (corresponding to the
*counter parameter), re-computes the CRC check and compares it to the one received.
Finally, it computes the original data length, which can be computed by subtracting the
length of the padding from the length of the received ciphertext (not counting the first
four bytes, that consist of the public key of the sender), which can be found in the very
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1

2 //for decryption of collector packets

3 uint8_t pubKCollector1[64] = { ...}; //actual keys omitted here

4 uint8_t sharedSecretColl1Aggr[32] = { ...};

5

6 uint8_t pubKCollector2[64] = {... };

7 uint8_t sharedSecretColl2Aggr[32] = { ...};

8

9 //for encryption

10 uint8_t pubKAggregator[64] = { ... };

11 uint8_t sharedSecretComada[32] = { ... };

12

13 int ecc_encrypt_aggregator(struct simple_udp_connection *c, uint16_t

msg_ctr,

14 const void *data, uint16_t datalen, const uip_ipaddr_t *to){

15 //function call to ECC_Protocol

16 return ecc_udp_sendto(c, msg_ctr, data, datalen, to, pubKAggregator,

17 sharedSecretComada);

18 }

19

20 uint16_t decrypt_collector(uint8_t *in, uint16_t datalen, uint16_t

*original_datalen,

21 uint8_t *out, uint16_t *counter){

22

23 //check if public key received with the message corresponds to one that

is stored,

24 // and if yes, which one; call the decryption method with the correct

shared key

25 if(memcmp(in, pubKCollector1, 4) == 0){

26 return decrypt(in, datalen, original_datalen, out, counter,

sharedSecretColl1Aggr);

27 } else if(memcmp(in, pubKCollector2, 4) == 0) {

28 return decrypt(in, datalen, original_datalen, out, counter,

sharedSecretColl2Aggr);

29 } else {

30 return 0;

31 }

32 }

Listing 4.1: ECC encypt aggregator.c methods, each with shared key and public key
parameters. ECC encrypt collector.c is analog, except there is no decryption call
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last byte and returns an array of length original_datalen with the original message. It
returns the new message counter, to which the sensor’s stored message counter is updated.

As the border router simply forwards the traffic to the server (written in Java), the
incoming packets from the aggregators have to be decrypted at the server, so that the
next layer - TinyIPFIX - can process the received data. Hence, a decryption method in
Java is needed. It is one of the implemented methods, among others such as checksum
and message counter checking methods, that are called in the process() method that
returns the processed data to the TinyIPFIX process. The ECCProtocol process can be
inspected in Listing 4.2. First, the first four bytes are compared with the public key of
the aggregator, which is stored on the server. If they match, the rest of the message is
decrypted with the shared key (around line 20). Then, the received message counter is
checked against the currently stored message counter (line 24). If it is higher, the stored
one is updated to the received. If it is not, the packet is discarded (line 26). Next, the
received CRC is checked by re-computing it with the received payload an the public key
of the aggregator. If it does not match, the packet is discarded. Otherwise, the packet is
returned to the next lower layer (line 39).

As the encryption algorithm, that runs on the server, works exactly the same with col-
lector and aggregator payloads, respectively, the server implementation of decrypt()

corresponds exactly to the C implementation that is run on the aggregators, where they
decrypt collector packets.

Before deployment, the sensors have to be provided with their keys. The make_keys.c

file contains the a key generation method, which is run locally and in turn calls the
ECC key generation algorithm from the micro-ecc library [19], which contains the ECC
implementation that was used for the prototype.
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1

2 private final String sharedSecret = " ... "; //actual keys omitted here

3 private final String pubKAggregatorString = " ...";

4 private final byte[] pubKAggregator =

hexStringToByteArray(pubKAggregatorString);

5 private final byte[] sharedSecretBytes = hexStringToByteArray(sharedSecret);

6

7 private int messageCounter= 0;

8

9 @Override

10 public WSNProtocolPacket process(WSNProtocolPacket packet) throws

WSNProtocolException {

11

12 byte[] pubKeySender = Arrays.copyOfRange(packet.getPayload(), 0,4);

13

14 if(!(Arrays.equals(pubKeySender, Arrays.copyOfRange(pubKAggregator, 0,

4)))) {

15 System.out.println("[ECCProtocol.process] Pub key of sender doesn’t

match; likely not a

16 ECCProtocol packet");

17

18 return null;

19 }

20 byte[] decrypted =

decrypt(bytesToHex(Arrays.copyOfRange(packet.getPayload(), 4,

packet.getPayload().length)), sharedSecret);

