
Exploring Context-aware
Stream Processing

Benedikt Bleyer
of Waldkirch BW, Germany

Student-ID: 14-706-162
benedikt.bleyer@uzh.ch

MSc Thesis 29.03.2018

Advisor:
Daniele Dell’Aglio, PhD

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I want to express my sincerest gratitude to my supervisor Daniele Dell’Aglio, PhD for
his competent and enthusiastic support during this thesis. With his immense knowledge
and passion in the area of stream processing and stream reasoning, he was able to
help me during all times of research, implementing and writing this thesis. In addition, I
would like to thank Assistant Professor Alessandro Margara, PhD for his active support,
domain expertise and programming advice.
I would also like to thank Professor Abraham Bernstein, PhD and the members of the

Dynamic and Distributed Information Systems Group for giving me the opportunity to
work on such an interesting topic.
Further, I would also like to thank Jonas Traub for his advice regarding Apache Flink

and the soccer monitoring case study as well as Andreas Gruhler and Christian Thol for
proofreading my thesis.
Last but not least I would like to thank my friends and family for their constant

support and encouragement.

Zusammenfassung

Unternehmen, Privatpersonen und Sensoren produzieren heutzutage kontinuierlich Daten,
daher sollte auch die Verarbeitung dieser Daten in kontinuierlicher Art und Weise erfol-
gen. Eine steigende Anzahl von Anwendungsfällen für Data Streaming benötigt Modelle
und Systeme, welche sich dynamisch an Umweltzustände anpassen können und fähig
sind verschiedene Informationstypen wie Kontext, Fakten und Hintergrundinformatio-
nen zu integrieren um gewinnbringende Erkenntnisse in Echtzeit zu liefern. Diese Thesis
präsentiert mit dem “Context-aware, Facts and Background integrated dynamic Stream
Processing” (CoFaBidSP) ein entsprechendes konzeptionelles Modell. Die Ergebnisse der
Evaluation des implementierten Prototyps zeigen, dass der vergrösserte Funktionsum-
fang zu nahezu keinen Performance Einbussen bei Laufzeit und Verarbeitungskapazität
führt.

Abstract

Today’s data is continuously produced by companies, private people and sensors, there-
fore processing the data should also be in a continuous way. An increasing number of
use cases for streaming data require models and systems which can adapt their pro-
cessing based on changes in the application context and need to be able to integrate
various information types such as context, facts and background information to deliver
valuable near real time insights. This thesis proposes a model for Context-aware, Facts
and Background integrated dynamic Stream Processing (CoFaBidSP). The evaluation
results for the implemented prototype show that the metrics run time and events per
seconds remain nearly constant, even by including more functionality such as the inte-
gration of various information types in dynamic stream processing.

Table of Contents

1 Introduction 1

2 Related Work and Background 5
2.1 Query Types and Windowing in data stream processing 5
2.2 Stream processing models and systems . 7
2.3 Context-awareness and state management 11

3 Conceptual model 13
3.1 Case studies . 13
3.2 Data model: Events, Context, Facts and Background Knowledge 14
3.3 Processing model . 16

3.3.1 Source function . 16
3.3.2 Context-deriving . 18
3.3.3 Window-deriving . 18
3.3.4 Window-processing . 18
3.3.5 Analytics . 21

4 System design and implementation 23
4.1 Requirements . 23
4.2 Components and their functions . 24

4.2.1 Context, Facts and Background Information 24
4.2.2 Stream processing system . 25

4.3 Summary . 29

5 Evaluation 31
5.1 Setup Environment . 31
5.2 Quantitative Analysis . 31

5.2.1 Number of events . 32
5.2.2 Number of contexts and context switches 33
5.2.3 Window count size . 35

5.3 Qualitative Analysis . 36

6 Limitations and future work 39

x Table of Contents

7 Conclusions 41

A Evaluation results 45

B Contents of the CD 53

C Installation Guidelines 55

x

1

Introduction

Today’s data is continuously generated and processed by companies, private people and
machines (including e.g. sensors or computers). Such entities are very different, and
the data they produce varies in structure, volume, variety, velocity and veracity (IBM,
2013). Traditionally, data is processed and stored in a Database Management system
(DBMS) and then prepared for data analysis. This procedure is well-researched and
widely applied in practice. The amount of data is known ex ante and new data is
processed periodically in batches, e.g. in data warehouses.
Even in the era of big data the processing of the data is done periodically, but in a

distributed fashion, e.g. by using the MapReduce model (Dean and Ghemawat, 2008).
A general characterization of a distributed system is given by Tanenbaum and Van Steen
(2007, p. 2): “A distributed system is a collection of independent computers that appears
to its users as single coherent system.” It is important that distributed systems usually
use different types of transparency such as access, location, migration, relocation, repli-
cation, concurrency and failure transparency. Those transparency types are also used to
achieve high scalability by distributing data and its processing to independent comput-
ers. (Tanenbaum and Van Steen, 2007, p. 5ff.)

Also the Web is a distributed system. It is heavily used by companies and private
people to produce, sell and buy products as well as building (social) networks e.g. to
communicate and collaborate. The corresponding data is produced continuously and
also should be processed in that way. Such data, which we refer to as data stream has
the following main characteristics: (i) The data elements are produced continuously, (ii)
the arrival order is not known, (iii) the size is potentially unbounded and (iv) its pro-
cessing of the data elements should be near real-time (Babcock, Babu, Datar, Motwani,
and Widom, 2002, p. 2; Cugola and Margara, 2012, p. 6).

In the field of data streams, there are two main system paradigms: Data Stream Man-
agement Systems (DSMS) and Complex Event Processing systems (CEP) (Cugola and
Margara, 2012, p. 2ff.). DSMSs focuses on processing data streams from various sources
and emitting output streams for further analysis. CEP systems on the other hand handle
the elements of a data stream as events. They analyze the incoming events to detect
patterns and take actions on a higher-level of abstraction, e.g. smoke detector. For

2 CHAPTER 1. INTRODUCTION

both paradigms there exist centralized as well as distributed systems implementations.
(Cherniack et al., 2003; Helmer, Poulovassilis, and Xhafa, 2011)

Due to the unbounded nature of data streams, it is impossible to give a final answer
for a specific query. Therefore, windows are usually used to partition the incoming data
stream by time or element frequency and to optimize the necessary processing resources.
A fixed window would include all the data elements of the last five minutes or the last
ten data elements. Sliding windows use a similar approach, but those windows are over-
lapping, e.g. a window is generated for the last hour every 30 minutes. (Akidau et al.,
2015; Cugola and Margara, 2012, p. 21) For capturing rapid changes in the values of
events or aggregating events of user sessions those windows can not be used.

Further approaches for constructing windows based on the content of the data streams
are proposed by Grossniklaus, Maier, Miller, Moorthy, and Tufte (2016) and Akidau et
al. (2015). Frames (Grossniklaus et al., 2016) are based on the value of data elements,
e.g. a frame is created if a value of an attribute of the data stream reached a specific
threshold. The Data Flow Model (Akidau et al., 2015) introduces session windows to
examine the click stream of customer on a shopping website. The size of such a key-based
data stream is bounded, but it differs from customer to customer and is not know ex ante.

An addition to these approaches can be done by including the application context (re-
lated terms are state and situation) of the real world in the system. Application contexts
are defined as “real-world higher-order situations the duration of which is not known
at their detection time and potentially unbounded” (Poppe, Lei, Rundensteiner, and
Dougherty, 2016, p. 415). It can be used as an (resource) optimization technique and
to extend the possibilities for analytics. Examples for contexts in the area of network
monitoring could be “underloaded”, “overloaded” or “crashed” (Poppe et al., 2016).
Possible context types for an soccer game could be “1st half”,”2nd half”, “Break”. In
order to adjust advertisement, recommendations or processes during the soccer game,
the visitor’s overall satisfaction as well as different statistics about ball possession, shots
on goal, player performance are relevant. In addition to the context, stable background
knowledge as well as facts with specific validation periods should be combined with the
incoming data elements of the stream. Kietz, Scharrenbach, Fischer, Bernstein, and
Nguyen (2013) proposed TEF-SPARQL, a query language for time annotated event and
fact Triple-Streams. A conceptual model for separating the state (context) from stream
processing components is provided by Margara, Dell’Aglio, and Bernstein (2017).

The research questions that I investigate in this Master thesis are the following:

Y How could a conceptual model for stream processing look like, which allows the
combination of context-awareness, background knowledge and time-restricted facts?

Y What would be the architecture of an engine implementing such a model?

The rest of the MSc thesis is organized as follows: Chapter 2 gives a summary of the
related work and compares the existing methods, approaches and models. After in-

2

3

troducing different motivating case studies, Chapter 3 provides details of a conceptual
model to support those case studies. Chapter 4 focuses on the technical implementation
of the conceptual model with the technical components and their interaction. Evalua-
tion results are provided in Chapter 5. After discussing limitations and future work in
Chapter 6, I will conclude with Chapter 7.

