
Master
November 8, 2018

Software Developers’
Desktop Interactions

An Analysis

Raphael Imanuel Rosenast
of Kirchberg SG, Switzerland (10-924-728)

supervised by
Prof. Dr. Thomas Fritz

software evolution & architecture lab

Master

Software Developers’
Desktop Interactions

An Analysis

Raphael Imanuel Rosenast

software evolution & architecture lab

Master

Author: Raphael Imanuel Rosenast, raphael.rosenast@uzh.ch

Project period: 05/08/2018 - 11/08/2018

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to take this opportunity to thank all those who have accompanied and supported me
during the pursuit of this masters thesis.

First of all, my supervisor Prof. Dr. Thomas Fritz has earned a very special thank you. In the
course of this work, he has faithfully assisted and supported me in all situations. Thank you for
your patience and effort.

Next, I would like to thank the people in the team of Prof. Fritz and in the software and
architecture lab of the University of Zurich, that were of great support:
Thank you, Nick Bradley for your open ear, your valuable comments and suggestions in the
development and analysis, as well as for the meticulous proof reading of the work.
Thank you, André Meyer for your friendly support and ideas in the development, along with the
late night builds and deployment of the application.

In the following I would like to thank the three software companies, and especially the people
behind them, that enabled the study trough their time, effort and participation.
I would like to thank the Vertec AG, Zurich, namely I would like to thank Samuel Iseli who
personally taught me a lot, who always created an enjoyable work atmosphere and allowed for a
great start of the study.
I also would like to express many thankfulness to the Zeit AG, Sursee. I owe special gratitude to
Tim Kleinholz who invited us in and started the study with the company.
Further appreciation goes to Logitech Europe S.A., Lausanne and especially Benjamin Vullioud
for having an open door and enabling the study as well as Ludovico Novelli for supporting the
installation and setup process.
Moreover, I would like to thank all individual participants of the study. Thank you very much for
your time and participation.

Certainly not the last thank you goes to my parents and my girlfriend, without whose support
this work would have probably never come about.

Abstract

Software development is a complex task and developers need to use a variety of applications for
their daily work. The demand to transfer information makes it necessary to use many of the ap-
plications simultaneously. This often results in a myriad of open windows, which may reduce
navigation efficiency and focus as the number of windows increases. In this thesis, we analyzed
how professional software developers interact with and manage their desktop environment. In
particular, we look to see if developer efficiency could be affected by high numbers of opened
windows. To construct the dataset, we observed the desktop environments of 12 professional
software developers from three different companies over a combined total of 195 days. For this
task, we used a monitoring application also capturing visual focus with an eye tracker. The eye
tracker provided valuable insights additional to the traditional interaction data. We found only
79% of the visual attention was directed at the window with the keyboard input. Half of the desk-
top environments had 10 or more windows open while mostly only two were fully visible. The
number of open windows grows over the course of a work day and we learned most developers
do not proactively close windows. From time to time, we could observe desktop environments
go through cleanup cycles. Nonetheless, found evidence of unused windows overcrowding the
desktop environments and see potential to foster developers focus in the future.

Zusammenfassung

Softwareentwicklung ist eine komplexe Aufgabe und Entwickler benötigen zahllose Applikatio-
nen für ihre Tätigkeit. Mit der Anforderung Informationen zu transferieren entsteht die Not-
wendigkeit diese Applikationen synchron zu verwenden. Resultat sind oft unzählige geöffnete
Fenster, welche die Navigationseffizienz mindern und den Fokus beeinträchtigen. In dieser Ar-
beit wird analysiert wie professionelle Softwareentwickler mit ihrer Desktop-Umgebung inter-
agieren. Besonders wird Effizienz in Zusammenhang mit vielen geöffneten Fenstern thematisiert.
Dazu wurde eine Überwachungssoftware entwickelt, welche in der Lage ist Informationen zu
Desktop-Umgebung und visuellem Fokus zu erfassen. Die Software wurde bei einem Dutzend
professioneller Softwareentwickler von drei verschiedenen Firmen eingesetzt. Dabei wurden
Daten im Gesamtumfang von 195 Tagen gesammelt. Im Vergleich zu herkömmlichen Interak-
tionsdaten konnten mit dem Eye Tracker wertvolle Zusatzinformationen gewonnen werden. Nur
79% der erfassten Blicke waren auf aktive Fenster gerichtet. Auf mehr als der Hälfte der gesam-
melten Desktop-Umgebungen waren 10 und mehr Fenster gelichzeitig geöffnet. Zudem ist die
Anzahl der geöffneten Fenster über den Arbeitstag kontinuierlich gewachsen. Die meisten En-
twickler gaben an, Fenster nicht vorausschauend zu schliessen. Gelegentlich wurde die Desktop-
Umgebung aufgeräumnt und damit geöffnete Fenster geschlossen. Nichtsdestotrotz haben wir in
vielen Fällen Indizien für unbenutzte Fenster gefunden und sehen Potenzial, Entwickler zukün-
ftig in ihrem Fokus zu unterstützen.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Contributions . 2
1.4 Outline . 2

2 Related Work 3
2.1 Manual Observation of Developers . 3
2.2 Monitoring the Desktop Environment . 4
2.3 Monitoring Developers IDE . 5
2.4 The Window Plague in IDEs . 5
2.5 Tracking Developers Eyes . 6
2.6 Monitoring Developers Desktop Environment . 7

3 Methodology 9

4 Monitoring Application 11
4.1 The Windows desktop environment . 11
4.2 Implementation . 12
4.3 Captured Data . 13

5 Results 15
5.1 A Developers Desktop Environment . 15
5.2 Desktop Environment Interactions . 21
5.3 Visual Focus . 26
5.4 Threats to Validity . 28

6 Discussion 29

7 Future Work 33

8 Conclusion 35

Interview Protocol 41

Contents of the CD-ROM 43

viii Contents

List of Figures
5.1 Boxplot of open windows by participant ordered by median 16
5.2 Boxplot of open windows by hour . 17
5.3 Pie diagram of developers desktop environment interactions 21
5.4 Probability of a past active window to be selected as the next active window 23

List of Tables
5.1 Activity-windows per monitor . 20
5.2 The most frequent window switches . 23
5.3 The most frequent fixation switches . 26
5.4 Most frequent fixations away from the active window 27

Chapter 1

Introduction

The work of a software developer is often portrayed as the processing of information. During this
process, software developers use a variety of distinct applications to fulfill their tasks. Often, these
applications are used together, especially when transferring information from input to output.
Additionally, a software developers’ work has been observed as highly fragmented and full of
switches between different activities [1, 2]. In the desktop environment, this situation leads to
a complex arrangement of ever changing windows. Furthermore developers usually seem to
open many more windows than they close which leads to a growing list of open windows [3].
Considering our limited cognitive ability, it seems likely that the complexity of modern desktop
environments negatively impacts developer focus and productivity.

Other research shows that context switches, such as windows switches between Integrated
Development Environments (IDEs) and other applications, impacts the flow, focus and produc-
tivity of a developer [2].

Similar problems arise when too many windows are open since this reduces developers’ nav-
igational efficiency as they spend more time looking for the window of interest [3]. It has been
know for a while that crowded workspaces pose problems for developers. Roethlisberger et al.
named the problem the window plague [3] and multiple researchers have proposed solutions to
mitigate the problem but only within the IDE [3, 4].

In this thesis, we argue that there is no reason for the window plague to be restricted to IDEs,
and instead, that it is a phenomenon inherent in every window-based desktop environment. As a
window based operating system, Microsoft Windows could be fairly prone to an overly crowded
desktop environment with many open windows and tabs. Additionally, we show that by con-
sidering the window plague problem holistically at the desktop-level there is potential to further
improve the focus of knowledge workers.

1.1 Motivation
To gain insights into complex desktop interaction problems such as the window plague, we need
to understand software developers’ desktop environments.

A substantial amount of research has been undertaken to understand what software develop-
ers do at work [1, 5, 6, 7, 8] and how they use different specific aspects of the desktop environment.
Interactions within the IDE, in particular, are well documented [3, 4, 9, 10, 11, 12]. From this re-
search, we know developers spend a significant amount of time interacting with their desktop
environment; in the IDE alone, they spend around 14% of their time rearranging, re-sizing or
dragging windows [11]. We also know developers spend up to 39.8% of their time outside the
IDE [12].

2 Chapter 1. Introduction

However, we were not able to find published research that focuses on high-level interactions
of software developers with their modern window-based desktop environments. Tools with the
capability to capture desktop events were introduced at least 18 years ago [13] but they seem to
be either out of date, have never been used in a real work environment [14] or have set their
focus differently [1]. Recently, Nick Bradley and Felix Grund conducted a small-scale study in
which they captured the desktop interactions of four computer science students and conducted a
preliminary analysis [15].

In this thesis, we aim to fill this knowledge gap by providing a characterization of professional
software developers’ interactions with their desktop environment. Furthermore, we investigate
the impact of the window plague on developers’ focus at the desktop-level, extending the previ-
ous work that only considered IDEs.

1.2 Research Questions
We examine the following research questions in this thesis:
RQ 1: What are the characteristics of a software developers desktop environment?
RQ 2: What are the differences between traditional computer interaction data and visual focus?
RQ 3: Is there an existing window plague in developers desktop environments?

To answer these research questions, we developed a tool to capture desktop environment
interaction and visual focus. Using this tool, we performed a field study with 12 participants
from three different software companies over a combined period of 195 days and conducted semi-
structured interviews. We analyzed the data and present the results in this paper.

We found half of the desktop environments had 10 or more windows open while mostly only
two were fully visible. The number of open windows grows over the day and we learned most de-
velopers do not proactively close windows. We found indications of an existing window plague
outside the IDE, although it does not affect every desktop environment.

1.3 Contributions
This thesis makes three main contributions.

1. A tool to capture desktop environment interactions as well as the visual focus of developers.

2. A reproducible methodology for structuring, processing, and analyzing the collected data.

3. The processed data and the results of our study with 12 professional developers.

1.4 Outline
This thesis is divided into eight chapters. Chapter 1 motivates the work and introduces the re-
search questions. An overview of related work is given in Chapter 2. The methodology is formu-
lated, and the participants and interview structure are described in Chapter 3. Chapter 4 describes
the monitoring application. Results of the analysis are presented in Chapter 5 and discussed in
Chapter 6. Ideas to improve and extend this research are given in Chapter 7. Chapter 8 concludes
with a summary of the most important aspects of this work.

Chapter 2

Related Work

Developers have been observed numerous times throughout the years in research with different
areas of interest. In this chapter, the relevant related work is laid out. The related work falls
roughly into five categories: We will start out with what we know about software developers
from an observational perspective and then to go into what is known from observing various
participants with monitoring applications. We will then go into the research performed with
monitoring applications that observe the IDE of a developer and find out what the window plague
problem is. After that, we give a short overview of what has been exposed through equipping
developers with eye trackers. Lastly, we look at related research that observed parts of the desktop
environment of software developers with monitoring applications.

