
Bachelor Thesis
January 31, 2018

TestSmellDescriber
Enabling Developers’ Awareness on Test

Quality with Test Smell Summaries

Ivan Taraca
of Pfullendorf, Germany (13-751-896)

supervised by
Prof. Dr. Harald C. Gall

Dr. Sebastiano Panichella

software evolution & architecture lab

Bachelor Thesis

TestSmellDescriber
Enabling Developers’ Awareness on Test

Quality with Test Smell Summaries

Ivan Taraca

software evolution & architecture lab

Bachelor Thesis

Author: Ivan Taraca, ivan.taraca@uzh.ch

URL: http://bit.ly/2DUiZrC

Project period: 20.10.2018 - 31.01.2018

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First of all, I like to thank Dr. Harald Gall for giving me the opportunity to write this thesis at the
Software Evolution & Architecture Lab.

Special thanks goes out to Dr. Sebastiano Panichella for his instructions, guidance and help during
the making of this thesis, without whom this would not have been possible.

I would also like to express my gratitude to Dr. Fabio Polomba, Dr. Yann-Gaël Guéhéneuc and
Dr. Nikolaos Tsantalis for providing me access to their research and always being available for
questions.

Last, but not least, do I want to thank my parents, sisters and nephews for the support and love
they’ve given all those years.

Abstract

With the importance of software in today’s society, malfunctioning software can not only lead
to disrupting our day-to-day lives, but also large monetary damages. A lot of time and effort
goes into the development of test suites to ensure the quality and accuracy of software. But how
do we elevate the quality of test code? This thesis presents TestSmellDescriber, a tool with the
ability to generate descriptions detailing potential problems in test cases, which are collected by
conducting a Test Smell analysis. These descriptions along with methods describing refactorings
and information detailing the quality of test suites are directly augmented as comments in the
source code to bring awareness on the quality of tests and to enable developers to improve their
code.

Zusammenfassung

Auf Grund der hohen Bedeutung von Software in der heutigen Gesellschaft kann das Fehlver-
halten von Software nicht nur zur Beeinträchtigung unseres täglichen Lebens führen, sondern
auch zu grossen finanziellen Verlusten. Sehr viel Zeit und Geld wird in das Entwickeln von
Testsuites investiert um die Qualität und Fehlerfreiheit von Software zu gewährleisten. Wie je-
doch erhöhen wir die Qualität von Testcode? Diese These präsentiert TestSmellDescriber, ein Tool
mit der Fähigkeit Deskriptionen zu generieren, die potentielle Probleme in Testfällen schildern,
welche durch die Durchführung einer Test Smell Analyse erhoben werden. Diese Deskriptionen
zusammen mit Verfahrensweisen, die Refaktorisierungen schildern und Informationen, welche
die Qualität der Testsuite schildern, werden als Kommentare direkt im Quellcode hinzugefügt
um das Bewusstsein im Bezug zur Qualität von Tests zu stärken und Entwicklern zum Verbessern
ihres Codes zu ermächtigen.

Contents

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Research Method . 2
1.3 Structure of this Thesis . 3

2 Background & Related Work 5
2.1 Smelly Code . 5

2.1.1 Code Smell Definitions, Types and Refactorings 5
2.1.2 Test Smell Definitions, Types and Refactorings 8

2.2 Smell Detection Tools . 12
2.2.1 JDeodorant . 12
2.2.2 DECOR . 12
2.2.3 TACO . 13
2.2.4 Organic . 14

2.3 Software Testing . 14
2.3.1 Goals of Software Testing . 14
2.3.2 Limitations of Manual testing . 15
2.3.3 Limitations of Automatic Testing . 16
2.3.4 Impact of Smells on Test Quality . 17

2.4 Summarization Techniques for Software Testing . 17

3 Approach 19
3.1 Literature Study on Test and Code Smells . 19
3.2 Literature Study on Automatic Smell Detection . 20
3.3 Assessment of Smell Detection Tools . 21