3

2

Related Work and Background

This chapter summarizes relevant studies in the context of stream processing, followed by
a state of the art analysis of existing models, approaches and systems related to stream
processing including context-awareness, background knowledge and facts (Section 2.2).
The following section will introduce different styles and/or requirements for queries

as well as two notions of time relevant for stream processing. Based on that the concept
of windows is described.

2.1 Query Types and Windowing in data stream processing

Two distinction of queries can be done, the first one is between one-time queries and
continuous queries (Babcock et al., 2002, p. 2). One-time queries are created and eval-
uated exactly once over the available data at this point in time. Continuous queries are
evaluated multiple times. Each result will reflect the data elements received so far in
the data stream.
Predefined queries and Ad-hoc queries are the second distinction (Babcock et al., 2002,

p. 2). Pre-defined queries are created before the data stream is received and are usually
continuous queries. Ad-hoc queries, on the other hand, are created after the data stream
is already emits events, here it is then important to consider carefully what range of
data element is important for evaluating the query. An ad-hoc query could be either
one-time or continuous.

Furthermore, it is important on what underlying data structure the query is evalu-
ated. The data elements of the data streams can be structured in a key-value format,
Resource Description Framework (RDF) graphs or relational tables. RDF is “a data
model in which the basic unit of information is known as a triple. A triple consists of a
subject, a predicate and object.” (DuCharme, 2013, p. 24) The data of the triples can be
represented in a directed graph. In this graph “each subject or object value is a labeled
node [...] and the predicates are the labeled arcs connecting the nodes.” (DuCharme,
2013, p. 33) Another aspect is the provided operators of the query language used to cre-
ate the queries, like projection, filter, aggregations. Based on relational algebra different
languages are available at the moment: SPARQL used for queries on the semantic web,

6 CHAPTER 2. RELATED WORK AND BACKGROUND

CQL (Continuous Query Languages) or also TEF-SPARQL (which can be used to query
fact time annotated triples).

Due to the unbounded nature of streaming data, query languages for DSMS introduced
a new window operator to deliver approximate query answers (as described in Babcock
et al., 2002, p. 6f.). Currently three types of windows can be distinguished: First, Win-
dows based on external, fixed criteria like count or time (Babcock et al., 2002, p. 7f.). For
example, a count-based fixed or tumbling window with size 50 contains always 50 events.
A fixed window with size of 10 minutes consists of the events of the last 10 minutes, see
Figure 2.1. A sliding window is “defined by a fixed length and a fixed period.”(Akidau,
2015). With a time period of 5 minutes and a fixed length of 10 minutes, every five
minutes a window with a fixed length of 10 minutes is created, which means that the
windows are overlapping by five minutes. Second, windows based on the data content
like frames (Grossniklaus et al., 2016) (see Section 2.2) or session windows (Akidau et al.,
2015, p. 1794), see Section 2.2. Third, windows which are aware of higher-level contexts,
see Section 2.3. (Poppe et al., 2016).

Another important notion in DSMS is time: At what time the event is generated

Figure 2.1: Window patterns (Source: Akidau et al., 2015, p. 1794)

(event time) by the sensor or when the event is processed by the stream processing sys-
tem (processing time). While the event time can never change, the processing time can
evolve depending on the processing flow in the stream processing engine. Due to various
reasons the processing time and event time differ, which means that events are placed
in different windows depending on what timestamps are used, event time or processing
time. Figure 2.2 shows the time domain skew. If the event time and processing time
would be the same, the straight gray dotted line would be true. But often the processing
is delayed. The black arrow shows the difference the the processing and event time.

6

2.2. STREAM PROCESSING MODELS AND SYSTEMS 7

Figure 2.2: Time domain skew (Source: Akidau et al., 2015, p. 1795)

2.2 Stream processing models and systems

This section covers existing models, approaches and systems relevant to the research
questions in Chapter 1. First a a stream processing model to balance correctness, latency
and costs is explained. Then, windowing approaches based on data content are described
before summarizing the CAESAR system and the TEF-SPARQL query-language.
Google’s Data Flow Model is a stream processing model to balance correctness, latency
and costs. It separates the application logic and the running engine. The model is based
on four key questions (Akidau et al., 2015, p. 1793f.):

Q1 What results are calculated?

Q2 Where in event time they are being computed?

Q3 When in processing time they are materialized?

Q4 How earlier results relate to later refinements?

Q1 is about the transformations of the incoming streaming data, meaning transfor-
mation like counting, aggregate functions or data mining algorithms. Q2 describes the
windowing concept (using event time), which includes traditional windows like fixed or
sliding windows. But it also enables the user to define more complex windows like ses-
sion windows by grouping and merging windows based on attributes and overlapping
time periods. Session windows are introduced in more detail in the Section 2.2. Data
Flow uses triggers for allowing the user to define when in processing time results should
be emitted. They are also used to offer different options (discarding, accumulating and
retracting) on how earlier results should affect later refinements (Akidau et al., 2015,
p. 1797f.). Those operations are only possible since they differentiate between event and
processing time and acknowledge the fact that there can exist a skew between generation
of the event (event time) and processing the event by the streaming engines (processing
time) (Akidau et al., 2015, p. 1794f.).

7

8 CHAPTER 2. RELATED WORK AND BACKGROUND

Figure 2.3: Session windows (extract) (Source: Akidau et al., 2015, p. 1796)

The Data Flow model requires a 4-tuple (key, value, event_time, window) for event-
time windowing. With those tuples various windows can be constructed by AssignWindow
and MergeWindows operations. The MergeWindows operation allows to create data-
driven windows, like session windows.
The procedure of creating session windows is the following (Akidau et al., 2015,

p. 1796, see Figure 2.3). The 4-tuples with a global window (from zero to infinity)
enters the system, then the AssignWindow operation updates the window with the start
time equal to the event time and the end time as start time plus session period, e.g. 30
min. Then event timestamps are dropped, the elements are grouped by a defined at-
tribute, e.g. user id. The result of the grouping operation is used by the MergeWindows
operation to create non-overlapping windows per key. After grouping by the key at-
tribute the event time is updated with the end timestamp of the resulting window.

Apache Flink is an open-source system, which allows batch and stream processing in

8

2.2. STREAM PROCESSING MODELS AND SYSTEMS 9

one single engine in a distributed fashion. Carbone et al. (2015) argue that most of
today’s data are produced continuously and most of current data processing happens
by splitting the data in arbitrary chunks and processing them in a batch mode. There-
fore batch data processing is only a special case of stream processing and both can be
processed by using one programming model and execution engine.
Using one programming model and executing engine for batch and stream processing

has several advantages like harmonizing and transforming data only once for diverse use
cases or simplify the overall IT architecture in comparison to implement the different
layers of the LAMBDA architecture (Marz and Warren, 2015) with different software
stacks.
Figure 2.4 shows the software stack of Apache Flink. On top of the “distributed

streaming dataflow” two APIs are available: Data Set for Batch Processing and Data
Stream for Stream Processing.

Figure 2.4: Apache Flink - software stack (Source: Carbone et al., 2015, p. 30)

Independently of the used API each Flink program is executed as a “directed acyclic
graph (DAG), that consists of: (i) stateful operators and (ii) data streams that represent
data produced by an operator and are available for consumption by operators” (Carbone
et al., 2015, p. 30).
By using the DataSet API the programmer can use well-known abstractions (relations)

and operators (joins, projection, aggregations) to write batch-oriented programs. It also
integrates query optimization techniques suitable for queries over bounded data sets.
(Carbone et al., 2015, p. 35f.) On the other hand the DataStream API allows the usage
of sophisticated windowing operators and supports also out-of-order data processing
by using watermarks based on processing-time and event-time. (Carbone et al., 2015,
p. 33f.)
By transforming all batch and stream computations into a DAG, Apache Flink is able

to distribute data as well as their processing. Figure 2.5 displays the processing model of
Apache Flink (Carbone et al., 2015, p. 30). The transformation of the Flink program into
a DAG is done by the client. The JobManager is responsible to monitor the distributed
execution of the DAG. A Flink cluster can consist of multiple TaskManagers. Easy
TaskManager can offer multiple Task slots for execution. All scheduling and monitoring

9

10 CHAPTER 2. RELATED WORK AND BACKGROUND

Figure 2.5: Apache Flink - process model (Source: Carbone et al., 2015, p. 30)

of the Task Managers is done by the JobManager.

Data driven windows

Session windows are one example of data-driven windows, because they require to read
a key field of each single event, e.g. a user id, customer id or sensor id. Only then a
session windows based on that key can be created.