2.1 Manual Observation of Developers
Decades ago, researchers started to conduct empirical studies with software developers. The daily
activities of software engineers with their respective frequencies have already been explored in
multiple studies a long time ago. A study by Singer et al. from 1997 found the most performed
activities of a software developer to be those of reading documentation, looking at source code, writ-
ing documentation or code and attending meetings [5]. The participants were observed switching
between these activities. Overall, they found that software developers spend most of their time
searching for information and reading documentation.

Already in early 2004, Mark et al. and Gonzalez et al. have studied task switches, multitasking
and interruptions in the work place and continued to do so [6, 7, 8]. Over 7 months they observed
and interviewed developers and found they only spend an average of around 3 minutes on a sin-
gle task before they switch, and an average of 12 minutes in a working sphere (a high-level unit of
work or activity) [6]. They also found 57% of all tasks to be interrupted and often fragmented [7].
Soon after, Mark et al. found that interruptions and work fragmentation result in negative ef-
fects for knowledge workers [8]. Their data indicates people seem to compensate interruptions
by working faster and therefore experience more stress and frustration.

A more recent study by Meyer et al. investigated software developers’ perceptions of soft-
ware development productivity [16]. They conducted an observation of 11 professional software
developers and found that a developer switches tasks 13.3 times per hour on average. Further-
more, they found developers perceive their days as productive when they complete tasks without
significant context switches [16].

Since manual observation is time consuming and does not scale well, researchers quickly
started to adapt applications that collect the necessary data for them.

4 Chapter 2. Related Work

2.2 Monitoring the Desktop Environment
Employing monitoring applications that automatically observe participants is not new. Various
researchers proposed a large number of applications to capture computer interaction data. Al-
ready in 2000, David Hilbert and David F. Redmiles described and classified existing monitoring
applications and systems that were designed to track user interface events or individual appli-
cations [13]. The documented systems include applications with capabilities for capturing key
presses, mouse clicks, mouse drags and other events. Some of the described applications could
have provided insight into the use of the desktop environment. Although the basic interaction
methods with a window may not have changed much since the year 2000, the desktop environ-
ment has undergone many changes due to new tooling and interaction designs. Other examples
from 2002 include research by Fenstermacher et al., where they proposed a framework to moni-
tor users in a cross-application environment [17]. However, the proposed framework is aimed at
human-computer interaction with the applications and not the desktop environment as such.

In 2005, Dragunov et al. from Oregon State University proposed TaskTracer, a monitoring ap-
plication designed to support multitasking knowledge workers in locating and reusing past pro-
cesses [14]. The application has the capability to collect data about the desktop environment and
especially applications like Microsoft Office, Visual Studio and Internet Explorer via an addin.
It monitors the desktop environment by collecting events like window focus, clipboard and file
creation events. Detailed records of user activity are also collected. Although the application’s
potential to observe the desktop environment seems to be quite extensive, the author states the
application was not tested in actual work environments. The application and recorded data has
since been used in multiple subsequent studies, mostly to train machine learning based predic-
tors [18, 19, 20]. Examples include folder and task prediction. However, it does not seem the
application or data were ever used to report on the desktop environment use; neither of students,
nor of real-world participants.

Around the same time, Hutchings et al. performed a study with the intent of comparing single
monitor and multiple monitor usage [21]. They deployed a monitoring application to track the
window management events of 39 participants and gained some insights into the desktop envi-
ronment in general. The analysis of the collected data showed that 78.1% of the time participants
had eight or more windows open. The average amount of time that any window was active was
20.9 seconds, and from this they conclude that the participants frequently shifted their attention
among several windows. Furthermore, they found single-monitor users have an average of 3.5
visible windows while multi-monitor users averaged between 4.1 and 6.8 visible windows. The
median was 3 visible windows for single-monitor users and 4–6 visible windows for multiple-
monitor users, depending on the size and resolution. Another finding is that, with more screen
space, users seem to leave part of the screen empty. Although the research by Hutchings et al.
shows deeper insights into desktop environment usage, it is not tailored to software developers
and might not be as applicable nowadays, 14 years later.

Newer studies often monitor specific applications, tasks or activities rather than the desktop
environment in general.

2.3 Monitoring Developers IDE 5

2.3 Monitoring Developers IDE
As the IDE is one of the more significant applications inside the desktop environment of a soft-
ware developer, many researchers focus explicitly on IDE usage.

In 2005, Mik Kersten and Gail C. Murphy proposed an Eclipse IDE1 plugin Mylar that, among
other things, monitors a programmers’ activities and captures the relevance of code elements in
regards to their task [22]. Through the data of a developer’s interactions, the plugin is able to
build a task context. In a subsequent study, Murphy et al. analyzed the data Mylar provided
to give insights into what Java software developers do while using the Eclipse IDE [9]. They
collected data from 41 Java developers and reported on the most commonly used navigation
patterns, commands, and views.

A recent study from 2015 by Sanchez et al. analyzed the data provided by the same Eclipse IDE
plugin, that was renamed to Mylyn in the mean time [2]. Dozens of developers provided several
thousand interaction traces for the study, which aimed at gaining insights into work fragmen-
tation. Corroborating other research, they found that the work of software developers is highly
fragmented and full of switches between different activities. Further, they observed that work
fragmentation is correlated to lower observed productivity. Specifically, longer activity switches
seem to strengthen the correlation. Frequently switching windows may therefore impact focus,
flow, and productivity of developers.

Minelli et al. investigated on how developers spend their time using an interaction profiler
installed into the PHARO2 IDE, which provides fine-grained IDE interaction data [11]. They ob-
served about 740 development sessions by 18 developers and a total development time of 200
hours. Due to the collection method, the work is mainly focused on the IDE. They found devel-
opers spend around 14% of their time rearranging, re-sizing or dragging IDE windows. They
furthermore state that the time spent outside the IDE only accounts for about 8% of the time.
Additionally, they found the number of switches from inside the IDE to (a window) outside lin-
early correlated with the code understanding time as well as time spent rearranging windows;
therefore having a negative impact on focus.

Ammann et al. instrumented the Visual Studio3 IDE and monitored the interactions of profes-
sional developers for more than 6300 hours [12]. They mainly focused on how developers spend
their time inside the IDE and the differences to other IDEs. They have a large number of findings
but mostly out of the context of this work. One noteworthy result is that developer spend 39.8%
of their time outside the IDE, potentially using external tools for their work.

2.4 The Window Plague in IDEs
Roethlisberger et al. conducted several empirical surveys and studies with software developers
and collected data about their window usage inside the IDE [3]. They found an average number
of 16.68 open windows in the Eclipse IDE and 14.29 in the Squeak IDE. Moreover, they discovered
that developers open many more windows than they close and therefore let the list of windows
grow steadily. Developers mentioned in an interview that their strategy is to let number of win-
dows grow until they are completely done with the current task. After the task, they take some
time to manually close all or most opened windows. Only a few developers close deprecated
windows regularly during a task. Moreover, developers are aware of the deprecated windows,
but they are not willing to manually close them.

1https://www.eclipse.org/ide/
2http://pharo.org/
3https://visualstudio.microsoft.com/

6 Chapter 2. Related Work

As a result of this, they found developers often lose time or even overview in the crowded
workspace, and learned from discussions with the developers that a cluttered workspace with
many open windows decreases development efficiency. Roethlisberger et al. named the problem
of an overly crowded workspace with many open windows within the IDE the window plague.

In search of a solution to the window plague, they proposed AutumnLeaves, a tool that grays
out or closes windows unlikely to be used again. To detect what windows are likely not to be used
anymore, the tool assigns weights to open windows and indirectly models references between
windows. The weights are adjusted upon user actions using a specially developed scheme. In
the the evaluation of the tool, they learned that the tool was able to minimize the average number
of open windows. Another important takeaway is the finding that developers are not willing to
accept a fully automatic closing mechanism and seem to desire a veto before the windows are
closed.

Minelli et al. used a tool to mine fine-grained UI events inside the IDE and processed them to
be presented visually [10]. During their observation they found evidence of the window plague:
They observed a developer cleaning up the desktop environment at regular intervals of about 1.5
hours. In this cleanup phase, the developers closed almost all windows to refresh the environ-
ment. The presented visualization shows the growing number of windows until the entropy level
of the environment becomes unbearable. The developer is then observed grooming the desktop.
The paper notes a task may at that point have been completed or the environment may just have
become unbearably convoluted, so that the developer needed to start over again.

Minelli et al. further tried to mitigate the observed window plague problem by exploiting
the collected IDE interaction data [4]. They propose a novel tool called the Plague Doctor that
detects the likelihood that an IDE window will be reused in the future and automatically closes
low-probability windows. Featurewise, Plague Doctor is quite similar to AutumnLeaves but has
some advantages, most notably, an updated window weighting strategy. The tool also operates
on more interaction data than the previously proposed approach.

In contrast, this thesis aims to investigate whether the window plague problem exists outside
the IDE. If so, we plan to build the basis for future solutions against a holistic window plague
outside the IDE to build on.

2.5 Tracking Developers Eyes
Researchers have also discovered the potential of eye tracking in the observation of software
developers and especially in monitoring applications.

Already in 1990, Crosby et al. designed an experiment to determine if programming expe-
rience influences code comprehension using eye trackers[23]. They found novice and experi-
enced developers display different patterns when reading an algorithm. Later, multiple other
researchers were able to gather insights into the differences between novice and expert develop-
ers during code comprehension tasks by using eye trackers as well (e.g. [24]).

Other researchers have used eye tracking technologies to look into developers’ comprehension
of different software artifacts [25, 26, 27, 28]. Some researchers have also evaluated the potential
of eye-tracking for detection of software traceability links [29].

Fritz et al. conducted a study with 15 professional programmers where they tested whether
eye-trackers and other psycho-physiological sensors could be used to measure task difficulty [30].
They found one can predict task difficulty with reasonable precision even for new participants,
where using an eye-tracker alone has provided the best predictive power.

2.6 Monitoring Developers Desktop Environment 7

Kevic et al. gathered interaction and gaze data from 22 software developers working on change
tasks [31]. They automatically linked eye gaze data to the underlying source code elements in the
Eclipse IDE and found, among other things, that the eye-tracking data captures substantially
more, and different aspects of developers interactions.

Through the collection of eye tracking data, we try to gain insights into those different aspects
in the use of the desktop environment and try to give an understanding on how they differ from
traditional interaction data. It seems, there is only a limited amount of research using monitoring
applications outside the IDE to look into the desktop environment use or even the more general
computer use of software developers.

2.6 Monitoring Developers Desktop Environment
Recently, Meyer et al. performed a study where they installed a monitoring application on the
computers of 20 professional software developers from four different companies for an average
of 11 work days [1]. The application was used to analyze the types and frequencies of application
switches and to correlate developers’ work habits with perceived productivity. One of the results
is that developers switch activities after 0.3 to 2 minutes minutes on average and therefore inter-
act with their desktop in a highly fragmented way. Furthermore, they note that in rare occasions,
developers spend long hours without switching activities. They found the most often occurring
activity pattern is to switch during coding tasks to emails. Switching from a coding task to work
related web browsing was observed often as well. Additionally they made many productivity re-
lated findings, such as that developers can be grouped into morning, low-at-lunch and afternoon
people. The monitoring application developed by Meyer et al. captures relatively few desktop
environment properties compared to the current study. Additionally the current study uses eye
tracking features and is more focused towards the the desktop environment data analysis.