21

22 byte[] counterReceived = Arrays.copyOfRange(decrypted, 0, 2);

23

24 if(!(checkMsgCounter(messageCounter, counterReceived))){

25 //counter mismatch, possibly replay attack

26 return null;

27 }

28

29 byte[] crcCheckReceived = Arrays.copyOfRange(decrypted,2,4);

30 byte[] payl = Arrays.copyOfRange(decrypted, 4, decrypted.length);

31

32 //CRC check incorrect; possibly bogus data

33 if(!(checkCrc(crcCheckReceived, payl))){

34 return null;

35 }

36

37 System.out.println("[ECCProtocol.process] payload: "+bytesToHex(payl));

38 //return cleartext to lower layer

39 return new WSNProtocolPacket(packet.getID(), payl,

packet.getSourceAddress());

40 }

Listing 4.2: ECCProtocol.process() function



Chapter 5

Evaluation

In this chapter, three different evaluations are performed: Memory size measurement,
energy consumption measurement, and test methods. Moreover, the different results and
their usefulness will be discussed.

It is important to highlight that as the sensor nodes do not present an I/O interface,
the measurement of energy, memory consumption, and code complexity analysis was
performed indirectly (i.e., using external tools).

5.1 Energy consumption

Energy consumption can be estimated by connecting a multimeter to one side of a battery
and the power socket of a sensor, as shown in Figure 5.1.

Figure 5.1: Energy consumption measurement setup [31]

The measurements does not seem to vary with or without encryption. For the aggre-
gator, between two messages being sent, the power consumption varies between 31.9mA
and 32mA. It increases to approx. 33.9mA while a message is being sent. As the recep-
tion of the collectors’ packets happens directly before the transmission of the aggregated

25
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Table 5.1: TinyIPFIX (unencrypted) and ECCforCon-
tiki (encrypted) size according to size utility (all num-
bers in bytes).

Collector Aggregator
ROM RAM ROM RAM

Unencrypted 48250 15999 48359 17073
Encryptyed 48909 16095 49602 17297
Difference 659 96 1243 224
Change +1.37% +0.6% +2.6% +1.3%

messages, it is infeasible to determine if the reception or the transmission requires more
power, or to determine the point where the receiving phase stops and the transmission
phase starts.

The collectors consume approx. 31.2mA to 31.3mA while idling and approx. 32.0mA
while sending.

When comparing these measurements with Siffert’s sTiki [31], who measured around
30mA during idling and approx. 31.5mA during transmission, a slight difference is con-
spicuous. As the unencrypted version is the same with both approaches, and both the
unencrypted and the encrypted version measured around the same energy consumption,
this difference seemingly cannot be explained by more or less efficient approaches. The
measuring method seems to be too inconsistent to draw reliable conclusions about the
energy consumption.

One dependable statement about the energy consumption of ECCforContiki is that it
does not seem to consume significantly more energy that the unencrypted protocol.

5.2 Memory consumption

Memory and storage consumption can be measured with the size tool. It receives as input
the compiled .elf file with which is loaded onto the sensors for deployment. The storage and
memory requirements of the binary of the encrypted version, of the unencryted version
(both include the memory requirements of the operating system) and of the difference
between the two can be gathered from the table below. ROM corresponds to the text

output parameter, whereas RAM corresponds to the data and bss parameters.

It is apparent that the security solution is memory-efficient: The increase in RAM or
ROM is within the single-digit percentage change.

Compared to S. Siffert’s solution sTiki [31], which is implemented on the same hard-
ware, which encrypts the TinyIPFIX protocol with a certificate authority, and which uses
52796 bytes of ROM and 16367 bytes of RAM on the collector and 52913 bytes of ROM
respectively 17441 bytes of RAM on the aggregator, it can be seen that ECCforContiki
is significantly more efficient with regards to ROM and marginally more efficient with
regards to RAM consumption.
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M. Noack, who also implemented an ECC solution, but on TinyOS, used OpenMotes for
his aggregators, too. He reported a total ROM size of 46216 bytes, of which 13042 bytes
accounted for the cryptography part, and a RAM consumption of 8470 in total, where
1018 bytes were due to additional RAM consumption by his implementation. [22]

Comparing the ECCforContiki numbers, it is obvious that the unencrypted version on
Contiki already uses significantly more RAM and ROM, but the difference caused by the
encryption is much smaller with ECCforContiki (1243 bytes of ROM, 224 bytes of RAM
for the aggregator). It is apparent that the hybrid ECCforContiki solution does indeed
save a lot of resources. This is obvious when comparing the memory consumption, and it
is to be suspected that it is also much faster, even though there is no possiblity to measure
the time consumption of ECCforContiki (see Table 3.1 for Noack’s time measurements).