Grossniklaus et al. (2016) use data-driven windows called frames. They point out that
“frames are simply sub-sequences of a stream (technically the starts and ends of those
subsequences)” (Grossniklaus et al., 2016, p. 13). This is similar to the resulting window
timestamps of session windows, so that session windows can be compared to one type
of frames, the aggregate frames. The difference is that Grossniklaus et al. (2016) define
that aggregate frames are ending a frame, “when an aggregate of the values of a specified
attribute within the frame exceeds a threshold work for this case” (Grossniklaus et al.,
2016, p. 14). The end of a session window is reached when in specified time period no
event for that key is generated. For example, if the time period is one minute, then the
end of a session window is reached when the last detected event for a key was over one
minute ago.
In session windows the value of the specified attribute is only used for merging/aggre-

gating overlapping windows, but not adjusting the window size, like in aggregate frames.
Those aggregate frames are very useful to derive specific contexts, which are this dis-
cussed in the next section. Other types of frames are threshold frames, delta frames and
boundary frames.
Threshold frames are related to aggregate frames, but while aggregate frames the

aggregated value of specified attribute needs to exceed a threshold, in threshold frames
it is sufficient that a single value of a specified attribute of the data stream tuple falls
below or exceeds a specified threshold value. Therefore, threshold frames are used to
detect “interesting regions” in the data, in which further processing could be useful
(Grossniklaus et al., 2016, p. 14). A new Delta-Frame is generated if the “value of
particular attribute changes by more than an amount of x”(Grossniklaus et al., 2016,
p. 14), so it detects regions of rapid change in the data. The fourth type of frames are

10

2.3. CONTEXT-AWARENESS AND STATE MANAGEMENT 11

boundary frames, which can be used to create heat maps, e.g. soccer players’ movement
during a game. So the playing field is divided in different grid cells and every time an
event enters the systems which crosses the borders of grid cell a new boundary frame is
created.
All four types of frames produce as a result the start and end timestamps of interesting

regions in the data. The framing scheme consists of local conditions (data-dependent),
which define the type of frame. Global conditions (data-independent) ensure that the
generated time interval has a defined minimum or maximum duration. Furthermore they
are based on data content of the streams and not on external characteristic like fixed
time intervals. Nevertheless the framing scheme consists of global conditions to ensure
a specific length of frames, for example.

By using threshold frames it is possible to create “fixed” windows by checking the values
of event attributes inside a data stream. It is not possible to adapt window deriving
when a specified threshold is reached. This is possible by using data-driven, User-Defined
Windows (UDF). Carbone, Traub, Katsifodimos, Haridi, and Markl (2016) provide as
a motivating example for UDFs the monitoring of stock quotes. If the stock price is
greater than $10, every five minutes a window, containing the weighted average price
of the last 10 minutes, is created. But if the stock price falls under $ 10 dollars, the
windowing should be changed with a slide of 2 minutes and a range of 5 minutes.

2.3 Context-awareness and state management

More complex global conditions (as used in Frames) could be seen as contexts, which are
realized in the Context-Aware Event Stream Analytics in Real-time solution (CAESAR)
by Poppe et al. (2016). Application contexts are defined as “real-world higher-order
situations the duration of which is not known at their detection time and potentially
unbounded” (Poppe et al., 2016, p. 415).
In the case of traffic management different application contexts (short: context) ex-

ist such as “congestion”, “accident” or “clear”. Each context with its name as well
as context-deriving and context-processing queries is a context-type. Context-deriving
queries are taking the incoming events as well as the current context into consideration
to decide if a context-switch or context-termination is necessary. If the average speed of
the last 25 cars is below 20 mph and the current context is “clear”, the context-deriving
queries could switch the context from clear to congestion. It is important to note that
different context types could overlap like congestion and accident.
These context-deriving queries are conceptually similar to those queries which derive

aggregate frames. In CAESAR the results of context-deriving queries are used to opti-
mize the query load in the system. So only the context-processing queries for the contexts
which are active at processing time are registered and are continuously evaluated. That
means that in the contexts of “accident” and “congestion”, accidents warnings and toll
notifications are output events of the corresponding context-processing queries. While
in the context “clear” those context-processing queries aren’t running. The duration of

11

12 CHAPTER 2. RELATED WORK AND BACKGROUND

a context is a so called context-window (Poppe et al., 2016, p. 413-416).

In my opinion application contexts can be seen as the first-level. Frames can be used
to derive contexts. On a second level session windows can be used to create data-driven
windows inside a context window. The third level are facts. TEF-SPARQL is a query-
language for time annotated event and fact Triple-Streams, facts “are things that are
true for specific amount of time” (Kietz et al., 2013, p. 9). The provided example for
a fact is the event “Peter owns a book”, since it is true after he bought the book, but
could be invalidated after he looses it or sells it again. Another fact could be: “Maria
is watching the online tv channel XYZ”. It can be used to construct and update tem-
poral facts out of event triples (in this case RDF triples) and combine them with time
annotated event streams (Kietz et al., 2013). With TEF-SPARQL the generation of
facts and querying the event stream is combined which could have a negative impact
on the performance and doesn’t allow to share facts across different event streams, at
least in my opinion. By considering a external storage for facts bi-temporal databases
important to consider. Bi-temporal database differentiate between different notions of
time like valid/application time and transaction/system time. They also offer special
operations for handling those different notions of time. (Snodgrass, 2000; Kaufmann,
Fischer, May, and Kossmann, 2014)

Margara et al. (2017) use a concept similar to facts which they name “state”. Further-
more, their proposed model consists of three different components: state management,
stream processing and state. They separate the management (including updates) of the
states or facts from the stream processing and provide the possibility to save specific
states permanently. Therefore it could be possible to weight different states according
to the application context.

In the remaining chapters of this thesis the following wording applies: The highest level
is the application context (as defined in CAESAR). Data-driven windows (e.g. frames)
are used by context-deriving queries. Context-processing queries can be used to derive
facts, which are valid during a specific period of time in a context window or can be
also saved permanently to make them available for context-processing queries of other
contexts. States as used by Margara et al. (2017) will not be used, because they are
used extensively by the database community (stateful operators), but conceptually they
will remain as overall context information and context-specific information.

12

3

Conceptual model

This section presents the conceptual model of Context-aware, Fact and Background
integrated dynamic Stream Processing (CoFaBidSP). It first presents details about two
case studies in the field of smart cities (traffic management) and entertainment (soccer
monitoring). Next, it describes the components and data processing flow of that model.

3.1 Case studies

I motivate this study through two case studies: traffic management and soccer monitor-
ing. In the field of traffic management there are several data sets like the Linear Road
Benchmark (Arasu et al., 2004) or the Vehicle Traffic dataset of City Bench (Ali, Gao,
and Mileo, 2015). In this thesis I refer to the data provided by Brőring et al. (2015),
because it has several advantages. First, it contains real world data. Second, the data
in this data set was collected with a modern hard- and software architecture. Third, im-
portant data points were selected and stored in JSON (see Listing 3.1) or RDF format.
Well-defined APIs and a data model were used for this purpose (enviroCar, 2015).

Listing 3.1: Excerpt of an event of the traffic management case study
1 {" features ":
2 [{"type":" Feature ",
3 " geometry ":{"type":"Point",
4 " coordinates ":[6.4847174678758375,51.22546715521443]},
5 " properties ":
6 {"id":"579634f9e4b086b281bf935e","time":"2012-01-01T00:06:

44Z",
7 " sensor ":
8 {
9 "type":"car",

10 " properties ":{" engineDisplacement ":
2200,"model":" Vectra C Caravan ",

11 "id":"5750591ee4b09078f98673d8"," fuelType
":" gasoline ",

14 CHAPTER 3. CONCEPTUAL MODEL

12 " constructionYear ":2004," manufacturer ":"
Opel"}

13 }
14 ...]}

The data set consists of several entities with information about sensors, tracks and
measurements. One event (record) consists of the following attributes: measurementID,
sensorID, trackID, longitude, latitude, timestamp, speed, consumption, rpm, road seg-
ment. Road segment is an artificial attribute, which is not included in the original data
set, to simplify the explanation. The data is collected by private citizens, who equipped
their private cars with a sensor. To collect measurements of their tracks the citizens
were provided an app to upload the recorded events to the enviroCar server (every five
seconds is an measurement during a track recorded).

The second case study considers the measurements of a football match, recorded by
collecting data from sensors in the ball, in the shoes of the soccer players, the referees
and the gloves of the goal keepers (Mutschler, Ziekow, and Jerzak, 2013). Each event
has the following schema: an unique id (sid), timestamp in picoseconds (ts), sensor co-
ordinates (x,y,z), velocity (v), acceleration (a), direction vector (vx, vy, vz), acceleration
vector (ax, ay, az). The coordinates (0,0,0) represent the middle of the football field.

3.2 Data model: Events, Context, Facts and Background

Knowledge

The proposed conceptual model uses various types of information, see Figure 3.1. One
or more continuous data streams serve as input for the context-aware distributed event
processing system.
The output is sent to a sink, e.g. an external database. Application contexts are

defined as “real-world higher-order situations the duration of which is not known at
their detection time and potentially unbounded” (Poppe et al., 2016, p. 415).
Context information are used at processing time to control and change the handling

of the input data streams. In the traffic management case study possible contexts could
be “Day” or “Night”. Additional attributes are start and end of such a context, the
number of events inside a window while this context is active. In Figure 3.2 are also
examples for the soccer monitoring use case shown. ts1 is the time stamp with the value
10,753,295,594,424,116 (start of the first half), ts2 is 12,557,295,594,424,116 (end of first
half). The second half starts at ts3 with value 13,086,639,146,403,495 and ends at t4
with value 14,879,639,146,403,495.