In 2017, Nick Bradley and Felix Grund looked into the desktop interactions of knowledge
workers as well as possible distractions in the desktop environment [15]. They developed a back-
ground application with eye tracking capabilities that was employed to observe four graduate
computer science students at their desktop for up to two weeks. They found participants to have
a median number of 12 open windows and switch frequently between them with an average of
of 326 switches per hour. They found that out of all window switches that took place in under
10 seconds, 40% were even below one second. Furthermore they found that the active window
is maximized 67% of the time, indicating that other windows on the same monitor do not pose
a distraction. They found the active window to be on the primary monitor 87.18% of the time.
Using eye tracking, they found users switch applications much more frequently with their eyes
than with their mouse and keyboard and most notably that participants had only looked at the
active window for 18.75% of the time. Further results are related to the fixation time of a window.
Participants either look at a windows for less than 100 ms or more than one second. Overall, most
gazes lasted between 100 and 200 milliseconds.

Although the study provides valuable insight, it has some room for improvement: The authors
mentioned it was hard to link the data from the eye tracker and the desktop environment and that
mistakes in the linking process may have happened within the tool as well as the analysis. They
recognize the need for a better technique in the linking of the data. The desktop environment data
was collected with a polling approach, where every 500ms a desktop screenshot was taken. The
authors would like to move away from the polling-based approach since it may be prone to miss
important environment changes, in particular what events triggered the changes. Furthermore,
they would be looking into an event-based data collection mechanism. User presence was not
detected and therefore there was no notion of idle time. Furthermore, the authors would like to
to categorize applications into sets in the future. Lastly they acknowledge the sample size of four

8 Chapter 2. Related Work

participants is very limiting. The authors consider the study a pilot for a larger future field study,
and the paper was never published. It was clear from discussions with the authors that they do
not intend to pursue this further.

This thesis is similar in many aspects to the study performed by Bradley and Grund. We try to
capture almost the same variables when observing the window environment and analyze similar
questions. We aim to extend the study by overcoming the indicated shortcomings in the following
manner: The eye tracker data and the desktop environment is linked automatically at run-time
by the application to minimize the chance of mistakes. The polling approach is discarded in favor
of an event-based approach where all events that cause changes are captured. User presence
data is captured in multiple ways and therefore there are multiple notions of idle, such as user
presence detected by the eye tracker or mouse and keyboard idle. The analysis categorizes the
applications into activities and a big part of the analysis is based on these activities. We investigate
a broader participant population where the size is increased from four to twelve and extend the
observation period for all participants. Last, our monitoring software is deployed to professional
software developers.

Chapter 3

Methodology

To answer the given research questions, an approach to collect the necessary data needed to be
developed. We chose two distinct means of data collection. First, we implemented an applica-
tion that allows us to monitor the user’s desktop environment and therefore capture data about
their window interactions as well as eye tracking data. Second, we conducted a semi-structured
interview with all participants to enrich the collected data with explanations and intent. In this
chapter, we will first describe the participants, go shortly into the interview questions, and discuss
our means of analysis.

Participants For our study, we were looking for participants who were professional software
developers willing to share data and insights into their interactions with the desktop environ-
ment. We have restricted ourselves to developers using the Microsoft Windows operating system
for simplicity. To find these participants, we leveraged personal contacts as well as the contacts
of the Software Evolution and Architecture Lab1 of the University of Zurich. We found three
software companies of varying size based in Switzerland willing to take part in our study. Par-
ticipation was completely voluntary for the employees. To incentivize participants, we brought
small presents in the form of chocolate or confections whenever we visited the companies.

We found 12 professional software developers who were willing to participate in our obser-
vational study. All participants were using Microsoft Windows as their operating system and
installed our background application that allowed us to observe their desktop environment dur-
ing the daily work. Additionally, we installed a Tobii Eye Tracker 4C2 on the primary screen of
all participants to capture visual focus. The participants unanimously described development
as their primary work area with some having additional secondary work areas, such as project
management, system engineering, and test. The role of 9 participants (75%) was best described as
individual contributor with some having an additional role as architect. The role of the remaining
3 participants (25%) role was lead with additional roles such as manager, executive or architect.
The participants had an average of 17.5 (±10.6) years of experience with software development,
ranging from 2 to 35 years. Out of these, an average of 14.25 (±9.1) years were professional expe-
rience, ranging from 1 to 25.

1https://www.ifi.uzh.ch/en/seal.html
2https://tobiigaming.com/product/tobii-eye-tracker-4c/

10 Chapter 3. Methodology

Interviews To gain insights into the participant’s use of the window environment and to find
explanations for the collected data, we conducted a semi-structured interview with all 12 partic-
ipants. The interview consisted of 23 questions, which can be found in the Appendix. All of the
questions were voluntary and a participant was allowed to drop out at any time. The questions
were on the following subjects: 4 on the participants background and experience, 8 on their desk-
top environment and use, 3 on finding a tab or window and switching to it, 2 about distractions
in the desktop environment, 3 on shortcomings and possible improvements of the window en-
vironment, and 2 on the study and study situation. Out of the 23 questions, 9 had a closed set
of answers, while 14 of the questions were open-ended. Almost every participant answered all
questions. All interviews were audio recorded and were later transcribed into a Microsoft Excel3

table. Further analyses, such as computing the average number of experience years, were per-
formed directly inside the table. Some answers were filtered during the phase of the transcription
to remove all personally identifiable information.

Analysis The application was installed for a time span of one to four weeks with 12 individual
software developers. This resulted in a total of 195 observed days. The participants uniformly
described the observed work weeks as rather usual and nothing out of the ordinary. All partic-
ipants stated the application did not alter their daily work. Many participants mentioned that
they forgot about the application a short period of time after installation. A total of 210,573 desk-
top environment snapshots with a total of 5,162,321 windows (929,309 unique) were collected.
Furthermore 3,987,896 mouse positions and 32,559,307 fixations were collected through the eye
tracking feature of the application.

The data was collected from the individual participants’ computers and merged into a cen-
tral database for the analysis. In the process of this merge, every entry was assigned a partic-
ipant number (p 1 - p 12) based on the originating database. The analysis was conducted in a
largely exploratory and descriptive way using R Studio4. Due to the heterogeneous work envi-
ronments of the participants and the large number of used applications, we had to group appli-
cations into activities to gain useful insights. A component developed by André Meyer of the
University of Zurich was used to perform this grouping. The component was extracted from his
self-monitoring tool Personal Analytics5.

We investigated what indicators of the window plague other researchers identified in their
data e.g. [3, 10, 4]. We then tried to recognize the mentioned indicators in our dataset. Through
the processing pipeline of the R Notebooks, the research is reproducible. The major findings from
the R Notebooks are presented in this paper under Chapter Results 5.

3https://products.office.com/en/excel
4https://www.rstudio.com/
5https://github.com/sealuzh/PersonalAnalytics

Chapter 4

Monitoring Application

To gather desktop environment insights from participants, an application to capture the data had
to be developed. As a window-based desktop environment, we chose the Microsoft Windows
platform. In this chapter we first discuss the particularities of the Microsoft Windows environ-
ment. The monitoring application is then introduced and the captured variables are presented.

4.1 The Windows desktop environment
Since the Microsoft Windows desktop environment is common on personal computers, many
people are familiar with it. We will discuss the basics shortly to ensure the associated terminology
is well understood, since it will be used throughout the paper.

The core of the Microsoft Windows desktop environment is built on the notion of the window,
a graphical interface to interact with an application. In the following, we will call applications
with at least one window interactive applications. Numerous interactive applications may be
run simultaneously and every application may open up multiple windows. Whenever multiple
windows exist simultaneously, they may overlap and a window may partially or fully occlude
others. This occlusion is governed by the Z-order, which defines the stacking order of windows.
Windows higher in Z-order may obstruct lower windows from being seen by the user. At any
given point in time, exactly one window is on top of the Z-order. This window is called the active
window and receives the keyboard input. An open window may be invisible to the user for another
reason than being obstructed by others: The user has the ability to minimize a window, or in other
terms, hide it from the desktop and reduce it to the taskbar. The taskbar is a special window
that is located along one edge of a screen and provides an overview of the existing windows
in the environment. Also, the taskbar provides a special section to display running background
applications called the system tray.

The window manager, is a main component in the desktop environment, which controls the
aspects and attributes of windows. One attribute that we have already talked about is its Z-
order. Some other important attributes associated with a window are the following: The title
or interchangeably called window name are used for identification (in conjunction with other
attributes, such as the handle, style or window class). The position and size of a window determine
its placement on the desktop. The show state of a window determines whether it is minimized,
maximized or always on top of all other windows. Finally, the application where the window
originates is another important attribute with its own associated properties. There are many more
attributes associated with a window like relationships, menus etc., that we will not go further into.

12 Chapter 4. Monitoring Application

The window manager also allows the user to interact with a window. There are six primary
interaction methods with a window that determine its life cycle:

• Create is performed when a window is first opened. It shows up on the desktop.
• Activate moves a window into the foreground and on top of the Z-order. It becomes the

active window. A term we use interchangeably to activated is being switched to.
• Minimize (sometimes called iconify) reduces a window to the taskbar and makes it invisible

to the user.
• Restore returns a reduced window to its previous position and makes it visible again.
• Move or Resize (includes maximizing) changes position or size of a window.
• Destory closes a window.

There are other interaction methods with a window, e.g. Rename that changes the name (or
title) of a window. These methods are usually not performed by the user himself, but rather by
an application and are therefore not relevant for this thesis. There are other particularities of a
desktop environment, such as logical workspaces such as virtual desktops. We will not look into
these. Also, we will regard invisible windows that are not occluded or minimized as closed for
simplicity. Examples of such invisible windows are cloaked Windows 10 Store apps or message-
only windows.

4.2 Implementation
As discussed in the Methodology (3) chapter, we did not know of an application that could pro-
vide us with all the information we were interested in. It became apparent that we had to build
one for this specific task. As a window based desktop environment to observe for our study, we
had chosen the Microsoft Windows platform. With this prerequisite, we decided to develop our
monitoring application in the C# programming language that allows us to use native methods of
the Microsoft Windows API (window manager) and still abstracts low-level details. The applica-
tion should always be running in the background and not require user interaction. We therefore
originally implemented the monitoring application as a stand-alone background application that
was only visible as a system tray icon. In a second endeavor, the application was integrated into
Personal Analytics1, an existing self-monitoring application developed by André Meyer at the Uni-
versity of Zurich. Personal Analytics also resides in the system tray and does not require any user
interaction. Furthermore, we prevented Personal Analytics from showing any windows for the
duration of the data collection. This was done to ensure the process of data collection would not
influence the behavior of the participants and ultimately does not distort or influence the collected
data.

Further requirements for our monitoring application resulted from the related work (see chap-
ter 2). As the authors of existing monitoring applications had recognized minor shortcomings to
their applications [15], we had to ensure we would not retain those. Some of these requirements
were as follows: The eye tracker data and the desktop environment had to be linked automatically
at run-time by the application. This ensured data was matched correctly. We had to implement
an approach where all user interactions with the desktop environment would cause events that
could be captured and named. User presence data had to be captured and we chose to implement
multiple possible notions of user presence. We implemented user detection by the eye tracker or
mouse and keyboard interaction detection.