Considering the ROM size of 512KB in total, this means that the directly storing the
shared keys of the communication partner is feasible up to a significant network size.1

5.3 Proof of Operability

As the sensor nodes do not have an I/O interface, proving that the protocol works as
intended cannot happen directly during operation, i.e. via command line outputs by the
nodes during operation. But as the server runs locally, it running correctly can be shown.
As the aggregators send their packets directly to the server, their content can be examined
as well. Debug messages or print statements are not available.

In Listing 5.1, the debug output that appears when running CoMaDa is shown: Lines
1-4 indicate that the startup and authentication at the database has been completed
successfully. Line 5 indicates that a packet with a lenght 132bytes has arrived. Lines 5-9
are the hexadecimal representation of the packet bytes. The first four bytes (256C26AE)
correspond to the public key of the sender. As described in Chapter 4, the rest of the
message is encrypted and looks like a random string. Next, in line 10, the length of the
actual encrypted message is printed (132/4 = 128). It should be divisable by 32, as that
is the block size, and the remainder is padded with random bytes. The next lines (11-14)
are a printout of the decrypted packet. Next, the padding is removed, as indicated by
line 20.

The first two bytes of the decrypted message correspond to the sender’s message counter,
which is 3 in this case, which is an indication that three other messages were already sent
before the server completed its startup. As the received message counter simply has to
be bigger than the one stored on the server, this is not a problem. This means that the
message counter is not vulnerable to lost packets, as it simply updates its counter to the
one received, if it is bigger. The third and fourth byte of the decrypted message are the
CRC check that was sent with the message. As can be seen in line 31 and 32, it is equal to
the CRC check that was computed by the server, the input of which being the decrypted
payload, without CRC check and counter, but with the entire public key of the sender.

1It is to be suspected that the lower protocol layers which handle the actual sending and receiving of
messages will fail before the sensor runs out of storage, if the network size was increased.
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The final payload is printed out on lines 33 to 36 and returned to the next lower layer.
The debug output of it can be seen in the last 5 lines.

Analysing the packets from the collectors is impossible; it can merely be shown that
they arrive correctly in an aggregated state at the server. It is impossible that the data
somehow arrives directly at the server, because packets that do not originate from the
aggregator are rejected.

In Figure 5.2, the data packet visualization of CoMaDa is pictured. The aggregated data
packets can be discerned: Several measurements of the same parameter can be seen in the
same message, which is characteristic for the message aggregation mode of operation of
TinyIPFIX. The lower part of the listing is a representation of a parsed template packet.

The last option available to test and verify the correct operation of the collectors is to run
parts of their code locally. Encrypting (including the CRC check, counter and padding)
and decrypting (including CRC check, counter check and padding removal) mock data is
the functionality that can and should be tested.

The same can be done in unit tests for the server side of the ECCforContiki protocol.
The testDecrypt() function takes the output from the encryption test function from the
sensors. It is evident that the two functions (encryption and decryption) mirror each other
perfectly, as the original input results again after encryption and subsequent decryption,
as can be seen in Listings 5.3 and 5.4:

In summary, the available evaluation methods are not exceedingly insightful, but do reveal
that 1) the ECCforContiki implementation is quite efficient especially regarding memory
requirements and 2) that it barely uses any more energy than the unencrypted method.
It compares well with sTiki, which is implemented on the same hardware, and uses signif-
icantly to marginally less memory and roughly the same amount of energy. The difference
can likely be explained by the unreliableness of the available means of measuring.

The proof of operability is not trivial, because at least the operation of the collector nodes
cannot be observed directly, but only indirectly through correct sensor data arriving at the
server. Packets from the aggregators can be examined directly. Finally, correct operation
of the protocol can be shown by testing the protocol programatically.
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1 Establish WebSocket connection to pull interface: wss://pull.webmada.csg.uzh.ch

2 WebSocket connection established to: pull.webmada.csg.uzh.ch/130.60.156.11:443

3 Authenticate at pull.webmada.csg.uzh.ch/130.60.156.11:443...

4 Authentication successful.

5 length: 132 message:

6 256C26AEF1EF3BEB9FF55E5076EDA2CFD13B5D58CD12B1109296C5AB9539B5DD18FC54FFC

7 5BA7F072892A54342BBD6CFD53B5D58CD12B1109696C6AB9539B5DD1AFC54FFC5BA7F072

8 A92A34342BBD6CFD33B5D58CD12B1109096C3AB9539B5DD1EFC54FFC5BA7F072E92A0434

9 2BBD68E72F74A86AC78583F5E343C3B42E76B6538933BF8

10 [ECCProtocol.decrypt] length hexstring = 128

11 [ECCProtocol.decrypt] decrypted:

00033C6C0467FF0100000C80B000021234567880B100021234567880B200021234567880B30

12 0041234567880B400021234567880B500011234567880B000021234567880B1000212345678

13 80B200021234567880B300041234567880B400021234567880B5000112345678C113CC15CC

14 553C91AF7DA2FB82E388A638926F6D15

15 [ECCProtocol.decrypt] len padding: 21

16 [ECCProtocol.decrypt] data stripped of padding:

17 00033C6C0467FF0100000C80B000021234567880B100021234567880B200021234567880B30

18 0041234567880B400021234567880B500011234567880B000021234567880B1000212345678

19 80B200021234567880B300041234567880B400021234567880B5000112345678

20 [ECCProtocol.process] decrypted message, stripped of padding length:

107message:

00033C6C0467FF0100000C80B000021234567880B100021234567880B200021234567880B30

21 0041234567880B400021234567880B500011234567880B000021234567880B1000212345678

22 80B200021234567880B300041234567880B400021234567880B5000112345678

23 [ECCProtocol.checkMsgCounter] counter = 00

24 [ECCProtocol.checkMsgCounter]: counter received = 3, new counter stored = 3

25 [ECCProtocol.process] message counter correct

26 [ECCProtocol.process] counter received: 0003, new counter stored: 3

27 [ECCProtocol.checkCrc] data:

28 0467FF0100000C80B000021234567880B100021234567880B200021234567880B30004123456

29 7880B400021234567880B500011234567880B000021234567880B100021234567880B200021

30 234567880B300041234567880B400021234567880B5000112345678

31 [ECCProtocol.checkCrc] computedCrc: 3C6C, receivedCrc: 3C6C

32 [ECCProtocol.checkCrc] crc checks equal: true

33 [ECCProtocol.process] payload:

0467FF0100000C80B000021234567880B100021234567880B200021234567880B

34 300041234567880B400021234567880B500011234567880B000021234567880B1

35 00021234567880B200021234567880B300041234567880B400021234567880B50

36 00112345678

37 [IPFIXParser._parseTemplate] sequence number: 4294967295

38 [IPFIXParser._parseTemplate] nodeID: 64768

39 [IPFIXParser._parseTemplate] set id: 2

40 [IPFIXParser._parseTemplate] fieldcount: 12

41 [IPFIXParser._parseTemplate] data packet length: 0

Listing 5.1: Debugging output in CoMaDa
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1 |+--[64768] Data received Sun Oct 07 23:44:57 CEST 2018

2 |

3 |----- Temperature (SHT12)[2] (305419896 - 32944): 28.44 Â°C

4 |----- Humidity (SHT12)[2] (305419896 - 32945): 49.65 %

5 |----- MAX44009 Light[2] (305419896 - 32946): 258.75 Lux

6 |----- Node Time[4] (305419896 - 32947): 80 sec

7 |----- NodeID[2] (305419896 - 32948): 38891

8 |----- Pull Flag[1] (305419896 - 32949): 0

9 |----- Temperature (SHT12)[2] (305419896 - 32944): 26.9 Â°C

10 |----- Humidity (SHT12)[2] (305419896 - 32945): 53.33 %

11 |----- MAX44009 Light[2] (305419896 - 32946): 545.48 Lux

12 |----- Node Time[4] (305419896 - 32947): 100 sec

13 |----- NodeID[2] (305419896 - 32948): 39887

14 |----- Pull Flag[1] (305419896 - 32949): 0

15

16

17 +--[64768] Template: 256, received Sun Oct 07 23:45:02 CEST 2018

18 |

19

20 |----- Field 32944, enterpriseNumber: 305419896, length: 2

21 |----- Field 32945, enterpriseNumber: 305419896, length: 2

22 |----- Field 32946, enterpriseNumber: 305419896, length: 2

23 |----- Field 32947, enterpriseNumber: 305419896, length: 4

24 |----- Field 32948, enterpriseNumber: 305419896, length: 2

25 |----- Field 32949, enterpriseNumber: 305419896, length: 1

26 |----- Field 32944, enterpriseNumber: 305419896, length: 2

27 |----- Field 32945, enterpriseNumber: 305419896, length: 2

28 |----- Field 32946, enterpriseNumber: 305419896, length: 2

29 |----- Field 32947, enterpriseNumber: 305419896, length: 4

30 |----- Field 32948, enterpriseNumber: 305419896, length: 2

31 |----- Field 32949, enterpriseNumber: 305419896, length: 1

Listing 5.2: CoMaDa Visualization
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1