In both use cases the context information is defined by domain experts. The model
does not restrict the number of contexts, but only one context can be active at each
point in time. It is important to mention that context information itself is not part
of the distributed stream processing system. The advantages and disadvantages of this
design decision are explained in Section 4.2.1.

14

3.2. DATA MODEL: EVENTS, CONTEXT, FACTS AND BACKGROUND
KNOWLEDGE 15

Figure 3.1: Information types (Source: Own figure)

Facts “are things that are true for specific amount of time” (Kietz et al., 2013, p. 9)
Facts, however, are frequently updated by the stream processing system, since they are
created or updated based on single events or aggregations inside a global windows.

Traffic management

Name Value System period

Car1InRoadSegment 2 2018-01-20 14:12:23,
Car1InRoadSegment 1 2018-01-20 14:09:55, 2018-01-20 14:12:22
Car1AvgSpeed 45 2018-01-20 14:12:23,
Car1AvgSpeed 23 2018-01-20 14:09:55, 2018-01-20 14:12:22
VehiclesRoadSegment1 10 2018-01-20 14:12:23,
VehiclesRoadSegment1 20 2018-01-20 14:10:11, 2018-01-20 14:12:22
VehiclesRoadSegment1 8 2018-01-20 14:09:55, 2018-01-20 14:10:10
RoadSegment1Status clear 2018-01-20 14:09:55,

Table 3.1: Facts of traffic management use case (Source: Own representation)

Examples of Facts are the number of elements which are currently inside processing
engines or the distribution or average of an attribute of the event streams. More concrete
facts in traffic management are the numbers of cars in one specific road segment, the
average speed of all cars, the segments in which traffic is congested or clear (see Table
3.1). In the soccer monitoring case study, facts are the ball possession, number of shots

15

16 CHAPTER 3. CONCEPTUAL MODEL

Figure 3.2: Context information (Source: Own figure)

to goal and run time statistics for a player.

To produce continuous results the stream processing system can also take into account
background knowledge (e.g. from domain experts) or historical data about entities rep-
resented in the current data stream, context or facts. Examples for such background
knowledge or information in the traffic management use case are the speed limit of vari-
ous road segments, the mapping of geo-coordinates to road segments, holidays, historical
statistical data like average count or average speed in road segments. In the soccer mon-
itoring case study past performances of each football player, previous results between
the teams, turnover of the teams or size of fan base is background information.
This model also enables further batch oriented analytics by combining the transformed

data stream, versions of facts and background information, but this is out of scope of
this thesis.

3.3 Processing model

This section describes the components and process flow of the Context-aware, Fact and
Background integrated dynamic Stream Processing (CoFaBidSP) model.

3.3.1 Source function

After explaining the different information types of the proposed model, I describe the
components to build the context-aware distributed stream processing system (see Figure
3.3) using those information types.
The “Source function” gets the data stream in the raw format and transforms it in

objects which can be handled by the following components, so it is essentially a wrap-
per transforming the input event into the desired format for the following operations.
Optionally, additional attributes can be added, like road traffic segments based on geo-
coordinates. The event-stream is then copied and transferred to the two subsequent
components, which run in parallel and independently from each other.

16

3.3. PROCESSING MODEL 17

F
ig
u
re

3
.3
:M

od
el

ov
er
vi
ew

(S
ou

rc
e:

O
w
n
fig

ur
e)

17

18 CHAPTER 3. CONCEPTUAL MODEL

3.3.2 Context-deriving

While continuously receiving new events, the context-deriving component uses the at-
tribute values of those events as well as the static context information to check if the
current context is still valid or if a context switch is necessary. If such a switch is
necessary, the “IsActive” Flag is updated.

For the traffic management and the soccer monitoring case study, it is assumed that
all events are generated in the same time zone, contain an time stamp which can be used
as an event time stamp. It is further assumed that the lag between the event time stamp
and the time stamp of processing the event in the “SourceFunction” is insignificant.

3.3.3 Window-deriving

Depending on the current context the segmentation of the event stream differs. That
means windows are not always constructed in the same way. One way to do this to
split the incoming data stream on one or more key attributes, that would happen even
before the creation of windows. It allows a logical as well as physical distribution of
succeeding processing. Examples are geo-coordinates, road segment, car or for the soccer
monitoring player, derived team. Consequentially further processing only has access to
events containing a single value of the key attributes.
For the soccer monitoring case study, Figure 3.2 shows that the number of events

differ between the first and second half. If the context “1st half” is active a count-based
window of size 10 is used, otherwise a count based window of the size of 15 is used.
Figure 3.4 shows the three states of the window-deriving component in the 1st half. The
left one displays all incoming events delivered by the Source Function. The middle on
collecting those events inside a global window. After reaching the count size of 10, the
window-deriving component emits those 10 events for further processing.
Then the Context-deriving component executes a context-switch. Figure 3.5 shows

the three states of the dynamically adjusted window-deriving. The left and middle parts
remain the same. However the window-deriving components emits windows containing
always 15 events based on the current context, which is now the 2nd half.
In general the models also allows to the have several concurrent window-deriving

processes to be able to satisfy more sophisticated uses cases.

3.3.4 Window-processing

The Window-processing component is using events inside a customized window for cal-
culation of additional key figures. Those key figures represent often facts. Depending
on the content of the windows different facts can be calculated.

Since facts are not part of the distributed data stream processing engine, it is necessary
take care of possible concurrency issues. One option to avoid concurrency issues is to
use no sliding windows. If the input data stream has high velocity, it is also likely that
corresponding facts are updated very often, which will results in many version of the
same fact, the challenges related to this are discussed in the next section.

18

3.3. PROCESSING MODEL 19

F
ig
u
re

3
.4
:W

in
do

w
de

riv
in
g
in

co
nt
ex
t
of

1s
t
ha

lf
w
ith

co
un

t-
ba

se
d
w
in
do

w
of

siz
e
=

10
(S
ou

rc
e:

O
w
n
fig

ur
e)

19

20 CHAPTER 3. CONCEPTUAL MODEL

F
ig
u
re

3
.5:W

indow
deriving

in
context

of2nd
halfw

ith
count-based

w
indow

ofsize
=

15
(Source:

O
w
n
figure)

20

3.3. PROCESSING MODEL 21

The generated facts of the window-processing components are often already very valu-
able for getting real time insights e.g. about the traffic flow or which soccer team is dom-
inating the game. So the model is designed such that those facts and the corresponding
updates are emitted continuously.

3.3.5 Analytics

The analytics component can output results in various formats. It can dump the pre-
viously generated window into a data sink. From this intermediate storage, the data
undergoes further processing, such as logging or monitoring. This is especially useful for
batch-oriented analytics. Another option is to analyze the streams directly without an
intermediate storage solution.
While window-processing focuses on updating facts based on the event stream, window-

analytics generates complex insights by combining events, facts and background infor-
mation, either in a streaming or batch-oriented fashion. In the streaming fashion, the
facts and background information are converted into a data stream and are then com-
bined with the event stream in to one, which can be used as an input for detecting
complex events detection. The main challenge is to construct one event out of three
different data sources, due to difference in structure, volume, data quality and (time)
granularity. Otherwise it is not possible to construct patterns which can be found in
the data stream. The combination is only done by using SQL-like statements including
projects, aggregation, and set-operations like join and union. That means, facts and
background are conceptually global windows which are combined with every generated
window of previous components. The relationship between event attribute and facts is
at least one-to-many, so for one event attribute, e.g. for each sensor or player more than
one fact is generated with different validity periods.
By doing analytics in a batch-oriented fashion, it is assumed that the data on which

queries are executed is not changing over time. Then it can be differentiated between
analytics concerning only the content of a specific single window or a set of windows.
By using the data sink, which contains the content of all or set of generated windows,

the model is also enabling applications using machine learning/data mining methods or
graph analysis.

21

4

System design and implementation

This chapter explains the technical system design and provide details about the im-
plementation of the components. The next section specifies requirements, which the
implementation should satisfy.

4.1 Requirements

I identified the following requirements based on the conceptual model:

R1 Distributed processing of data stream events
The data streaming system should process incoming events with a centralized as well
as distributed fashion. In a centralized fashion a single as well as parallel processing
on one computer should be possible. In a distributed fashion, independent computers
should be able to process events in parallel. For this scenario, a component should
take care of scheduling and monitoring of these independent computers.

R2 Support for reading and updating context-information inside a streaming
data pipeline
The implemented system must read and write externally stored context information
to control and adapt the computations inside a data streaming pipeline.