1https://github.com/sealuzh/PersonalAnalytics

4.3 Captured Data 13

4.3 Captured Data
The application has the capability to capture a variety of data around the desktop environment
and interactions as well as fixation data. The data is stored into a local SQLite2 database on the
participants computer and has to be manually collected from there. Only after the collection
are the individual databases combined into a central database for later analysis. To combine the
individual databases, a special tool was developed that kept the relations in the data intact and
assigned participant numbers to the obtained data. In the following, we will lay out the most
important data that was collected.

Desktop Environment Data Since our main interest is directed at the desktop environment,
the most important data captured by the application are the window attributes. The application
tracks almost every property of a window, including title, class, position, size, status, and hierar-
chical information. Along with the window, the associated application is captured as well as most
associated process information. To further support our window data, we gathered additional in-
formation with relation to the window, such as monitor data. The sum of all collected window
information at a given point-in-time form a snapshot of the desktop or desktop snapshot.

Traditional Interaction Data To gain a more dynamic understanding of the desktop environ-
ment interactions than provided by static desktop snapshots, the application observes the win-
dow manager interactions. All primary interaction methods (Create, Activate, Minimize, Restore,
Move or Resize, and Destory) as well as some indirect ones (such as Rename etc.) require a new
snapshot be created. The developed application captures all these window manager interactions
and creates new desktop snapshots after every interaction. Additionally, the application captures
Mouse Position as further interaction data, as well as a measure for when the user was last active
at the computer. Moreover, we collected data about other specific events, such as when data got
copied into the clipboard, when the monitors or settings were changed.

Visual focus To capture the visual focus of the users, the application is capable of eye tracking.
Usually eye trackers provide the screen coordinates of the position where a user is looking at in
regular intervals. The interval duration depends on the eye tracking hardware. Every individual
data point collected in this manor is called a Gaze data point and is mostly an artifact of the em-
ployed eye tracking hardware. We were interested in the visual attention of the user and therefore
in positions where the user maintains the visual gaze on a single location. This is captured in so
called Fixation data. The movement in between two individual fixations is called a Saccade. We
used the Tobii Core3 Software development kit (SDK) to obtain mainly fixation data.

As we were targeting the collection of desktop environment data, we used the provided screen
coordinates of the eye tracker to derive the window a user was looking at. The application cap-
tures the fixated position as well as a link to the associated window. Further data obtained from the
eye tracker includes eye position, head pose and user presence.

A major shortcoming to the used eye tracker and associated SDK is the fact that only the data
from a single monitor may be captured. We decided to deploy the eye tracker on the primary
screen of the participants. As a result, we were only able to capture visual attention on the primary
screen.

2https://www.sqlite.org/
3https://developer.tobii.com/

Chapter 5

Results

The developed application helps to address the research questions as it gives insights into the
characteristics of a desktop environment, the associated interactions and focus.

In this section, we start off with a description of the characteristics of a developer’s desktop
environment. We then present the interaction patterns that developers exhibit when working
with the desktop environment. Following that, we present data on how developers direct focus
throughout the daily work, how it compares to traditional input, and what might have a negative
impact on said focus.

5.1 A Developers Desktop Environment
To better understand developers’ usage of their window environment and how we might be able
to support focus at work, we first examined the participants desktop environments.

In general software developers use 9 applications. When developers first log in into the
desktop environment, there are usually no applications running and they start out by opening
the applications necessary for work. By the time all applications are started, there are a median
of 9 (±IQR 4.0) interactive applications (with a visible representation) open simultaneously. We
looked at how many distinct applications an individual developer uses over time. The lowest
number of distinct used applications observed during time of our study was 17, while the partic-
ipant with the most distinct applications used 115 (median 35 ±IQR 12.5). Overall we observed
291 distinct interactive applications that developers use at the workplace. The maximum num-
ber of simultaneously opened distinct applications that we could observe was 19. We found our
participants spend their time mostly developing (38.9%), browsing (20.7%), emailing (9.6%) and
working with documents (9.6%). All applications are presented with a visual representation for
the developer to interact with. In a window based desktop environment such as Microsoft Win-
dows, the visual representation of the application is the window.

Developers have a median of 10 open windows. The median 9 applications create a median
of 10 (±IQR 10.0) open windows on the developers desktop at all times. This result fits other
research, where participants had 8 or more windows open for most of the time [21] or where a
median number of 12 (±0.4) open windows was observed [15]. The distribution of open windows
is skewed right with a fair amount of outliers and therefore the higher average number of 15.2
(±SD 14.6) seems less meaningful. We captured a maximum number of 95 simultaneously open
windows.

16 Chapter 5. Results

The collected data shows that every application on a developers desktop opened around 1.11
windows on average. The applications that opened most windows were development environ-
ments, console applications and file explorers. Every window is 993 (±IQR 1411) pixels wide
and 519 (±IQR 882) pixels tall in the median.

Usually, a median of 2 (±IQR 3.0) windows are maximized. From another perspective: Out
of all observed windows, 14.4% were maximized. Active windows seem to be significantly more
likely to be maximized than others. Out of all observed active windows, 46.7% were maximized.
Other research has shown that an active window may even be maximized for up to 67.12% of
the time[15]. Additional to the median of 10 open windows on a desktop, there is a median of
2 (±IQR 3.0) windows minimized. This means developers permanently retain two additional
windows that are hidden from the desktop environment.

We were interested how the number of open windows differs among different developers.

Figure 5.1: Boxplot of open windows by participant ordered by median

The number of open windows differs significantly between developers We observed the
number of simultaneously open windows to vary significantly from developer to developer. Fig-
ure 5.1 shows the distribution of open windows over all participants in the form of a box plot
ordered by median. The box plot was calculated over all captured desktop snapshots. The me-
dian per participant reaches from 7 to 60. There are a median (of medians) of 13 (±IQR 6.7) open
windows across all participants. This median of medians is slightly higher than the median over

5.1 A Developers Desktop Environment 17

all windows due to the relatively high numbers of windows a few participants used. The boxplot
clearly shows how participant 5 usually has significantly more open windows than most other
participants. We were interested as to why this single participant’s window count was of the ob-
served magnitude and investigated the desktop environment in detail. We found participant 5 to
be using different tooling than most other participants. The different tooling included many con-
sole windows that often piled up on the desktop in numbers that were never observed in other
participants.

We then looked into how the median number of open windows per developer evolves over
different days and found it only marginally fluctuates for most participants. The average stan-
dard deviation for all participants between different days was 5.7 windows. When excluding the
two participants that had high fluctuations, we observe an average standard deviation of 1.5 win-
dows between different days. We were not able to find a correlation between the median number
of windows and the seniority of a developer. In general, the significant difference between the
participants may be attributed to a variety of circumstances. We found that the applications used,
and therefore to some extent the current task, influences the number. Furthermore we found
participants to use contrasting desktop environment clean up strategies that might lead to a dif-
ference in number of open windows. The observed cleanup strategies are further discussed in
Section 5.2.

We looked at how the number median of windows evolves over the work day.

Figure 5.2: Boxplot of open windows by hour

18 Chapter 5. Results

The number of open windows grows slightly over the day. Over the course of the day, we
noticed a slight increase in the number of open windows. For this analysis, we focused on the
time where we had data from all participants, namely from 8 am to 5 pm. Figure 5.2 shows the
distribution of open windows over the course of the day during these work hours. The figure
shows how the median number of windows increases slightly until lunchtime. By that time, the
number of windows decreases and starts to rise again in the afternoon. We observed a median of
12 (±IQR 53) windows open at 8 in the morning with a maximum of 86 opened windows. In the
afternoon at 5 pm on the other hand, we detected a median of 27 (±IQR 22) open windows with
a maximum of 77 open windows. We analyzed the window growth per participant and day in the
time span and found an average window growth of 4 (±SD 8.8) windows in the time span. While
we observed the growth of windows was manageable with only a few windows open, it naturally
had a bigger effect with more open windows and resulted in the biggest window growth of 38
windows.

The observation of growing numbers of windows over the day matches the observations from
within the IDE made by other researchers [3]. The growth over time may at some point result in
more open windows than one is cognitive capability may handle.

This mainly happened over the course of the work hours, but what happens over night?

Many software developers do never turn off their computers. Since opening up applications
and ordering windows is a time consuming process, most developers prefer to let the computer
run or use hibernation whenever they leave the computer. As a result they never have to re-open
all applications when they come back to the computer. Many developers let their computer run
overnight and over the weekend and will only restart them when absolutely necessary, such as
for updates or to fix problems. This leads to situations, where the number of windows grows
over multiple days. This behavior was not consistent and the data does not allow us to determine
whether an update or problem was experienced, but overall we observed 7 of the 12 participants
using this technique regularly. In the interviews, multiple developers stated that this technique is
used to eliminate the setup time for their applications and window arrangement when they return
to the computer. Furthermore, it helps them to relate to the task or activity performed before they
left. We observed a minority of developers who shut down their computers in the evening and
re-opened their applications every morning. The behavior may be related to company policy.

Most windows are not visible. By intersecting the rectangle that a window spans with the
other opened windows along the Z-Axis, we were able to determine which windows were visi-
ble. From that, we calculated the number of fully visible windows on a desktop. We performed
this operation for all captured desktop screenshots. Windows that are partially obscured by over-
laying windows are therefore not counted as fully visible. The resulting data shows there are only
a median of 2 (±IQR 1.0) windows fully visible. The most concurrently fully visible windows we
observed were 6. Therefore, there may be a median of 8 obscured and 2 minimized windows on
developers desktops. Since we only looked at fully visible windows, some of the 8 obscured
windows might be partially visible.

Developers usually lay out their ever growing list of windows on multiple monitors, which
is why we were interested to learn how developers use their monitors and how windows are
distributed between these monitors.

77% of all windows are on the primary monitor. At first we looked at how many monitors
were used. 10 (83.3%) of the observed developers work with two monitors, the other 2 (16.7%)
work with three. We were not able to observe a professional developer with a full-time single-
monitor setup. There were some developers utilizing a laptop with external monitors and there-
fore switching between single- and multiple-monitor setups. This seems to corroborate other

5.1 A Developers Desktop Environment 19

research, where three out of four participants utilized two monitors and a single participant used
three monitors [15].

One of the monitors is a primary monitor and for simplicity, we consider the others to be sec-
ondary monitors in the following. Microsoft Windows defines the primary monitor to be the one
where the left upper corner receives the virtual screen coordinates (0/0). For the developer, the
primary monitor is the one that she/he uses the most time and where 77.2% of all windows are
opened. Only 22.8% of the windows are being opened on a secondary monitor. Other research
shows numbers of the same magnitude and even suggests this could even be more biased towards
the primary monitor (87.18%) [15].

For active windows, this number only marginally differs (69.8% on the primary). Maximized
windows are distributed almost equally between the monitors (49.25% on the primary). This
uniform distribution of maximized windows between monitors seems intuitive, since only one
maximized window can be visible on a single monitor at the same time. We have before found,
that there is a median of 2 maximized windows on every desktop. When we combine these two
findings, we could state: Most times one window is maximized on the primary as well as on
the secondary monitor. This would however not directly imply that there are only two visible
windows, since other windows can be further up in the Z-Axis and therefore in front of the max-
imized windows.