3.3.1 Overview . 21
3.3.2 Test Projects . 23
3.3.3 Tools Assessment Results . 27

4 TestSmellDescriber 31
4.1 Architecture . 31
4.2 Test Smell Runner . 32
4.3 Smell Detection . 34

4.3.1 DECOR . 34
4.3.2 TACO . 36

4.4 Gather Information from Detection Tools . 37
4.4.1 Storing Smell Information . 37

viii Contents

4.4.2 TACO . 38
4.4.3 DECOR . 38

4.5 Generation of Descriptions . 39
4.5.1 Class Descriptions . 40
4.5.2 Method Descriptions . 43

5 Prototype 49
5.1 Project Under Test . 49
5.2 Smell Description Tools . 49
5.3 Smell Detection . 50

5.3.1 Long Parameter List . 52
5.3.2 Long Method . 52
5.3.3 Eager Test . 52

5.4 Generating Comments . 52
5.5 Results . 53

5.5.1 FlexibleStringExpanderTests . 54
5.5.2 TestJSONConverters . 55

6 Conclusion and Future Work 61

Contents ix

List of Figures
4.1 Activity Diagram: TestSmellDescriber . 32
4.3 Class Diagram: TestSmellRunner . 32
4.2 Class Diagram: TestSmellDescriber . 33
4.4 DECOR detection technique (Boxes represent steps and arrows connect inputs and

outputs of each step. Gray boxes are fully automated steps.) Source: [MGDLM10] 34
4.5 Class Diagram: TACO . 38
4.6 Activity Diagram: TACO – smell detection and forwarding of information 39
4.7 Activity Diagram: DECOR – smell detection and forwarding of information 40
4.8 Class Diagram: Obtaining smell descriptions . 45
4.9 Class Diagram: Storing smelly information . 46
4.10 Class Diagram: DECOR code and design smell hierarchy 47

5.1 Export TestSmellDescriber from Eclipse Jave EE . 59

List of Tables
2.1 Fowler’s list of code smells . 5
2.2 Fowler’s list of code smell refactorings . 7
2.3 Mäntylä’s higher level smell categories . 8
2.4 Van Deursen’s list of test smells . 8
2.5 Van Deursen’s list of test smell refactorings . 9
2.6 Benefits of automatic testing according to [RMPM12] 16
2.7 Limitations of automatic testing according to [RMPM12] 16

3.1 Projects’ availability of source code . 24
3.2 Projects’ build status . 24
3.3 Projects’ testability . 24
3.4 Test projects . 24
3.5 Occurrence of detected smells in the test projects . 28
3.6 Results of applicability. D: DECOR, T: TACO . 29
3.7 Detected smells in the test projects . 30

4.1 Class level smell descriptions . 41
4.2 Class level smell refactoring descriptions . 42
4.3 Method level smell descriptions . 43
4.4 Method level smell refactoring descriptions . 44

5.1 Test Smell Detection Results for project Apache OFBiz 51

List of Listings
4.1 Rule Card for Large Class Smell taken from DECOR source code 35
4.2 Rule Card for Long Parameter List Smell taken from DECOR source code 35
4.3 Rule Card for Message Chains taken from DECOR source code 35
4.4 Rule Card for Long Method Smell taken from DECOR source code 36
4.5 Rule Card for Refused Parent Bequest Smell taken from DECOR source code . . . 36

x Contents

4.6 Class Smell Description for UtilCacheTest . 41
4.7 Method Description for UtilCacheTest.assertKey . 43
5.1 Smell detection result: FlexibleStringExpanderTests 54
5.2 Smell detection result: TestJSONConverters . 55
5.3 Smelly Method: doFseTest . 57