R3 Support for reading and updating facts inside a streaming data pipeline
3.1) Inside a data streaming pipeline the system should read and write facts into
an external component. This external component must be transaction-safe (atomic,
consistent, isolated and durable) (Tanenbaum and Van Steen, 2007, p. 21).
3.2) Furthermore the external component should provide support for at least one
notion of time such as valid/application time, transaction/system time or bitemporal
time. (Kaufmann et al., 2014; Snodgrass, 2000)

R4 Provision of different customized windows based on current contexts
The implemented system must adapt the deriving of windows based on current
contexts, without stopping or restarting the overall data streaming pipeline.

24 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

R5 Allow for context-switches in a continuous data processing pipeline
The system should switch contexts based on predefined attribute values of incoming
events (e.g. event time reaches a specified end time). Furthermore no restrictions
for the number of context switches should apply.

R6 Combination of events, facts and background information in continuous
queries
The system should enable building continuous queries combining events, facts and
background information. The support for ad-hoc queries is also desirable.

4.2 Components and their functions

In this section I explain the technical system design and provide implementation details
of the components. The architecture consists of two main parts: (1) a PostgreSQL
database with an extension to support temporal tables, (2) Apache Flink, an Open
Source Stream Processing Framework of the Apache Software Foundations.
PostgreSQL is a relational database to implement the external component responsible

to storing context, facts and background information. An extension for temporal tables
allows to implement the requirements 3.1) and 3.2). In a PostgreSQL database, named
“soccer_monitoring”, three tables are used to store the context, facts and background
information. The data streaming pipeline executed in Apache Flink is programmed in
Java.

4.2.1 Context, Facts and Background Information

Context and background information

Both case studies introduced in Section 3.1 uses context information predefined by do-
main experts. This context information is centralized and not subject to frequent up-
dates, except the flag which context is active. Figure 4.1 shows the content of the context
table used in the system.

Figure 4.1: Implementation of context information in PostgreSQL (Source: Own figure)

The stream processing system has read access for all fields, but can only update the
column “IsActive”. In contrast, all the fields except “IsActive” can be only updated by
domain experts. However, as mentioned before even if this model allows updates, it is
not designed for frequent updates. Contexts are non-overlapping and at each point in
time, exactly one context is active.

24

4.2. COMPONENTS AND THEIR FUNCTIONS 25

Background information is static and it is expected to have high data quality. Back-
ground information is stored in a relation centralized database by default, but due to
its nature it is also possible to load it into memory and replicate it for distributed
computing.

Facts

Facts are frequently updated by the stream processing system, since they are created
or updated based on single events or aggregations inside a global window. This global
window can be keyed (e.g. by geo-coordinates, segments, sensorID, playerID) or non-
keyed. If a key is provided, a distributed execution per key is possible. Facts are stored
in a temporal database. That means that every update of an record is automatically
recorded with the corresponding system time stamp. To avoid synchronization issues
this database is centralized and transaction safe.

Figure 4.2: Implementation of Facts in PostgreSQL (Source: Own figure)

Figure 4.2 shows the implementation of Facts for the soccer monitoring case study.
The columns created_at and sys_period are filled by the temporal database extension
automatically. The column created_at contains the system time, when this record was
created. In both tables (facts and facts_history) the column sys_period has always
a time stamp interval. In the facts table only the current record is displayed, containing
one time stamp in the column sys_period. This time stamp represents the system time
of the last update. The end time stamp is not filled, which means this record is currently
valid.
The facts_history table contains the whole history for each fact. As shown in

Figure 4.2, for all records the column sys_period has two time stamps, representing the
transaction time period, in which the value/count of a fact was valid. It is important
to mention that these time stamps represent the processing time, on which the value of
the facts was calculated. They are not based on the event time.

4.2.2 Stream processing system

Apache Flink is used to implement the components of the context-aware distributed
stream processing system of the conceptual model, introduced in Figure 3.3. Each com-
ponent of the conceptual model is realized as one Java class. In the current prototype, the

25

26 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

Source Function, Context-deriving and Window-deriving are implemented entirely. For
the Window-processing and Analytics components only a basic implementation exists.

All implementations are developed and tested by using the data of the soccer monitor-
ing case study. The Source function as well as the Context-deriving components apply
the event time in nanoseconds (the event time stamp provided in the soccer monitoring
data are in picoseconds). The Window-deriving component is using count-fixed windows
and does not take into account the event time.

Source function

Figure 4.3 shows the raw data of the soccer monitoring case study. Each event has
an unique id (sid), timestamp in picoseconds (ts), sensor coordinates (x,y,z), velocity
(v), acceleration (a), direction vector (vx, vy, vz), acceleration vector (ax, ay, az). The
attributes are separated by a comma.

Figure 4.3: Examples of the soccer monitoring data (Source: Own figure)

The SoccerEvent Java class maps this input to a Java Object representing each event
of the source data. Furthermore, it maps the sensor ID to a player ID, since each
player has two sensors. For the goal keeper, it maps all four sensors (hands and
feet) to the corresponding ID. The Source Function is implemented by extending the
RichSourceFunction of the Apache Flink Framework to be able to use the event time
for the following processing, show in Figure 4.4.

Figure 4.4: Implementation Source Function (Source: Own figure)

The implementation of this Source Function is used by the components for Context
deriving and Window deriving, which are explained in the following sections. For the
traffic management and the soccer monitoring case studies all events are generated in
the same time zone.

Context deriving

The Context deriving components are implemented as a Java program. While contin-
uously receiving new events from the Source function, the Java program uses the Apache
Flink Framework to create tumbling windows based on event time. The ProcessAllWindowFunction

26

4.2. COMPONENTS AND THEIR FUNCTIONS 27

checks for every event whether the current context is still valid. That means that if the
time stamp of an event is not between the start and end time stamps of the current
context, a context-switch is done.
The switch is realized by setting the current context to isactive=false and the new

context to isactive=true. The Apache Flink Framework has to be able to serialize all
Java objects. Therefore it is important to handle PostgreSQL connection in the open
and close method of the ProcessAllWindowFunction.

Window-deriving

Depending on the current context, the definition of the created windows should differ.
That means that the implementation should allow user-defined windows, as described
in Section 2.2. One way to do this is to split the incoming data stream by one or more
key attributes. Examples for such attributes are geo-coordinates, roadsegmentID, carID
for the traffic management use case or playerID or teamID for the soccer monitoring.
Consequentially, further processing can only access the events containing a single value
of the key attributes.
The detailed process is as follows: The events are collected in a non-keyed global

window. The CustomCountTrigger extends the Apache Flink default count trigger and
has two processing steps. First, at window creation time a database connection is opened
to retrieve which context is active and saves the corresponding information in memory.
The second method onElement is called for every arriving event in this window. It
verifies if a window should stay open or should be closed. If the window is to be closed,
the window events are available for further processing.
In the soccer monitoring case study, the current context defines that each window

contains 17’333 events (see Figure ??). In case an internal event counter in the invoke
method reaches 17’333, the window closes and emits the last 17’333 events. Those
windows are conceptually related to Aggregate Frames by Grossniklaus et al. (2016).
Another option would be to use different time sizes of tumbling windows. In the traffic
management use cases with non-keyed global window, the trigger function closes the
window after the 5 minutes since the last event was added to the window, during night
it is closed after 15 minutes. That would mean that each window with active context
“Day” consists of all the events of the last 5 minutes based on the event time.
In general the architecture allows for the possibility to have several concurrent window-

deriving processes to have non-keyed and keyed customized windows at the same time.
For formal definitions of user-defined windows see Carbone et al. (2016).

Window-processing

The Window-processing component is also implemented in Java using the Apache Flink
Framework. It takes the events inside a customized window for calculation of various
additional key figures. Those additional key figures are facts and therefore are saved
in the facts table of the temporal database, as shown in Figure 4.2. Essentially every

27

28 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

window updates the facts. The storing of previous results for this factID is saved in the
facts_history table using database triggers.
Since facts are not part of the distributed data stream processing engine, it is necessary

take care of possible concurrency issues. One option to avoid concurrency issues is to
use no sliding windows. Another option is that every update inside window-processing is
directly followed by commit. Furthermore assuming that every update statement is only
acquiring a row lock the execution time is very fast. By using active database trigger,
every update saves the previous version of the record. If the input data stream comes
with a high frequency, it is likely that corresponding facts are updated very often, which
may result in many versions of the same fact. The challenges to cope with that are
discussed in the next section.
The generated facts of the window-processing components are often already very valu-

able for getting real-time insights about how the traffic flow is going or which soccer team
is dominating the game. This means the model is designed in a way that those facts and
the corresponding updates are emitted continuously.
Apache Flink offers various functions for calculating facts. Examples are the Reduce,

Aggregate or Fold functions. The official Apache Flink documentation provides further
details for those functions. It is crucial to mention, that the API is not stable and may
change between releases, e.g. the Fold Function can be used in Flink Version 1.3 but is
deprecated in version 1.4.