Some windows have a fixed position. We observed some applications with windows that
seem to have a more or less fixed position in the developers desktop environment. The windows
of these applications are almost never moved, minimized or re-sized but only get created and
destroyed. With a fixed position, they stay almost always on the same monitor, often maximized.

In the interview, we asked the participants about their strategy of assigning windows to a
monitor. Multiple strategies were mentioned. A particular one was mentioned multiple times:
There are certain applications with a fixed position and size within in the window environment.
Then there are free floating applications where the window moves around within the window en-
vironment and therefore changes position and size regularly. It allows them to align the window
of a fixed and a free floating application next to each other. The participants, who mentioned
this strategy, explained that this approach is mostly selected for the ability to transfer information
from one of the fixed position applications to a free floating one or vice-versa. They argued that
with this approach, it is always clear where in the desktop environment a window is and there-
fore eliminates the need to search for windows. The given explanation fits the results from the
data perfectly.

We looked into the data to find out what applications were mostly free floating and which
were more of the fixed position type. For this, we generated in a ratio, that represents how much
an application was moved compared to other activities. This ratio was calculated by dividing the
number of move or re-size events by the total occurrence of an activity. We received an ordering
from the most free-floating to the most fixed activities. By far the most often free-floating activities
were work-unrelated Browsing and work-related Browsing. Followed by reading and writing
documents as well as emailing and planning activities. On the other side of the spectrum were the
more fixed position applications, such as debugging and explorer navigation, as well as instant
messengers and remote desktop activities.

A fixed position of a window implies that the window was almost exclusively used on a par-
ticular monitor (the monitor may vary per participant). Free floating applications are often moved
around and were therefore observed on multiple monitors. We binned all programs into a related
activity category and observed how many times the category is to be situated on a particular
monitor.

20 Chapter 5. Results

Table 5.1: Activity-windows per monitor
Activity # Total # Primary % Primary % Other
Gaming 642 642 100.0 0.0
Debugging 52071 44799 86.0 14.0
Development 1542702 1242153 80.5 19.5
Work-related Browsing 194761 152995 78.6 21.4
Remote Desktop Use 11063 8492 76.8 23.2
File Explorer Navigation 715135 544116 76.1 23.9
Instant Messaging 268271 199742 74.5 25.5
Version Control 166455 122785 73.8 26.2
Planning 60650 43483 71.7 28.3
Work-unrelated Browsing 25276 17931 70.9 29.1
Emailing 306249 205321 67.0 33.0
Reading/Editing Documents 212431 140557 66.2 33.8
Code Reviewing 398 193 48.5 51.5

Development is almost always done on the primary monitor. Table 5.1 shows the affiliation
of an activity with with an individual monitor. The table shows that developers prefer having the
IDE, debugger, and work related browser on the primary monitor. The monitor affiliation of the
debugger and the IDE imply code is written mostly on the primary monitor. Reviewing seems to
be an activity performed in windows that preferably take place on a secondary monitor. Given
that windows are generally more likely to be positioned on the primary monitor, activities such
as file navigation or collaboration seem to be done more in free floating applications that use both
monitors.

Monitors come in different size and resolution and there is a significant difference in monitor
size between the different developers. The smallest monitor in terms of resolution we could
observe was in WXGA (1366 x 768 pixels), while the biggest one was in a 5K (5160 x 2160 pixels)
resolution. The latter (5K) having 10 times (or 1062%) the amount of pixels available on the
smallest one. The size of an individual pixel on the bigger monitor was smaller and therefore
the display is not 10 times as big.

The sum of the resolution of all available monitors we call screen real estate. As suggested by
other research, having more screen real estate may improve manageability of windows, allow for
more simultaneously open windows and even allow for more direct access of the windows [21].

Bigger Monitors do not lead to more windows. The idea that somebody with more screen real
estate can have more windows open intuitively makes sense. To detect if there is a correlation in
our data, we conducted a comparison of the screen real estate in pixels and the median number
of open windows. We were not able to find a correlation. At first we looked into the Pearson’s
product-moment correlation between the median number of open windows and screen estate per
developer, which leads to a correlation value of -0.190. Since only a small number of developers
participated in the study the degree of freedom is small and we were not able to reject the null
hypothesis with a p-value of 0.5. Since some participants also switched monitors during the
observation, we then compared the median number of windows per hour per developer with the
screen real estate in pixels. This enlarged the set of observations. Using this method we were able
to find a Pearson correlation coefficient of -0.268 with a degree of freedom of 1134 and a p-value
of 1.3e− 11, meaning participants with more screen estate generally did not have more windows
open.

5.2 Desktop Environment Interactions 21

5.2 Desktop Environment Interactions
After learning about the desktop environment, the next step towards fostering developers focus
is to understand how developers use the desktop environment. For every desktop environment
interaction, our application captured events and stored them into the database. These events give
us a comprehensive understanding on how developers interact with the environment. In this
section, we will lay out the data that our application provided as well as further insights obtained
from the interviews.

Windows are rarely moved or resized. As discussed in the Methodology (3) chapter, there
are six primary interaction methods with the window manager and therefore the desktop en-
vironment in a broader sense. Our monitoring application captured events for the following pri-
mary interaction mehtods: Create when a window is first created, Activate when a window gets
switched to, Minimize when a window is reduced to the taskbar, Restore when a reduced window
returns to its previous size and position, Move or Resize (includes Maximizing) where a window
changes position or size and lastly Destory when a window is closed.

Figure 5.3: Pie diagram of developers desktop environment interactions

A comparison between the frequencies of observed desktop interaction methods gives insight
into how relevant the respective methods are for a developers daily work. Figure 5.3 shows a pie
diagram of the desktop interaction methods by frequency.

As seen in the diagram, the activation of windows is 56.8% by far the most often performed
desktop interaction, meaning we observed many more windows being activated (switching be-
tween windows) than any other interactions with the desktop environment. This is followed by
the creation (16.8%) and destruction (14.9%) of windows. In comparison, windows are only very
rarely minimized (3.9%), restored (3.9%) or moved / re-sized (3.8%).

As one would assume, the frequency with which windows are minimized and restored is
about the same. What seems rather unexpected on the other hand is that the number of created
windows is slightly higher than the number of destroyed windows. This translates to the fact that
there are windows being opened that the developers never manually close. These windows must

22 Chapter 5. Results

get closed by other applications, by application crashes or when the computer is shut down. This
finding further supports the finding that some developers let the list of windows grow without
manually closing them. Similar findings from within the IDE was made by other researchers [3].

When we look further into the events of window creation and destroy, we can determine how
long a window is open.

A window stays open for an average of 5.8 hours A developers’ applications and their win-
dows may generally stay opened for several hours or days. We have noticed many windows
staying open from when they were first launched until the end of the day. Some windows stay
open much longer and we could observe windows staying open up to 11 days. Overall, we ob-
served window being open for an average of 5.8 (±SD 26) hours. The distribution is skewed
right as a result of the high number of windows that get opened up only for a very short period
of time.

Overall, windows were active for 59.1% percent of the time that they were open. This high
figure is due to the fact that there are many windows open only for a short period of time and
active during 100 percent of this time. If we look at windows that were open for over 10 seconds,
the active ratio drops down to 32.9%. In general, the longer a window is open, the smaller is its
active ratio.

With the activation of windows being the most often performed interaction of a software de-
veloper, we were interested to investigate it further. The window activation data can also help us
to determine if windows are laying dormant for longer periods of time without being used. We
consider two notions of being used: The first one is being active and having the keyboard input
associated that is discussed here. The second notion of being used is having visual focus, which
we discuss in Section 5.3.

Windows are active for a few seconds at the time. During the time the developers were
active, we found that windows are only active for an median of 5.0 (±IQR 20.4) seconds at the
time. The distribution is heavily skewed right and the average time a window is active is 30.4
(±SD 88) seconds. Nonetheless, this low number implies a high number of window switches, es-
pecially short-term switches between applications. The longest time a window was active with-
out switching to another window was 38.7 minutes (during the time a developer was active at
the computer). Many window switches happen in a very short time period under a few seconds.
21.6% of all windows are activated for a period shorter than 1 second. Out of all windows that
were activated for under 10 seconds, 34.8% are activated under 1 seconds. This finding corrobo-
rates other research. Bradley at al. note out of all switches under 10 seconds, 40% were under 1
second [15]. The developers activated windows with a median of 39 (±IQR 74) window switches
per hour. Interestingly, the number of switches per hour seems to be mostly of the same magni-
tude between the participants. Due to the skewed distribution, this leads to an average of 60.2
(±SD 64.3) switches per hour. If we only look at the active hours 9-18, we get a median of 42
(±IQR 78) with an average comparable to the one over all hours. We observed a high of 498
window switches per hour. To further illustrate this number, it comes down to a switch every
7.3 seconds. Although the observed number of switches may be regarded as rather high, other
research even higher numbers such as an average of 326 (±IQR 320) switches per hour were ob-
served [15]. Roethlisberger et al. have observed a high number of switches within the IDE and
have related it to indications of lost overview and confusion from an overload of windows in the
development environment [3].

Developers often switch between the IDE and the Browser The most switches between mul-
tiple windows of a single application were observed inside the IDE. Developers seem to rapidly
switch between different code windows. Table 5.2 shows the most performed switches between

5.2 Desktop Environment Interactions 23

Table 5.2: The most frequent window switches
Activity A Activity B # From # To # Total
Development Work-related Browsing 2176 2229 4405
Development Reading/Editing Documents 1344 1380 2724
Development File Explorer Navigation 1143 1133 2276
Development Emailing 979 968 1947
Development Instant Messaging 682 675 1357
Development Version Control 666 652 1318

different applications. We have observed developers switching most often between the IDE and
work related browsing. They also frequently switch between the IDE and documents, between
the IDE and File Navigation or between the IDE and Emails.

Active windows are mostly alternating. We looked at the active windows over time as a time
series of active windows. The series consists of an order of windows that were active in time from
the current window backwards. Given this time series of active windows, where x is the currently
active window and x-1 the previously active window, x-2 the window that was active before that
etc. We looked through our data at how many times these past windows were chosen to be the
next window, x+1. Or in other words, we were looking how probable it was for the series of
past active windows to be chosen as the next active window. Figure 5.4 shows the results of this
analysis.

Figure 5.4: Probability of a past active window to be selected as the next active window

The figure shows that the previous window (x-1), has the highest probability to be chosen
as the next active window. In 45.4% of all cases, the participants switched to the previous win-
dow. In only 6.7% of all cases, the window before that (x-2) was chosen. The window x-3 has a
probability of 32.5% to be activated. The windows before that keep alternating in their respec-
tive probabilities. In this configuration it is possible that multiples of the last active windows are
the same. Our observation shows mostly the oddly indexed windows (x-1, x-3 ,...) and the even
indexed windows are the same window. Rarely is the same window indexed as even and odd
number. This could indicate that the observed participants mostly switch between two windows
and rarely switch back to the window used before that.