Chapter 1

Introduction

The importance of software in today’s society has long been established. Software is everywhere
and defines our every life. So are today’s major businesses and industries being run on software
and delivered as online services, and industries being dominated by software companies [And11].
Is it the music industry with companies such as Spotify and iTunes, the television industry with
Netflix, the book industry with the software company Amazon, or the movie industry with the
former software company Pixar: "Software is eating the world" [And11]. Smartphones also accel-
erated this process as they enable us to gain access to the Internet and to software every minute of
our lives. With such an enormous amount of software being used, required and produced every
day, ensuring its quality is an everlasting challenge [And11].
To ensure the quality of the large amount of software, it has to be tried and tested. In addition
to this, testing also ensures the usability of software, while it is also a mean to document code by
indicating what the expected results of a method should be for typical cases and it verifies com-
plicated functionality and unusual circumstances [VDMvdBK01]. But manual testing is very time
consuming as it takes "as much as 50% of overall project effort" [PPB+16], while up to a quarter
of developers work time is spend on testing [BDLMO14]. Rapid release schedules lead to even
less time for software testing as well as narrower test scope [MAK+15]. Considering the amount
of software in circulation and production the monetary amount grows and grows. Variance in
testing outcomes can also not be reliably accounted for as results can be caused by the manual
tester running the tests in different ways [RMPM12].
While the goal of creating test suites is to ensure the quality of software, assuring the quality
of test suites is an equally challenging task. Automated test generation tools have been widely
researched with the goal of reducing the cost of testing activities and to elevate the quality of
test suites [PPB+16]. This allows developers to reduce the time and cost of the testing pro-
cess [CGP+06,FA15,PKT15,RT01,Ton04], and to find violations of automated oracles [Csa04,FA15,
BML07,PE07] [PPB+16]. Automatically generated tools have shown to increase confidence in the
quality of the system [RMPM12], while it also leads to an improved product quality [RMPM12].
Automated testing is able to achieve similar decision coverage as manual testing in a fraction of
the time, but is has not shown to be more effective in fault detection than manual testing [ESČP17].
It also produces false expectations in organizations [RMPM12] as automated test generation tools
do not negate testing costs. To automate tests a process and infrastructure has to be developed
that takes time to mature [RMPM12], while it also requires skilled people to run and maintain the
testing process [RMPM12]. A change in technology or evolution of software requires a likewise
change and maintenance in the test code, a task which is difficult to perform in test automa-
tion [RMPM12]. While the costs to produce the tests are low, the cost of checking the results is
high due to the relative difficulty to understand each created test [DCF+15, RFA15, ESČP17]. A
study [FSM+15,FSM+13] has shown that up to 50% of developers time is spend on understanding
and analyzing automatically generated tests.

2 Chapter 1. Introduction

1.1 Goal of this Thesis
In recent work [PPB+16] TestDescriber has been developed, a tool that helps developers to better
understand automatically generated test cases. The tool generates summaries of the code which
is exercised by the test cases, while also delivering information regarding the coverage each case
reaches in the code. The tool helps developers to better detect and find bugs, and significantly
improves the comprehensibility, thereby leverages the usability of automatically generated test
cases for the developer.
Due to the fact that developers still prefer manually testing their code over automatic testing
methods [PPB+16], we want to complement and improve automatically as well as manually writ-
ten test cases, by indicating possible areas of bugs in the test code. We are looking to achieve this
by detecting test and code smells in the test cases under investigation. Code smells indicate areas
in the code which are potential causes of bugs and errors as they are "symptoms of poor design
and implementation choices" [TPB+15]. Code smells can also potentially lead to an increase in
change- and fault-proneness, and to a decrease of software understandability or maintainabil-
ity [KDPGA12]. However, bad smells can also be specific to test suites and test cases. So have van
Deursen et al. created a catalog of test smells in [VDMvdBK01] and a collection of test refactorings
to remove those smells. If your test runs fine while only one person is testing the code, but fails
if more people run them, the test code smells and is affected by Test Run War. The cause of that
failure is most likely caused by interference of resources that are used by others [VDMvdBK01].
When a test requires external resources to run, it smells. A Mystery Guest leads to tests no longer
being self contained, while it also renders the documentational use of a test code useless and in-
troduces hidden dependencies [VDMvdBK01].
The detection of those and other test smells enables the developer to asses and leverage the qual-
ity of test cases. To detect smells in the code we will use tools with the ability to automatically
detect smells by conducting a statical analysis. The results of the smell detection will then be
used to generate descriptions detailing the characteristic of the smell, along with smell informa-
tion in regards to the whole project. In addition to the smell descriptions a textual description
will be displayed denoting how the code can be improved, i.e., refactorings. These descriptions
will be displayed to the user using the TestDescriber method to augment information as comments
into the source code. The injection of the description at the direct cause of the smell will bring
awareness on the quality of tests and will enable developers to improve their code.