Analytics

The analytics component can have three different outputs. The easiest one would be,
that previously generated window is dumped into a data sink, which can be used for
further processing, logging or monitoring. The second possible output is to do analytics
on streams. The last option is to do batch-oriented analytics.
While window-processing focuses on updating facts based on the event stream, window-

analytics is responsible for generating complex insights by combining events, facts and
background information, either in a more streaming or batch-oriented fashion. In the
streaming fashion the facts and background information are converted into a data stream.
The join operations of Apache Flink allows to get one stream with three different
sources.
The main challenge is to construct one event out of three different data sources,

due to difference in structure, volume, data quality and (time) granularity. Otherwise
it is not possible to construct patterns which can be found in the data stream. The
combination is only done by using SQL-like statements including projects, aggregation,
and set-operations like join and union.
For using SQL statements it is necessary to use the Table and SQL API. A data stream

can be registered as a table. This table is used by SQL statements, see Figure 4.5. For
the detection of Complex Event Patters Apache Flink offers a dedicated library.
Facts and background are conceptually global windows which are combined with every

generated window of previous components. The relationship between event attributes
and facts at least one-to-many, so for one event attribute e.g. sensorID, roadSegmentID,

28

4.3. SUMMARY 29

Figure 4.5: data stream as table (Source: Own figure)

playerID more than one fact is generated with different validity periods. To perform
a semantically correct join it is proposed to use the event timestamps of the event to
access the “correct” fact, acknowledging, that this could be an “outdated” fact. The
same also applies to background information.
By doing analytics in a more batch-oriented manner, it is assumed that the data on

which queries are executed is not changing over time. It can then be differentiated
between analytics concerning only the content of a specific single window or a set of
windows. Apache Flink offers libraries for machine learning or graph analysis.
By using the data sink, which contains the content of all or set of generated windows,

the model is also enabling to use tools outside of the Apache Flink Framework.

4.3 Summary

The previous sections described the system architecture and explained implementation
details of the current prototype and possible extensions to satisfy the defined require-
ments of Section 4.1. R1 is satisfied implicitly by using Apache Flink, a distributed
streaming platform. R2 and R3a) are satisfied by using extending specialized process
function to read and write to PostgreSQL data base inside a Apache Flink program.
By using a temporal database extension for PostgreSQL support for transaction/system
time is realized, which relates to R3b). R4 and R5 are also satisfied by implementing
customized triggers in Apache Flink to create User-defined windows based on the current
context, see Section 4.2.2. The realization of R6 is also shown in a basic implementation
in Section 4.2.2.

29

5

Evaluation

In this chapter I present the evaluation results for the implemented prototype. First,
the setup environment is introduced. Section 5.2 describes the results of quantitative
analysis. The experiments use the data set of the soccer monitoring case study and
compares the effects of parameter changes (such as context switches) on the metrics
run time and events per second. The last section compares the functionality of the
implemented system to other available streaming solutions.

5.1 Setup Environment

The experiments were conducted on a Lenovo Thinkpad T560 with an Intel Core i7
processor (2 physical, 4 logical cores) with 16 GB RAM inside a Virtual Box VM running
Ubuntu 16.04 LTS. The VM used one core and 10 GB RAM. Java was installed in version
1.8, Apache Flink in Version 1.4. The version of PostgreSQL is 9.5.10, the temporal table
extension is used in version 1.2.0. For the JobManager one GB memory was assigned,
the JobManager could use up to six GB memory.

5.2 Quantitative Analysis

The quantitative analysis is done by using various data subsets of the soccer monitoring
case study to investigate the prototype performance. The components Context-deriving
and Window-deriving are tested separately, since the first one is using event time while
the second one is based on processing time. Table 5.1 shows details about the metrics
used in the quantitative analysis. All experiments are conducted on a single computer
with one JobManager und one TaskManager (with two Task slots).
Those metrics are measured by using a parameter space of size 4 as shown in Table 5.2.

The applied methodology follows three principles: First, the system runs in a default
configuration of all parameters to set a baseline. Second, only one parameter is changed,
while all other parameters remain unchanged. Three, every parameter configuration
runs three times and the average value of this three runs is used for the visualizations.
The soccer monitoring case study consists in total of 49’576’080 input events. Due

to memory restrictions only a subset of the whole data set is used in the experiments,

32 CHAPTER 5. EVALUATION

Metric Calculation
Events per second Number of events / processing time,
Run time in seconds processing end time - processing start time

Table 5.1: Overview metrics (Source: Own representation)

ID Parameter Note
1 Number of events
2 Number of contexts
3 Number of context switches
4 Window Count Size Window Count Size for Window deriving

Table 5.2: Parameter space (Source: Own representation)

represented by parameter one, the number of events. The timestamps of the contexts
were adjusted accordingly.

5.2.1 Number of events

This section provides insights about the effects of changes in the parameter “Number of
events”. All other parameters are hold constant as shown in Table 5.3.

ID Parameter Values
1 Number of events 1’000’000; 2’000’000;3’000’000;3’000’000;5’000’000
2 Number of contexts 1
3 Number of context switches 0
4 Window Count Size 30000

Table 5.3: Number of events - Parameter space (Source: Own representation)

Figure 5.1a displays the measurements of the run time metric by increasing the input
events. It shows that the run time increases linear with the number of input events.
Figure 5.1b shows that the metric “events per second” does not change drastically by
increasing the number of events.
Figure 5.2a and Figure 5.2b display the measurements of run time and events per second
for the component window deriving. The run time increases linear and the events per
second metric is not changing drastically.

32

5.2. QUANTITATIVE ANALYSIS 33

(a) run time (Source: Own figure) (b) events per second (Source: Own figure)

Figure 5.1: Number of input events - Context deriving measurements (1 context)

(a) run time (Source: Own figure) (b) events per second (Source: Own figure)

Figure 5.2: Number of inputs events - Window deriving measurements (1 context)

5.2.2 Number of contexts and context switches

This section provides insights about the effects of changes in the parameters “Number
of contexts” and “Number of context switches”. All other parameters are hold constant
as shown in 5.4.

ID Parameter Value range
1 Number of events 150’000
2 Number of contexts 1 - 4
3 Number of context switches 0 - 3
4 Window Count Size 30000

Table 5.4: Context switches - Parameter space (Source: Own representation)

Figure 5.3a displays the measurements of the run time metric by increasing the number
of contexts as well as the context switches while holding the other parameters constant.
It shows that the run time does not change with an increase of context switches. Figure
5.3b shows that the metric “events per second” does not change drastically by increasing
the number of contexts and context switches.
Figure 5.4a and Figure 5.4b display the measurements of run time and events per second

33

34 CHAPTER 5. EVALUATION

(a) Run time (Source: Own figure) (b) Events per second (Source: Own figure)

Figure 5.3: Context switches - Context deriving measurements with 150 000 input events

for the component window deriving. The run time and the events per second metrics
are not changing drastically by increasing the number of contexts and context switches.

(a) run time (Source: Own figure) (b) Events per second (Source: Own figure)

Figure 5.4: Context switches - Window deriving measurements with 150 000 input events

34

5.2. QUANTITATIVE ANALYSIS 35

5.2.3 Window count size

This sections provides insights about the effects of changes in the parameter “Window
Count Size”. All other parameters are hold constant as shown in Table 5.5.

ID Parameter Values
1 Number of events 150’000
2 Number of contexts 2
3 Number of context switches 1
4 Window Count Size 30000,30000; 30000,20000; 30000,10000

Table 5.5: Window Count Size - Parameter space (Source: Own representation)

Figure 5.5a displays the measurements of the run time metric by decreasing the window
count size of the windows created in the second context. It shows that the run time does
not change. Figure 5.5b shows that the metric “events per second” does not change
drastically.

(a) Run time (Source: Own figure) (b) Events per second (Source: Own figure)

Figure 5.5: Window count size - Context deriving measurements (Two context, one
switch, 150 000 input events)

Figure 5.6a and Figure 5.6b display the measurements of run time and events per second
for the component window deriving. The run time and the events per second metrics are
not changing drastically with a decrease of the window count size for windows created
during the second context.

35

36 CHAPTER 5. EVALUATION

(a) Run time (Source: Own figure) (b) Events per second (Source: Own figure)

Figure 5.6: Window count size - Context deriving measurements (Two context, one
switch, 150 000 input events)

5.3 Qualitative Analysis

This section provides a qualitative analysis of state-of-the-art models and implementa-
tion in the field of data stream processing. Those models were explained in Chapter 2.
The Context-aware, Fact And Background Integrated Dynamic Stream Processing (Co-
FaBidSP) model presented in Chapters 3 and 4 is included in the analysis. The analysis
is based on five criteria on a four-level rating scale. The used rating scale is displayed
in Table 5.6.