24 Chapter 5. Results

More windows do not necessarily lead to more switches. We analyzed the correlation be-
tween open windows and number of switches to see if developers with more open windows
switch more often. For this we compared the median of opened windows per hour with the num-
ber of switches observed per hour. We did this for all the participants. We observed a Pearson’s
correlation coefficient of 0.03 with a degree of freedom of 1017 and therefore failed to reject the
null hypothesis with a p-value of 0.372. We do not have evidence for a real correlation between
the total number of windows and the number of switches between them.

At some point, the opened windows need to be closed. We looked into the data and interviews
to find out more about the strategy behind closing windows.

Desktops are cleaned up from time to time. We could observe occasions, where many win-
dows were closed in rapid succession of each other. Participants were sometimes closing down
the majority of the opened windows in a short period of time.

Minelli et al. made a similar but slightly more pronounced observation of the phenomenon
inside the IDE and visualized it graphically [10]. They found developers cleaning up their envi-
ronment from time to time and attributed this phenomenon to the window plague. Furthermore
they noted two possible triggers for such a cleaning of the environment: Either a task was com-
pleted, or the environment was too cluttered.

This discovery matches other research where interviews found that most developers let the
list of windows grow until the task is completely done and only then start to close windows [3].

The data collected by our application does not allow us the insight into development tasks
and we did not find any other indication for when desktops were cleaned up in the data. We
were looking for another way to get insights into the actions resulting in the observed data and
conducted semi-structured interviews with the participants. In the interviews, we incorporated
questions regarding this the phenomenon.

Developers almost never close windows proactively. We have asked developers about their
strategy on closing windows. Only a small minority of 2 out of 12 developers (16.6%) stated
they would close down windows proactively and instantly after they don’t use them anymore.
2 participants (16.6%) stated they would clean up the desktop environment whenever they were
switching from one task to another. 3 participants (25%) answered, they close down windows
when the desktop environment gets too cluttered. The other 5 participants (41%) stated, they
would only close down windows for exceptional reasons or when absolutely needed, such as to
free memory, for updates or before they leave the computer for a long time.

The developers that close down windows proactively reasoned that the chosen strategy al-
lowed them to maintain overview. One developer even stated explicitly, that he/she closes win-
dows when he/she feels too much time is lost for switching while looking for the next window.
On the other hand, the majority of developers that do not to close down windows manually stated
that a high number of open windows is not an issue to them.

5.2 Desktop Environment Interactions 25

Developers seem content with their desktop environment. We asked the participants if there
is something distracting in their desktop environment. Four participants stated that notifications
are a big distraction. Others mentioned various particularities, such as transparent windows and
focus grabbing applications. Six participants did not find anything distracting in their windows
environments. In the end one participant even mentioned that his/her surroundings, such as
colleges and the work environment are far more distracting to him than anything in the desktop
environment.

Furthermore, we asked the participants what improvements to their windows environment
they would favor. Diverse answers were provided. Some developers mentioned they would like
to navigate solely by keyboard and would prefer never having to use the mouse. Others disliked
the updating procedures. Twice, participants mentioned a virtual desktop implementation as
known from other operating systems but Microsoft has since introduced some improvements
concerning virtual desktops.

When asked on how their workflows may be improved, the participant answers varied a lot
as well. Answers were ranging from disabling all notifications in the desktop environment to
minimizing external factors like meetings. One particularly interesting subject was brought up
by two participants: The integration of personal devices, such as the smartphone into their work-
flows and desktop environments. With the bring your own device (BYOD) policies that some
companies implement, the desktop environment is about to be extended onto other devices. A
developer mentioned frequently using her/his smartphone as an extension to his/her desktop
environment. They use it, for example, to continue working while the computer is busy doing
computations. They stated the need for better integration into the desktop environment, such as
the possibility to share information.

Overall, only five of the twelve interviewed developers (41.6%) stated that they sometimes
or rarely lose time when looking for the next window. The other participants (58.8%) stated this
would never happen to them.

For focus it looks similar: Most developers (58.8%) stated in the interview, it never happened
that focus is lost when searching for a window. Only five developers (41.6%) stated to having the
problem rarely or sometimes. One developer mentioned this could only happen when she or he
is not focused anyway.

When speaking about focus, visual attention is an important aspect to examine. The captured
fixations give a good indication of visual focus.

26 Chapter 5. Results

Table 5.3: The most frequent fixation switches
Activity A Activity B # From # To # Switches
Emailing Work-related Browsing 1225 1134 2359
Development Work-related Browsing 539 566 1105
Development File Explorer Navigation 285 325 610
Reading/Editing Documents Work-related Browsing 286 304 590
Development Reading/Editing Documents 288 271 559
Work-related Browsing Work-unrelated Browsing 271 242 513

5.3 Visual Focus
To determine what developers focus visually, we captured eye tracking data and linked it to the
desktop environment. We tried to gain deeper insight into how developers direct their focus
through the window environment and how traditionally collected environment data differs. In
the following, we describe what we learned from the collected eye tracker data.

Due to our collection method, we were only able to capture visual attention on the primary
screen. Out of the 32,559,307 fixation points, only 85.6% could be mapped to a window. A win-
dow may not have been be mapped if it wasn’t recorded as such. Examples of such unmapped
fixations are those directed at thumbnails in the taskbar, or in the case of a fixation, the desktop
background. Another particularity of the collection method is that there is a small time frame
after a window is first created where no eye tracking data can be mapped onto that window until
it is fully processed.

Visual Focus is shifted frequently. In the desktop environment, we had observed many win-
dow switches and found windows were only active for few seconds in the median. Visual at-
tention shifts seems to be equally as frequent than active window switches. Developers seem to
switch the fixated window constantly. Overall, the developers looked at a window for a median
of 6.53 (±IQR 26.8) seconds. Again this distribution is heavily skewed right. This means the
participants were looking at the same window for an average of 35.9 (±SD 91.3) seconds. This
duration fits in well into the average time that a window was active. The average time a window
was active is slightly lower but was computed over all windows on all monitors while eye tracker
data is only available for the windows on the primary monitor. The longest time we observed a
developer looking at the same window was 42 minutes. Most windows are only looked at for a
few seconds before the participant fixates on another window. Windows that were only looked at
for under 1 second account for 15% of all fixations.

Developer look at the IDE almost 50% of the time We were investigating what applications
developers look at for the most time. Out of all collected fixations, 48.9% were directed onto
code in the IDE. 13.8% of the fixations were directed at the browser with work related context
and further 8.6% were looking at documents. Another 8% of the fixations pointed at Emails and
6% were directed at the file explorer. The remaining 14.7% of the collected fixations were split
between various other activities.

A further point of interest was how developers shift their visual attention. Table 5.3 illus-
trates differences between what activities developers mostly shift their visual focus and attention.
Contrary to the most performed window switches, the most often performed switches in visual
attention were observed between emailing and work-related browsing. Only after that, the switch
between the IDE and work related browsing was observed, followed by the fixation switch be-
tween the IDE and the windows explorer.

5.3 Visual Focus 27

Table 5.4: Most frequent fixations away from the active window
Active Window Fixated Window # Fixations % Fixations
Development Development 918036 3.2
Development Work-related Browsing 414848 1.4
Development File Explorer Navigation 324773 1.1
Work-related Browsing Development 273048 1.0
Emailing Development 258108 0.9
Development Instant Messaging 206758 0.9
Total (non-active fixations) 5835115 20.9

The discrepancy to the table of window switches (5.2) may originate from the single monitor
limitation of the eye tracker.

79% of all fixations are directed at the active window When capturing traditional computer
interaction data, an important measure for the currently performed activity or task of a user is the
active window, where keyboard input is received. It is evident that developers do not always look
at the active window. With multiple open applications, there is a chance that another, non-active,
open window demands visual attention. In pursuit of answering the related research question,
we were interested in how fixations relate to the active window.

In our observation, out of all captured (and mapped) fixations, 79.1% were directed at an ac-
tive window. The other 20.9% were directed at windows that did not have the keyboard input.
Participants looked away from the active window at least one time from 67.7% of the active win-
dows. When they did so, they looked at an average of 2.2 (±SD 3.2) distinct non-active windows.
There were however 32.3% of the active windows where participants never looked away from.

This raises the question of what developers are looking at when not the active window. Ta-
ble 5.4 shows the most often fixated activities when looking away from the active window. When
developers are actively developing, they most often look away to another window with devel-
opment context, work-related browsing, or the file explorer. Also they often look away from
work-related browsing or emails to development applications. Rather often, developers seem to
be looking away from development applications to an instant messenger. The table also shows
the total number of fixations that were observed away from the active window.

Furthermore, the participants fixated maximized windows about half the time (52.4% of all
fixations).

Developers often track the cursor. A further, traditionally collected data point, relates to
mouse and cursor interaction data. We were curious to see how cursor data relates to visual
focus. At first we looked if the participants were fixating the same window that the cursor is on.
We found in 81.6% of the time the fixation and the cursor are directed onto the same window. The
average difference between fixation and cursor coordinates is only -88 (±SD 570.4) pixels on the
X axis and -3.4 (±SD 314.2) pixels on the Y axis. The median distance between a fixation and the
cursor was only 330 (±IQR 471.5) pixels. This means the cursor and the eye were 66% of the time
in the same bounding box of 500 pixels. However, does not mean the cursor is necessarily a good
predictor for the fixation.

28 Chapter 5. Results

The cursor may indicate the fixation movement. Since the setup of eye tracking solutions
is a burden for larger studies, we investigated whether the cursor position may be used as an
approximation for visual attention. We probed if the cursor position and the fixation position
correlate. For this, we used the input position in X and Y coordinates from the eye tracker as well
as from the collected mouse input. We found a Pearson’s correlation coefficient of 0.78 for the
X-axis and 0.62 for the Y-axis. Both were computed with a degree of freedom of 28080000 and
therefore we were able to reject the null hypothesis with a p-value of 2.2e− 16.

5.4 Threats to Validity
The aim of this paper is to provide a high-level overview on how professional software developers
interact with their desktop environment.

Concerning internal validity: While the results may provide a consistent impression of how
participants used their desktop environment, there are some shortcomings with the developed
monitoring application as well as the performed analysis. The biggest shortcoming of the moni-
toring application is the fact that the eye tracker only observes a single monitor. As a consequence,
we are not able to give complete insights into developers’ fixations and therefore separated the
eye tracking results from the rest. Another small limitation is the short processing time span that
newly created windows have to undergo before the eye tracker data can be linked with them.
Due to this and the nature of the employed eye tracking in general, we may have missed a some
of the fixations. We found the analysis of the rather big data set was quite complex and resulted
in thousands of lines of code. Since the code has never been reviewed, it is likely that some minor
mistakes were made during this process. As a mitigation, the code resulting in claims presented
in this paper was checked twice. Furthermore, the time span of the observation differed some-
what between the participants. Nonetheless, the data was accumulated across all participants.
This may have skewed some of the results slightly.

As for the the external validity: The results of our study may not necessarily be generalizable
for the general population of software developers. This is due to the small number of observed
participants, the small time frame of data collection, the employed participant selection process
(self-selection), and the clustered geographical distribution of the participants. Nevertheless, we
tried to gather broader insights by working with three software companies and a selection of de-
velopers with a multitude of different development tasks, as well as various different technology
stacks. The same applies for the possibility of a generalization to a population of knowledge
workers since our study was solely aimed at software developers. That being said, the devel-
oped monitoring application and analysis methodology may be well suited for a study with a
larger set of participants as well as participants in various roles. The study should therefore be
reproducible.