2 *******

3

4 Input of length 31, current message counter = 2:

5 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C00

6 encrypting with shared key of collector 1 - aggregator ...

7

8 ECC UDP packet of length 68:

9 02EAF3E90D991B875C034700F452C2C0BA296A904514EC1125148CB6F9E942B8

10 48C6DC150196C5C59061385B001424E27B99CA6EB4FCA667EC4C7EA61D04C4C218E3B304

11 new messagecounter: 3

12 decrypted and unpacked packet of length 31 (1f):

13 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C00

14

15

16 *******

17

18 Input of length 62, current message counter = 279:

19 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0

20 A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0000

21 encrypting with Comada shared key...

22

23 ECC UDP packet of length 100:

24 256C26AEF0F4816A9199AD5B7DE1A4446D315446F34FC59A289ACDB2AD65C65

25 1A0F75AE1FDE00D8C9798AA5D7CE6A2456A375541F54EC29C299DCBB3AA63C7

26 56A6F05AE1F1EC34185208C7637B5A9F17C2617A17FC5391797D426C0B6CA956

27 E9FEED58F3

28

29 new messagecounter: 280

30 decrypted and unpacked packet of length 62 (3e):

31 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0A0

32 B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0000

Listing 5.3: testEncryptDecrypt() output from sensor nodes, run locally
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1 [decryptTest] cleartext:

2 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0

3 A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C0000

4 [decryptTest] Length ciphertext: 96

5 [ECCProtocol.decrypt] length hexstring = 96

6 [ECCProtocol.decrypt] decrypted:

011886ED0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C

7 0C0C0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0

8 C0C0C0000339FC99A66320DB73158A35A255D051758E95ED4ABB2CDC69BB45

9 4110E1E

10 [ECCProtocol.decrypt] len padding: 30

11 [ECCProtocol.decrypt] data stripped of padding:

12 011886ED0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0

13 C0C0C0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0

14 C0C0C0C0000

15 [decryptTest] decrypted and stripped of checks:

16 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C

17 0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0A0B0C0C0C0C

18 0000

Listing 5.4: CoMaDa testDecrypt() output
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Summary and Conclusions

The thesis herein presented a solution that addresses the issue of securing the commu-
nication between nodes in a WSN. The hybrid design of the solution is based on ECC
for key exchange and symmetric encryption and was implemented on a small prototype
sensor network. The solution covers all required security goals (authentication, integrity,
and confidentiality). After evaluating the memory requirements and energy consumption,
it could be shown that the solution is exceedingly efficient and hardly adds any overhead
to the unencrypted protocol.

There are two variations to the solution, one where the shared keys, shared by two commu-
nication partners, are directly stored on the nodes, and the other where the public/private
key pair is stored on the nodes. With the latter variation, the public key of the sender
is sent with each message and authenticated against a hash tree, which uses a fraction
of the memory compared to storing each public key of every communication partner, but
induces a communication overhead

It was shown that depending on the network size, it is reasonable to deploy one or the
other variation: If there are only few sensor nodes in the network (> 1000), it is reasonable
to store the shared keys directly on the sensors, because the overhead from authenticating
the public keys through the hash tree and computing the shared keys from the public
keys is larger than the efficiency profit. When the network is large (>=1000 nodes), the
second variation seems advantageous, as storing the public keys of alle the communication
partners will become a problem considering the memory size of 512KB the OpenMotes.
It has to be seen how the lower protocol layers can cope with the actual message handling
with a network this large. For this task a simulator would be necessary, which is not
available for the current TinyIPFIX implementation.

Finally, another possible improvement concerns the deployment process: Currently, all
sensor nodes have to be manually equipped with their shared keys, respectively with the
public and private keys. For TinyOS there exists a Web service for keying the sensor
nodes, which would have to be ported to Contiki. The implementation of such a web
service would only ease the work of manually deploying the keys, but would not affect on
the general security of the protocol.
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