1.2 Research Method
To achieve this we will first conduct a literature study on code and test smells. This knowledge
allows us to gain an understanding into the detection of smells, while it additionally acts as the
basis for the textual descriptions of smells and their refactorings. Secondly, we will conduct a
literature study on automatic smell detection. The study will yield a set of tools that we will
implement into our own tool TestSmellDescriber. Before they are implemented will we asses the
tools on their usability, integrability and applicability on test code on a selection of 100 projects.
TestSmellDescriber will then gather the results of the smell detection and will provide the oppor-
tunity to generate smell descriptions, refactoring messages, and quantitative data. These descrip-
tions will be generated using templates that will be defined with the knowledge gained in the
literature study on code and test smells.

1.3 Structure of this Thesis 3

1.3 Structure of this Thesis
This thesis is structured as follows. In chapter 2 the results of the literature studies regarding code
and test smells and their automatic detection are discussed. Chapter 3 introduces the research
approach for the literature study and the assessment of the smell detection tools in addition to
the results of the assessment. Chapter 4 describes and presents the different aspects of our tool
TestSmellDescriber. The 5th chapter showcases the result of our prototype by presenting the
output that results in running TestSmellDescriber on a test suite and a test class. Finally chapter
6 concludes our work and introduces future work that can be conducted.

Chapter 2

Background & Related Work

2.1 Smelly Code
In Martin Fowler’s book Refactoring: Improving the design of existing code [Fow99], Fowler realized
that it is easy to explain how to perform refactorings, but having to explain when to refactor
turned out to be a challenging task. Fowler wanted something more solid than a "vague notion
of programming aesthetics" [Fow99]. "If it stinks, change it." [Fow99] – This was Fowler’s open-
ing statement in the 3rd chapter of his book, where he explained when a refactoring should be
conducted, because after brooding over the dilemma for a while with his colleague Kent Beck in
Zurich, the term they came up with to explain the when was "(code) smells" [Fow99].

2.1.1 Code Smell Definitions, Types and Refactorings
Fowler defined code smells as "indications that there is trouble" [Fow99] in the code, which can
be solved by refactoring. Code smells indicate areas, which potentially house the root of bug or
error-causing code, as they are "symptoms of poor design and implementation choices" [TPB+15].
Code smells have many implications and consequences. The smell Duplicated Code denotes a
code portion that can be found in more than one place [Fow99]. This duplication makes the code
harder to maintain and debug [KDPGA12]. Changes to the code in one part draw changes in the
duplicated version with it. This impediment can easily introduce bugs into the code leading to
errors. The method to remove smells and to thereby improve the code is performed by refactoring.
So can duplicated code in two methods be refactored by extracting the duplicated code into a
method, which will be invoked from both previous places [Fow99]. Refactoring will ease the
future development and present maintainability [Fow99], as a combination of smells significantly
reduces the comprehension of the code [AKGA11].

Martin Fowler and others [Fow99, WB98, Mä03] have constructed descriptions of the possible
code smells that can occur to ease the continuous cleaning process using refactoring. Following
is a list (table 2.1) of the 22 code smells that were described by Fowler in [Fow99].

Table 2.1: Fowler’s list of code smells
ID Smell name Description
F1 Duplicated Code Duplicated Code occurs if the same expression can be found in

two methods of the same class, in two sibling classes or in to
unrelated classes.

F2 Long Method A Long Method occurs if a function does more than one thing.
Continuation on the next page

6 Chapter 2. Background & Related Work

Continuation of Table 2.1
ID Smell name Description
F3 Large Class The class is doing too much. A Large Class often leads to dupli-

cated code and chaos.
F4 Long Parameter

List
A Long Parameter List smell is a method that requires too many
parameters. A long list of parameters is hard to understand, may
becomes inconsistent, difficult to use and is suspect to constant
changes as you need more data.

F5 Divergent Change A class should only have on reason to change. Divergent change
occurs when a class has to be changed in different ways for dif-
ferent reasons.