Chapter 6

Discussion

Our results from Chapter 5 answer two of our research questions by providing insights into the
characteristics of software developers’ desktop environment interactions as well as information
on how traditional computer interaction data relates to visual focus. To answer our third research
question, whether there is a window plague in software developers’ desktop environments, we
need to round up the individual results and provide some interpretation. Furthermore, we will
try to set the results into perspective.

We have found software developers mostly use two monitors for their work, a primary and a
secondary one. On these monitors, they have a median of 9 applications mostly for developing,
browsing, emailing, and working with documents. These applications provide a median of 10
open windows and a median of 2 minimized windows. Most open windows are obscured by
others so that only a median of 2 windows on the desktop are fully visible. Most of the windows
and are found on the primary monitor where mostly development and debugging activities seem
to take place.

When summing up time spent for browsing, emailing and document handling, we observed
that our participants spend at least 39.9% of their time outside the IDE. Minelli et al. found their
participants spend only ~8% of the time outside the IDE [11]. This difference may be attributed
to the observation time frame: While they observed development sessions, we observed the com-
plete work day of the developer. Our calculated time spent outside the IDE corroborates other
research by Ammann et al., that states developers spend 39.8% of their time outside the IDE.
Regarding the performed activities, our results align roughly with other research as well [16].

The number of open windows that we observed matches other findings [15], even for par-
ticipants without software development background [21]. The number of visible windows does
also match up with other research to some extent [21]. There is research stating generally higher
average numbers of open windows (as opposed to median), such as an average of 16.68 simulta-
neously open IDE windows [3]. Although our findings also corroborate these average numbers,
they seem less meaningful with our data due to the outliers with disproportionately large num-
bers of open windows.

The minor deviations in the number of open windows stated by different studies may be
partially explained by the discrepancy between the used applications of the participants. We have
found different applications to be a major factor accounting for the large differences between our
participants (see Figure 5.1). We have found some, but not all of the participants exhibited a high
number of open windows. In general, the high number of open windows may be a first indication
towards the existence of a window plague, especially compared with much lower number of
visible windows. This divide leads us to believe that there may be some windows that get opened
for single or short-time use but do not get closed afterwards. These windows are then abandoned
and forgotten in the background of the desktop environment.

30 Chapter 6. Discussion

Over the work day, we found the number of open windows to grow (see Figure 5.2) by an
average of 4 windows. A similar observation was made by other researchers for windows inside
the IDE [3]. They attributed this observation towards the presence of a window plague. Af-
ter deeper inspection, we were unable to find another explanation or need for these additional
windows. The growth of windows over time unavoidably leads to a window plague at some
point. Therefore, we agree with this attribution even outside the IDE. We estimate this to be the
strongest evidence of an existing window plague in our dataset besides the high number of open
windows in general. Yet, we could neither observe this phenomenon in all participants, nor was
it consistently exhibited.

Over longer time periods on the other hand, we found the number of open windows for a
single developer stayed more or less stable (but with notable differences between the individ-
ual developers). This might be linked to the fact that most software developers rarely turn off
their computers and therefore have a more constant number of open windows. Furthermore,
we observed developers cleaning up the desktop environment with rather individual strategies
and frequencies. All observed desktop environments were cleaned up at some point and there
were developers who stated they would cleanup regularly. One of our participants in fact stated,
that he/she closes windows when he/she feels too much time is lost looking for the next win-
dow. However, a majority of developers stated that they would almost never close windows
proactively. They added: Windows would only get closed for exceptional reasons, such as to free
memory, for updates, or before they leave the computer for a long time. These individual cleanup
strategies may also have an impact on the number of open windows and the severeness of a win-
dow plague. Moreover, these findings suggest that every developer has a personal number of
open windows that he or she is comfortable with, which in turn would indicate that a window
plague is not a general problem, but rather individual.

Desktop environment cleanup strategies were observed before by other researchers especially
in the IDE [3, 10]. They similarly found developers were sometimes not willing to close open
windows and learned from their participants that many open windows decrease development
efficiency [3]. Although we have heard a similar statement from a single participant as well,
many participants stated that a high number of open windows is not an issue to them. Overall,
this is further evidence that a window plague may be an individual problem that does not affect
every developer.

We looked at the desktop environment interactions and observed that windows were rarely
moved or re-sized. Minelli et al. stated that 14% of a developer’s time is spent on rearranging
the UI of the IDE and give examples such as re-sizing or dragging windows [11]. This is not
contradictory since we did not capture the time span of interactions but rather the events, and
therefore make no statement of the time spent in UI Interactions. Moreover, the number provided
by Minelli et al. may also include activations (switches) and other UI Interactions.

Most of the observed desktop environment interactions were switches between different win-
dows (window activations). Specifically, many short term switches were observed, and windows
were only active for a few seconds at the time. These results corroborated other research with
similar results [1, 21, 15]. We also corroborate the observed activity patterns in window switches
that other researchers have observed [1]. Other researchers had before found a high number of
switches to negatively impact focus and productivity[2, 8, 16, 11]. Roethlisberger et al. have ob-
served similar behavior inside the IDE and associated it to the window plague [3]. Although we
believe the observation may be an indication of reduced focus and productivity, we have no ev-
idence to attribute this behavior to the window plague. We do not, since we could not confirm
a correlation between the number of open windows and the number of performed switches be-
tween these windows. Other researchers have assumed a relationship may exist due to the loss
of overview and navigation efficiency associated with a large number of open windows [3].

31

Regarding navigation efficiency, only five of the twelve interviewed developers stated that
sometimes or rarely they lose time or focus when looking for the next window. The other seven
developers did not have this feeling. One participant even mentioned that his/her surround-
ings, such as colleges are far more distracting to him than anything in the desktop environment.
Since we do not have quantifiable data on this, we were not able to verify the statements. How-
ever prominent these window switching issues may be, we can conclude that it is not prominent
enough to distract most developers.

Using eye tracking data, we found that visual focus is shifted frequently, and we list the most
performed switches of visual attention. Furthermore, we found that, out of all fixations, 79% were
directed at the active window. Rather often, developers seem to be looking away from develop-
ment applications to an instant messenger. This observation could be related to interruptions in
the work flow by notifications and should be further investigated. There is other research stat-
ing the active window is only fixated for 18.75% of the time the window was active [15]. Due
to the single monitor limitation, we refrain from presenting such a time based percentage value.
However, based on the fixations we could observe, this result does not appear to match. We
looked further into the cause and found their monitoring tool returns mostly differing ids for ac-
tive window and the fixations on the same window (child window handles vs. top-level window
handles). Given this situation, it is likely that the matching often failed and therefore caused the
difference in the presented numbers.

In our endeavor to compare traditionally collected user input data to eye tracking data, we
found the eye often tracks the cursor and that there is a correlation between the cursor input and
the visual focus input. However, this does not mean the cursor and the fixation data provide
the same data for a given moment in time. Overall, we found the eye tracker provides addi-
tional insights compared to the traditional user interaction data. Examples include user presence
while no computer interaction is performed or insights on fixations, such as fixated windows that
differ from the active window. These findings line up with the findings made by Kevic et al.,
who stated that eye-tracking data captures substantially more and different aspects of developers
interactions [31].

Overall, we observed a number of indicators of the window plague in the desktop environ-
ment that leads us to believe there is, in fact, an existing window plague that is not only restricted
to the IDE. Such indicators include the observed number of visible windows, open windows, or
window growth over the day. That being said, we were unable to confirm other indicators of a
window plague like the number of switches. Although we found most of the developers do not
close windows proactively, we can state that not every developer may be affected by a window
plague; most developers do not identify the window plague as a problem. Furthermore, software
developers seem in general pleased with their window-based desktop environments. Nonethe-
less, we see room for developer support in the desktop environment, especially concerning the
high number of open windows, switches, and the desktop cleanup strategies. The provided in-
sights may aid in the journey towards fostering developers desktop environment interactions.

Chapter 7

Future Work

The developed monitoring application provided good insight into the participants’ desktop en-
vironment interactions. Nonetheless, there is a multitude of possible improvements to the moni-
toring application:

The biggest shortcoming of the application is the single monitor restricted eye tracking. We
investigated possible solutions extensively and found none of the currently available to be viable.
In the future, new eye tracking solutions may overcome the problem and therefore provide better
fixation data. Furthermore, our monitoring application collects only limited information about
tabs, virtual desktops or the use of newer Windows features like the timeline. The latter was
not yet available as of the development of the application. Some improvements in the internal
database structure would simplify the analysis, such as not only linking fixations with windows
but also with desktop snapshots. Also, no information is about other devices used in collaboration
or extension of the desktop environment was collected.

Concerning the analysis: Due to time constrictions, not every direction was explored so we
are confident the collected data will provide many more valuable insights. Therefore, it would
be fruitful to extend the analysis. For instance, to calculate a percent value for the visibility of a
window that corresponds to the area visible to the developer. Using such calculations, more pre-
cise statements could be made compared to the current results which only consider fully visible
windows.

Concerning the study: Since we only observed a small number of developers, we plan to
extend the study to more developers to get more precise results and eliminate bias. This could
allow us to present results that are in fact generalizable to a bigger subset of the population of
software developers.

Our main motivation is to help developers to stay more focused and productive in their daily
work. With this goal in mind, we can envision multiple approaches to support developers in
the future based on our collected data. First of all, since we found the window plague to exist
outside the IDE, we envision a solution that may cure those who are affected. Potential solutions
may be inspired by the existing solutions used within IDEs [3, 4]. The solution should be able to
detect unneeded windows and act on the information, such as indicating these windows to the
developer without disrupting his work. As a starting point for such a detection mechanism, the
solution would operate on interaction data as collected by our monitoring application.

Further potential ideas were formed from the insights provided by our participants. This
includes an application that turns off all notifications during the time a user is highly active with
an interruptibility measure based on computer interaction data similar to other research [32].
Other, more general ideas, include support of better integration and interoperability between
external devices, such as smartphones and the desktop environment.

Chapter 8

Conclusion

The activities of software developers are the subject of research from various perspectives.
In this paper, we present new insights into software developers’ desktop environment. We

developed a monitoring application capable of capturing desktop interactions and eye tracking
data. Furthermore, we implemented a processing and analysis methodology. We then deployed
the application to 12 professional software developers from three different companies and con-
ducted semi-structured interviews with all participants. In doing so, we were able to collect a
dataset containing a combined total of 195 days consisting of hundreds of thousands of desktop
environment snapshots and millions of windows, mouse positions, and fixations.

Using the collected data, we painted a high-level picture of software developers’ desktop en-
vironments and presented their desktop environment interactions. Furthermore, we compared
the eye tracker data to traditional computer interaction data and found it provides insights into
different aspects, such as user presence and visual focus.