Rating Meaning
- no integration/support
� can be integrated
�� explicitly modeled/mentioned
��� existing implementation

Table 5.6: Rating scale (Source: Own representation)

The criteria focus on two main categories. First, whether the model allows for integration
of Context information, Facts and Background data. Second, whether models supports
dynamic windowing and User-defined windows. Dynamic windowing means that the
window-deriving adapts dynamically to changes in the context or generated facts. User-
defined windows allow the user to influence the window-deriving process externally by
changing the used Window size during run time. Table 5.7 shows the comparison of five
selected models and implementations.

36

5.3. QUALITATIVE ANALYSIS 37

M
od

el
In
te
gr
at
io
n
of

Su
pp

or
t
fo
r

C
on

te
xt

Fa
ct
s

B
ac
kg

ro
un

d
da

ta
D
yn

am
ic

w
in
do

w
in
g

U
se
r-
de

fin
ed

w
in
do

w
s

D
at
a
Fl
ow

M
od

el
�

�
�

�
�
�

�
�
�

Fr
am

es
-

�
�

-
�
�

�
�

C
A
ES

A
R

�
�
�

�
�

-
�
�

�
�

T
EF

-S
PA

Q
R
L

�
�
�
�

-
�
�

�
�

C
oF

aB
id
SP

�
�
�

�
�
�

�
�

�
�
�

�
�
�

T
a
b
le

5
.7
:Q

ua
lit
at
iv
e
A
na

ly
sis

(S
ou

rc
e:

O
w
n
re
pr
es
en
ta
tio

n)

37

6

Limitations and future work

In this chapter I discuss the limitations of the proposed conceptual model as well as its
implementation. Next, I propose concrete tasks to improve the current implementation
as well as ideas on how to extend the conceptual model.

The proposed model defines the context, facts and background information as exter-
nal components to stream processing system. This leads to additional integration efforts
while programming data streaming pipelines. By increasing the number of contexts
and context switches (more than in the conducted experiments) the overall performance
could be affected due to frequent updates to the external component of the context. The
same is valid for facts. Since the system design and implementation uses for the context,
facts and background information centralized database tables, the run time performance
could affect depending on the number of fact updates.
Depending on the definition of facts and the used window size, a high number of fact

versions with very short validity periods are generated. For integrating events, facts and
background information in the Analytics component the selection of “relevant” facts is
not trivial.

The components Context deriving and Window Deriving are executed in parallel and
no synchronization is intended. That means in the time period needed for updating
the context information, the window processing component is using outdated context
information for a short period of time (at maximum a few seconds). For most use cases
it can be assumed that this delay could be acceptable.
The model is currently restricted to only one active context. This simplifies the

implementation. Nevertheless multiple active contexts are existing in many uses cases,
e.g. in the traffic management case study with “rush hour” and “day”.
By using Apache Flink, the execution of the components can be executed on a cluster

with multiple computers acting as different Task Managers. But the depending on the
use case, the data used for the Window deriving component can not be partitioned,
because it is necessary to use a global window for realizing data driven, user-defined
windows.

For future work I propose the following concrete tasks. First, the distribution of context,

40 CHAPTER 6. LIMITATIONS AND FUTURE WORK

facts and background information in a distributed data base. The challenge is to syn-
chronize the context, facts and background information inside a distributed data base
with the distributed processing of the input events by Apache Flink.

Since Apache Flink 1.4 new functionality regarding state management is available
(see Carbone et al., 2017). Further investigation on how to implement synchronization
mechanisms between the distributed context, facts, background information and the
distributed stream processing is recommended.
Second, designing and executing experiments in a fully distributed implementation

of the conceptual model is useful to get a better understanding about the impacts of
distributing the different components.
Third, benchmark this prototype with other implementations using the soccer moni-

toring case study. This would be helpful to compare the functionality and performance
of the implemented prototype with other existing implementations. Furthermore it could
lead to discover advantages and disadvantages of the design decisions and their imple-
mentations.

For the Window processing and Analytics components rough ideas are explained in
Chapter 3 and Chapter 4. A formal foundation for integrating events with facts is pro-
vided in TEF-SPARQL (Kietz et al., 2013), but needs to enhanced for using in the
proposed model and for implementing a solution by using the Table and SQL API of
Apache Flink.

40

7

Conclusions

The generation of data is increasing rapidly. It is no longer produced only by companies
or private people, but also by an increasing number of machines equipped with sensors.
One key point is that the data is produced continuously, therefore processing the data
should also be in a continuous way. This can be done by data stream processing systems,
the first systems e.g. STREAM were developed in 2003. Today’s use cases such as traf-
fic management or soccer monitoring require models and systems which can adapt their
processing based on changes in the application context and need to be able to integrate
various information types such as context, facts and background information to deliver
valuable near-real time insights.

Therefore this thesis focuses on two research questions related to this two main aspects
of modern data stream processing:
First, how could a conceptual model for stream processing look like, which allows

the combination of context-awareness, background knowledge and time-restricted facts?
Chapter 3 presents a model to investigate event data, context, facts and background
information in a comprehensive model. Furthermore, the processing model provides
details about the components and their interaction with each other. It was shown that
the model allows to detect a changed application context and adapt the data stream
processing to the changed context.
Second, Chapter 4 described a system design and explained implementation details

how such a conceptual model could be implemented, as asked in the second research
question: What would be the architecture of an engine implementing such a model?
The system is implemented with the Apache Flink Framework as stream processing
system and a PostgreSQL database for the context and background information. A
PostgreSQL extension for temporal databases is used to support time-restricted facts.

The model and implementation have been tested in a quantitative and qualitative anal-
ysis, described in Chapter 5. By using two metrics (run time and events per second),
the influence of four parameters to the performance of the system was investigated. It
has been shown that the integration of context-awareness, facts, background information
does not decrease the overall performance. Nevertheless, the functionality is increased
compared to other available implementations.

42 CHAPTER 7. CONCLUSIONS

Chapter 6 provides an overview of concrete tasks as well as ideas for improving the
presented conceptual model and implementation for context-aware stream processing.

42

Bibliography

Akidau, T. (2015). The world beyond batch: Streaming 101. Retrieved from https://
www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R. J.,
Lax, R., . . . Whittle, S. (2015). The dataflow model: A practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. Proc. VLDB Endow. 8 (12), 1792–1803. doi:10.14778/2824032.
2824076

Ali, M. I., Gao, F., & Mileo, A. (2015). Citybench: A configurable benchmark to evaluate
rsp engines using smart city datasets. In M. Arenas, O. Corcho, E. Simperl, M.
Strohmaier, M. d’Aquin, K. Srinivas, . . . S. Staab (Eds.), The semantic web - iswc
2015 (pp. 374–389). Cham: Springer International Publishing.

Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A. S., Ryvkina, E., . . . Tibbetts,
R. (2004). Linear road: A stream data management benchmark. In Proceedings of
the thirtieth international conference on very large data bases - volume 30 (pp. 480–
491). VLDB ’04. Toronto, Canada: VLDB Endowment. Retrieved from http://dl.
acm.org/citation.cfm?id=1316689.1316732

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues
in data stream systems. In Proceedings of the twenty-first acm sigmod-sigact-sigart
symposium on principles of database systems (pp. 1–16). PODS ’02. Madison, Wis-
consin: ACM. doi:10.1145/543613.543615

Brőring, A., Remke, A., Stasch, C., Autermann, C., Rieke, M., & Mőllers, J. (2015).
Envirocar: A citizen science platform for analyzing and mapping crowd-sourced
car sensor data. Transactions in GIS, 19 (3), 362–376. doi:10.1111/tgis.12155

Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., & Tzoumas, K. (2017). State
management in apache flink®: Consistent stateful distributed stream process-
ing. Proc. VLDB Endow. 10 (12), 1718–1729. doi:10.14778/3137765.3137777

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015).
Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 36 (4).

Carbone, P., Traub, J., Katsifodimos, A., Haridi, S., & Markl, V. (2016). Cutty: Aggre-
gate sharing for user-defined windows. In Proceedings of the 25th acm international

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://dx.doi.org/10.14778/2824032.2824076
https://dx.doi.org/10.14778/2824032.2824076
http://dl.acm.org/citation.cfm?id=1316689.1316732
http://dl.acm.org/citation.cfm?id=1316689.1316732
https://dx.doi.org/10.1145/543613.543615
https://dx.doi.org/10.1111/tgis.12155
https://dx.doi.org/10.14778/3137765.3137777

44 Bibliography

on conference on information and knowledge management (pp. 1201–1210). CIKM
’16. Indianapolis, Indiana, USA: ACM. doi:10.1145/2983323.2983807

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y.,
& Zdonik, S. B. (2003). Scalable distributed stream processing. In Cidr (Vol. 3,
pp. 257–268).

Cugola, G. & Margara, A. (2012). Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR), 44 (3), 15.

Dean, J. & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clus-
ters. Commun. ACM, 51 (1), 107–113. doi:10.1145/1327452.1327492

DuCharme, B. (2013). Learning sparql: Querying and updating with sparql 1.1. Sebastopol:
O’Reilly Media, Inc.

enviroCar. (2015). Envirocar. Retrieved January 12, 2018, from https://envirocar.org/
Grossniklaus, M., Maier, D., Miller, J., Moorthy, S., & Tufte, K. (2016). Frames: Data-

driven windows. In Proceedings of the 10th acm international conference on dis-
tributed and event-based systems (pp. 13–24). ACM.