F6 Shotgun Surgery Shotgun survery occurs if a change requires many small changes
to a lot of different classes.

F7 Feature Envy Feature Envy occurs if a method requires more methods of an-
other class, than it currently is in.

F8 Data Clumps Data Clumps occurs if several data items are often used together
by a field or as parameters.

F9 Primitive Obses-
sion

Primitive Obsession occurs if a set of primitive types can be re-
placed by a record type that contains the primitive types.

F10 Switch Statements A Switch Statement occurs if a switch statement is scattered mul-
tiple times in different places.

F11 Parallel Inheri-
tance Hierarchies

Parallel Inheritance Hierarchies occurs if creating a subclass of
one class, always results in the creation of a subclass of another
class.

F12 Lazy Class Lazy Class occurs if a class does too little.
F13 Speculative Gener-

ality
Speculative Generality occurs if hooks and special cases are
added to a class, on the notion that they are needed one day.

F14 Temporary Field Temporary Field occurs if an instance variable is only required
for certain circumstances.

F15 Message Chain Message Chain occurs if a class asks one object for another object.
This is a violation of the Law of Demeter.

F16 Middle Man Middle Man occurs if half the methods of an interface delegate
to another class.

F17 Inappropriate Inti-
macy

Inappropriate Intimacy occurs if classes require too many of each
others’ fields and methods.

F18 Alternative Classes
with Different In-
terfaces

Alternative Classes with Different Interfaces occurs if two classes
have different method names but perform the same functions.

F19 Incomplete Library
Class

Incomplete Library Class occurs if you require a library to have
certain features.

F20 Data Class Data Class occurs if a class only has fields, and those field affili-
ated getters and setters.

F21 Refused Bequest Refused Bequest occurs if sub classes do not require all the meth-
ods and fields of their super class.

F22 Comments Comments are often indicators for a smell if they try to cover bad
code.

Fowler has further defined ways to eliminate those smells. In his book [Fow99] Fowler first de-
fined several refactoring methods. He then described ways to remove smells by applying those
refactorings on the smelly code. There are many instances and scenarios where smells can take

2.1 Smelly Code 7

place. [Fow99] defines refactorings for many of those. Table 2.2 lists refactorings for the most
common scenarios.

Table 2.2: Fowler’s list of code smell refactorings
ID Smell name Refactoring
F1 Duplicated Code Extract the duplicated method and invoke the code from both

places.
F2 Long Method Find parts of the method that go together and extract them into

a new method.
F3 Large Class Bundle instance variables together and extract those into new

classes.
F4 Long Parameter

List
Replace the parameter with a new class that holds all requested
data, or if they already belong to one object, pass the whole ob-
ject.

F5 Divergent Change Identify the parts that change for a particular cause and extract
them into new classes.

F6 Shotgun Surgery Move all elements that requires changes into one entity by ex-
tracting fields and methods from their original class.

F7 Feature Envy Move the feature envy method into the class it uses the most data
from.

F8 Data Clumps Extract the data fields into a new object. Simplify the method call
by passing the whole object.

F9 Primitive Obses-
sion

Replace the set of primitive types with an object that holds all the
data.

F10 Switch Statements Extract the switch statement into the class where polymorphism
is needed.

F11 Parallel Inheri-
tance Hierarchies

Instances of one hierarchy should refer to instances of the other.

F12 Lazy Class Eliminate the whole class or transform the lazy class into an in-
line class.

F13 Speculative Gener-
ality

Remove the generality by removing unused parameters, re-
naming abstractly named methods, removing abstract classes or
transforming them to inline classes.

F14 Temporary Field Move the instance variable to a new class and moving all the code
that concerns the variable into that class.

F15 Message Chain Create a method that hides the delegation or move the method
that performed the message chain into the correct object.

F16 Middle Man Remove the middle man and invoke the object directly.
F17 Inappropriate Inti-

macy
Move the method or field that requires another field or method
into the respective class.

F18 Alternative Classes
with Different In-
terfaces

Rename the methods to make them identical. Alternatively move
the method into a respective class.