Our main findings constitute: From our eye tracking, we know 79% of all observed fixations
were directed at the active window. Half of the desktop environments had 10 or more open win-
dows but with only two fully visible. We found the number of windows to grow over the day
and concluded there must be windows that do not get closed after use. Moreover, we observed
desktop environments being cleaned up at various points limiting growth in the long term. Our
conclusion about the growing number of windows was substantiated by interviews where we
learned most developers do not proactively close windows. These observations lead us to be-
lieve, that there is in fact an existing window plague outside the IDE, although it does not affect
every desktop environment. In other words: Software developers sometimes have overcrowded
desktop environments with many unused windows.

We want to rise awareness of unused windows in the of desktop environment and we hope
our work may inspire new solutions to increase developers’ focus and productivity in the near
future.

36 Chapter 8. Conclusion

Bibliography

[1] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz. The work life of
developers: Activities, switches and perceived productivity. IEEE Transactions on Software
Engineering, 43(12):1178–1193, Dec 2017.

[2] H. Sanchez, R. Robbes, and V. M. Gonzalez. An empirical study of work fragmentation
in software evolution tasks. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 251–260, March 2015.

[3] D. Roethlisberger, O. Nierstrasz, and S. Ducasse. Autumn leaves: Curing the window plague
in ides. In 2009 16th Working Conference on Reverse Engineering, pages 237–246, Oct 2009.

[4] R. Minelli, A. Mocci, and M. Lanza. The plague doctor: A promising cure for the win-
dow plague. In 2015 IEEE 23rd International Conference on Program Comprehension (ICPC),
volume 00, pages 182–185, May 2015.

[5] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An examination
of software engineering work practices. In Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON ’97, pages 21–. IBM Press, 1997.

[6] Victor M. González and Gloria Mark. "constant, constant, multi-tasking craziness": Manag-
ing multiple working spheres. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’04, pages 113–120, New York, NY, USA, 2004. ACM.

[7] Gloria Mark, Victor M. Gonzalez, and Justin Harris. No task left behind?: Examining the
nature of fragmented work. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’05, pages 321–330, New York, NY, USA, 2005. ACM.

[8] Gloria Mark, Daniela Gudith, and Ulrich Klocke. The cost of interrupted work: More speed
and stress. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’08, pages 107–110, New York, NY, USA, 2008. ACM.

[9] G. C. Murphy, M. Kersten, and L. Findlater. How are java software developers using the
elipse ide? IEEE Software, 23(4):76–83, July 2006.

[10] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi. Visualizing developer interactions. In 2014
Second IEEE Working Conference on Software Visualization (VISSOFT), volume 00, pages 147–
156, Sept. 2014.

[11] R. Minelli, A. Mocci, and M. Lanza. I know what you did last summer - an investigation
of how developers spend their time. In 2015 IEEE 23rd International Conference on Program
Comprehension, pages 25–35, May 2015.

38 BIBLIOGRAPHY

[12] S. Amann, S. Proksch, S. Nadi, and M. Mezini. A study of visual studio usage in practice.
In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 124–134, March 2016.

[13] David M. Hilbert and David F. Redmiles. Extracting usability information from user interface
events. ACM Comput. Surv., 32(4):384–421, December 2000.

[14] Anton N. Dragunov, Thomas G. Dietterich, Kevin Johnsrude, Matthew McLaughlin, Lida
Li, and Jonathan L. Herlocker. Tasktracer: A desktop environment to support multi-tasking
knowledge workers. In Proceedings of the 10th International Conference on Intelligent User Inter-
faces, IUI ’05, pages 75–82, New York, NY, USA, 2005. ACM.

[15] Nick Bradley and Felix Grund. Characterizing knowledgeworkers’ desktop interactions.
Unpublished paper, 2017.

[16] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann. Software de-
velopers’ perceptions of productivity. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 19–29, New York, NY,
USA, 2014. ACM.

[17] K. D. Fenstermacher and M. Ginsburg. A lightweight framework for cross-application user
monitoring. Computer, 35(3):51–59, March 2002.

[18] Simone Stumpf, Xinlong Bao, Anton Dragunov, Thomas G. Dietterich, Jon Herlockel, Kevin
Johnsrude, Lida Li, and JianQiang Shen. The tasktracer system. In Proceedings of the 20th Na-
tional Conference on Artificial Intelligence - Volume 4, AAAI’05, pages 1712–1713. AAAI Press,
2005.

[19] Simone Stumpf, Xinlong Bao, Anton Dragunov, Thomas G. Dietterich, Jon Herlocker, Kevin
Johnsrude, Lida Li, and Jianqiang Shen. Predicting user tasks : I know what you ’ re doing !
2005.

[20] Xinlong Bao, Jonathan L. Herlocker, and Thomas G. Dietterich. Fewer clicks and less frus-
tration: Reducing the cost of reaching the right folder. In Proceedings of the 11th International
Conference on Intelligent User Interfaces, IUI ’06, pages 178–185, New York, NY, USA, 2006.
ACM.

[21] Dugald Ralph Hutchings, Greg Smith, Brian Meyers, Mary Czerwinski, and George Robert-
son. Display space usage and window management operation comparisons between single
monitor and multiple monitor users. In Proceedings of the Working Conference on Advanced
Visual Interfaces, AVI ’04, pages 32–39, New York, NY, USA, 2004. ACM.

[22] Mik Kersten and Gail C. Murphy. Mylar: A degree-of-interest model for ides. In Proceedings
of the 4th International Conference on Aspect-oriented Software Development, AOSD ’05, pages
159–168, New York, NY, USA, 2005. ACM.

[23] M. E. Crosby and J. Stelovsky. How do we read algorithms? a case study. Computer, 23(1):25–
35, January 1990.

[24] Roman Bednarik. Expertise-dependent visual attention strategies develop over time during
debugging with multiple code representations. Int. J. Hum.-Comput. Stud., 70(2):143–155,
February 2012.

[25] Shehnaaz Yusuf, Huzefa H. Kagdi, and Jonathan I. Maletic. Assessing the comprehension of
uml class diagrams via eye tracking. 15th IEEE International Conference on Program Compre-
hension (ICPC ’07), pages 113–122, 2007.

BIBLIOGRAPHY 39

[26] Bonita Sharif and Jonathan I. Maletic. An eye tracking study on the effects of layout in
understanding the role of design patterns. 2010 IEEE International Conference on Software
Maintenance, pages 1–10, 2010.

[27] Bonita Sharif and Jonathan I. Maletic. An eye tracking study on camelcase and underscore
identifier styles. In Proceedings of the 2010 IEEE 18th International Conference on Program Com-
prehension, ICPC ’10, pages 196–205, Washington, DC, USA, 2010. IEEE Computer Society.

[28] Benoít De Smet, Lorent Lempereur, Zohreh Sharafi, Yann-Gaël Guéhéneuc, Giuliano An-
toniol, and Naji Habra. Taupe: Visualizing and analyzing eye-tracking data. Sci. Comput.
Program., 79:260–278, January 2014.

[29] Bonita Sharif and Huzefa Kagdi. On the use of eye tracking in software traceability. In
Proceedings of the 6th International Workshop on Traceability in Emerging Forms of Software Engi-
neering, TEFSE ’11, pages 67–70, New York, NY, USA, 2011. ACM.

[30] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, and Manuela Züger.
Using psycho-physiological measures to assess task difficulty in software development. In
Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages 402–
413, New York, NY, USA, 2014. ACM.

[31] K. Kevic, B.M. Walters, T.R. Shaffer, B. Sharif, D.C. Shepherd, and T. Fritz. Eye gaze and
interaction contexts for change tasks observations and potential. J. Syst. Softw., 128(C):252–
266, June 2017.

[32] Manuela Züger, Christopher Corley, André N. Meyer, Boyang Li, Thomas Fritz, David Shep-
herd, Vinay Augustine, Patrick Francis, Nicholas Kraft, and Will Snipes. Reducing interrup-
tions at work: A large-scale field study of flowlight. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, CHI ’17, pages 61–72, New York, NY, USA, 2017.
ACM.

Interview Protocol

The interview protocol of our semi-structured interview conducted with 12 participants from
three different companies is presented in the following.

Hi ... ,
Thank you very much for participating in our study. In the last weeks, you have been observed
by our monitoring application. With this interview, we aim to get a bit more insights into how
developers use their desktop environment beyond what the software can provide. At first, we
need to define some words to ensure we’re talking about the same terminology.

Definitions

• Window is what you typically find in the operating system. It separates an area of the com-
puter screen and acts as the user interface for an application. We exclude tab windows from
this definition and will talk about tabs.

• Tabs you find typically in your browser application. The tabs allow to bundle the contents of
multiple documents that would typically use multiple windows into a single window and
allows switching between these contents.

• Notifications are anything that delivers information based on an event without a request
from the user. We do not restrict this to the notifications provided Microsoft Windows.

General

1. What best describes your primary work area?

[Development, Test, Project Management, Other Engineer, Other Non-Engineer]

2. Which of the following best describes your role?

[Individual Contributor, Lead, Architect, Manager, Executive, Other]

3. How many years of software development experience do you have in total?

4. How many years of professional software development experience do you have?

Desktop Environment Use

5. How many monitors do you use at your work?

6. How much time do you spend on each?

[the same, more on the primary, lot more on the primary, rarely using the others]

42 Chapter 8. Interview Protocol

7. How do you split your work onto these monitors?

8. What number of windows/applications do you usually use simultaneously?

[1-3, 4-6, 7-9, 10+]

9. What number of browser tabs are usually opened simultaneously?

[1-4, 5-9, 10+, 20+, 30+]

10. What are your typical use cases / workflows for simultaneously open windows?

11. What is your strategy to closing open windows/tabs?

[e.g: When it gets too cluttered, I close them immediately after I don’t need them anymore, After a
task, Before a new task, I close everything before a break, I close everything in the evening when I
leave, I never close anything, a mixture of the above (explain)]

12. Why do you choose this strategy?

Finding Windows/Tabs

13. Do you lose time when looking for the next window or tab?

[never, rarely, sometimes, often, regularly]

14. Do you ever lose focus/track of your task when searching for a window? How common is
it to lose focus/track of your task at hand?

[never, rarely, sometimes, often, regularly]

15. Why do you sometimes lose time/focus/track to find the next window or tab?

Distractions

16. How easy/ often . . . are you distracted by open windows/tabs/notifications that do not
belong to your current task?

[never, rarely, sometimes, often, regularly]

17. Regarding the window environment: what do you find particularly distracting?

Support

18. Is there anything that you think could be better in your windows environment?

19. Do you have any ideas on how to help you with your workflow?

20. If we were to develop an approach to limit distractions or help you find the relevant win-
dow/tab/application faster, how would we go on to do that?

Study related

21. Was the past week a usual work-week? If not, why?

22. Did the tracker influence you? And if so, in what way?

Contents of the CD-ROM

• Abstract.txt
The plain text abstract of this thesis in the English version.

• Zusfsg.txt
The plain text abstract of this thesis in the German version.

• MasterThesis.pdf
Copy of this thesis as PDF.

• Interview.pdf
The interview protocol.

• SourceCode.zip
The source code of the monitoring software.

• AnalysisNotebook.Rmd
The R Notebook of the Desktop Environment Analysis

• VisualAttentionNotebook.Rmd
The R Notebook of the Analysis of the Visual Attention

The collected data and analysis results (such as outputs of the R notebooks) are not included on
the CD-ROM due to their privacy sensitive nature.