Helmer, S., Poulovassilis, A., & Xhafa, F. (2011). Reasoning in event-based distributed
systems. Studies in computational intelligence. Berlin: Springer.

IBM. (2013). The four v’s of big data. Retrieved February 3, 2018, from http://www.
ibmbigdatahub.com/infographic/four-vs-big-data

Kaufmann, M., Fischer, P. M., May, N., & Kossmann, D. (2014). Benchmarking bitempo-
ral database systems: Ready for the future or stuck in the past? In Edbt (Vol. 738,
p. 749).

Kietz, J., Scharrenbach, T., Fischer, L., Bernstein, A., & Nguyen, K. (2013). Tef-sparql:
The ddis query-language for time annotated event and fact triple-streams. Tech.
Rep., Technical Report, University of Zurich, Department of Informatics.

Margara, A., Dell’Aglio, D., & Bernstein, A. (2017). Break the windows: Explicit state
management for stream processing systems. In Edbt (pp. 482–485).

Marz, N. & Warren, J. (2015). Big data: Principles and best practices of scalable realtime
data systems. Manning Publications Co.

Mutschler, C., Ziekow, H., & Jerzak, Z. (2013). The debs 2013 grand challenge. In Pro-
ceedings of the 7th acm international conference on distributed event-based systems
(pp. 289–294). DEBS ’13. Arlington, Texas, USA: ACM. doi:10.1145/2488222.
2488283

Poppe, O., Lei, C., Rundensteiner, E. A., & Dougherty, D. J. (2016). Context-aware
event stream analytics. In Edbt (pp. 413–424).

Snodgrass, R. T. (2000). Developing time-oriented database applications in sql. Morgan
Kaufmann Publishers,

Tanenbaum, A. S. & Van Steen, M. (2007).Distributed systems: Principles and paradigms
(2nd). Prentice-Hall.

44

https://dx.doi.org/10.1145/2983323.2983807
https://dx.doi.org/10.1145/1327452.1327492
https://envirocar.org/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://dx.doi.org/10.1145/2488222.2488283
https://dx.doi.org/10.1145/2488222.2488283

A

Evaluation results

This section provides details about the conducted experiment runs. For every parameter
configuration the program was executed three times. For the quantitative analysis only
the average values were used. And only one parameter was changed, while the other
parameters were hold constant.

46 APPENDIX A. EVALUATION RESULTS

F
ig
u
re

A
.1:N

um
berO

fEvents
C
ontext

Experim
ents

(Source:
O
w
n
representation)

46

47

F
ig
u
re

A
.2
:N

um
be

rO
fE
ve
nt
s
W

in
do

w
Ex

pe
rim

en
ts

(S
ou

rc
e:

O
w
n
re
pr
es
en
ta
tio

n)

47

48 APPENDIX A. EVALUATION RESULTS

F
ig
u
re

A
.3:C

ontextSw
itches

C
ontext

Experim
ents

(Source:
O
w
n
representation)

48

49

F
ig
u
re

A
.4
:C

on
te
xt
Sw

itc
he

s
W

in
do

w
Ex

pe
rim

en
ts

(S
ou

rc
e:

O
w
n
re
pr
es
en
ta
tio

n)

49

50 APPENDIX A. EVALUATION RESULTS

F
ig
u
re

A
.5:W

indow
C
ountSize

C
ontext

Experim
ents

(Source:
O
w
n
representation)

50

51

F
ig
u
re

A
.6
:W

in
do

w
C
ou

nt
Si
ze

W
in
do

w
Ex

pe
rim

en
ts

(S
ou

rc
e:

O
w
n
re
pr
es
en
ta
tio

n)

51

B

Contents of the CD

This section lists the content of the CD attached to this thesis.

Y Abstract.txt
English version of the abstract

Y flink-1.4.1
Standalone Apache Flink cluster (including the data file, named: full-game)

Y flink-quickstart-java
Java source files used for this master thesis

Y Latex
Latex source files of this master thesis

Y ReadMe.pdf
Technical installation guidelines to install and run the implemented prototype

Y soccer_monitoring.db
PostgreSQL dump of database soccer_monitoring

Y Masterarbeit.pdf
PDF version of this master thesis

Y Zusfsg.txt
German version of the abstract

C

Installation Guidelines

This section states a checklist for installing and running the implemented prototype
of the Context-aware, Fact And Background Integrated Dynamic Stream Processing
(CoFaBidSP) model. Further information can be also found in the ReadMe.pdf on the
attached CD.

1. Optional, but recommended: Usage of Ubuntu (or other Linux-based OS)

2. Install Java 1.8

3. Install Apache Flink 1.4.1 as Standalone Cluster
Using the files provided on the CD or via https://flink.apache.org/

4. Recommended: Install IntelliJ IDEA Community Edition 2017.2
https://www.jetbrains.com/idea/download/

5. Install PostgreSQL 9.5.10 (User: postgres, Password: postgres)
sudo apt-get install postgresql-9.5

6. Install PostgreSQL temporal table extension 1.2.0
sudo pgxn install_temporal tables
For more details see ReadMe.pdf on the CD attached to this thesis.

7. Create database soccer_monitoring in PostgreSQL
psql -h localhost -U postgres CREATE DATABASE soccer_monitoring

8. Import PostgreSQL dump file
psql -h localhost -U postgres soccer_monitoring < soccer_monitoring.db

9. Import the source files as a Java Project in IntelliJ IDEA
Click on “File � New � Project from existing source”.
Select the folder “flink-quickstart-java” of the attached CD

10. Optional: Build a JAR File of the project

https://flink.apache.org/
https://www.jetbrains.com/idea/download/

56 APPENDIX C. INSTALLATION GUIDELINES

11. Run JAR-File in the folder “flink-1.4.1” on the local Flink Cluster via Terminal
Open two separate terminals, start the context deriving first, and shortly after
that the window deriving.

56

List of Figures

2.1 Window patterns . 6
2.2 Time domain skew . 7
2.3 Session windows . 8
2.4 Apache Flink - software stack . 9
2.5 Apache Flink - process model . 10

3.1 Information types . 15
3.2 Context information . 16
3.3 Model overview . 17
3.4 Window deriving in context of 1st half with count-based window of size

= 10 . 19
3.5 Window deriving in context of 2nd half with count-based window of size

= 15 . 20

4.1 Implementation of context information in PostgreSQL 24
4.2 Implementation of Facts in PostgreSQL . 25
4.3 Examples of the soccer monitoring data . 26
4.4 Implementation Source Function . 26
4.5 data stream as table . 29

5.1 Number of input events - Context deriving measurements (1 context) . . 33
5.2 Number of inputs events - Window deriving measurements (1 context) . 33
5.3 Context switches - Context deriving measurements with 150 000 input

events . 34
5.4 Context switches - Window deriving measurements with 150 000 input

events . 34
5.5 Window count size - Context deriving measurements (Two context, one

switch, 150 000 input events) . 35
5.6 Window count size - Context deriving measurements (Two context, one

switch, 150 000 input events) . 36

A.1 NumberOfEvents Context Experiments . 46
A.2 NumberOfEvents Window Experiments . 47
A.3 ContextSwitches Context Experiments . 48

58 List of Figures

A.4 ContextSwitches Window Experiments . 49
A.5 WindowCountSize Context Experiments . 50
A.6 WindowCountSize Window Experiments . 51

58

List of Tables

3.1 Facts of traffic management use case . 15

5.1 Overview metrics . 32
5.2 Parameter space . 32
5.3 Number of events - Parameter space . 32
5.4 Context switches - Parameter space . 33
5.5 Window Count Size - Parameter space . 35
5.6 Rating scale . 36
5.7 Qualitative Analysis . 37

	1 Introduction
	2 Related Work and Background
	2.1 Query Types and Windowing in data stream processing
	2.2 Stream processing models and systems
	2.3 Context-awareness and state management

	3 Conceptual model
	3.1 Case studies
	3.2 Data model: Events, Context, Facts and Background Knowledge
	3.3 Processing model
	3.3.1 Source function
	3.3.2 Context-deriving
	3.3.3 Window-deriving
	3.3.4 Window-processing
	3.3.5 Analytics

	4 System design and implementation
	4.1 Requirements
	4.2 Components and their functions
	4.2.1 Context, Facts and Background Information
	4.2.2 Stream processing system

	4.3 Summary

	5 Evaluation
	5.1 Setup Environment
	5.2 Quantitative Analysis
	5.2.1 Number of events
	5.2.2 Number of contexts and context switches
	5.2.3 Window count size

	5.3 Qualitative Analysis

	6 Limitations and future work
	7 Conclusions
	A Evaluation results
	B Contents of the CD
	C Installation Guidelines