F19 Incomplete Library
Class

Create a method in your class with an instance of the library class
as its first argument.

F20 Data Class Hide public fields by encapsulating them. Alternatively find
methods or part of methods that are better suited in the class and
move them.

Continuation on the next page

8 Chapter 2. Background & Related Work

Continuation of Table 2.2
ID Smell name Refactoring
F21 Refused Bequest Create a new sibling and move the methods and fields to the sub-

class that requires them.
F22 Comments Extract part of the method that requires commenting into a new

class and rename that method to reflect what the comment states.

Mäntylä recognized that the compiled smells by Fowler & Beck lacked structure. He argued
that a flat list of 22 smells were to hard to perceive and understand. His study [Mä03] resulted
in a taxonomy consisting of 7 higher-level categories that are mapped to the 22 code smells. Be-
sides listing the categories, table 2.3 additionally associates the categories to Fowler’s smells by
referring to them by their ID in table 2.1.

Table 2.3: Mäntylä’s higher level smell categories
Category Smells Category description
The Bloaters F2, F3, F4,

F8, F9
Something has grown so large that it cannot be handled
effectively.

The Object-
Orientation
Abusers

F10, F11,
F18, F14, F21

Possibilities of object-oriented design have not been
fully exploited.

The Change Pre-
venters

F5, F6 Change or further development of software is hindered
or prevented.

The Dispensables F1, F12, F13,
F20

An unnecessary element in the source code that should
be removed.

The Encapsulators F15, F16 Smells are concerned with data communication mech-
anism or encapsulation.

The Couplers F7, F17 Minimal coupling principle is violated.
Others F19, F22 Smells that do not fit into any of the above categories

above.

2.1.2 Test Smell Definitions, Types and Refactorings
Bad smells can also be specific to test code. In the paper Refactoring Test Code by van Deursen
et al. [VDMvdBK01] a list of code smells have been described that indicate trouble in test code,
i.e., test smells. Code smells are not specific to production code and can also be applied to test
code, but van Deursen et al. have acknowledged that refactoring test code requires additional
test-specific refactorings [VDMvdBK01]. Along with a catalog of test smells [VDMvdBK01] also
defines six test smell specific refactorings. Table 2.4 lists the set of test smells that were identified
by van Deursen.

Table 2.4: Van Deursen’s list of test smells
ID Smell Name Description
D1 Mistery Guest Part of the test is executed outside of the test case, i.e., the test

uses external resources.
D2 Resource Opti-

mism
The test makes assumptions about external resources leading to
test running fine one times and failing another.

Continuation on the next page

2.1 Smelly Code 9

Continuation of Table 2.4
ID Smell Name Description
D3 Test Run War If a test allocates resources for the run, running two tests simul-

taneously results in resource interference.
D4 General Fixture The fixture is too general. Individual test cases only access and

require part of the provided fixture.
D5 Eager Test The test checks too much functionality/methods of the object un-

der test in a single test case.
D6 Lazy Test Several test methods check the same method using the same fix-

ture. The tests only have meaning when they are considered to-
gether.

D7 Assertion Roulette The test contains several assertions that have no explanation.
D8 Indirect Testing The test class contains methods that perform tests on other ob-

jects.
D9 For Testers Only The production class contains methods that are only used by test

methods.
D10 Sensitive Equality If a result is mapped to string and compared to literals the result

may vary as it depends on many irrelevant details (i.e., commas,
quotes, spaces, etc.)

D11 Test Code Duplica-
tion

The test code contains duplications.

Van Deursen et al. have further defined refactorings for all above listed test smells. These refac-
torings are listed in table 2.5.

Table 2.5: Van Deursen’s list of test smell refactorings
ID Smell Name Refactoring
D1 Mistery Guest Incorporate the required resource into the test by setting up a

fixture that holds the contents of the resource or make sure to
explicitly allocate or initialize and release the resource.

D2 Resource Opti-
mism

Make certain to explicitly allocate or initialize and release the re-
quired resources.

D3 Test Run War Use unique identifiers for the allocated resources to find tests that
do not properly release their resources.

D4 General Fixture Extract the parts of the fixture that are not required by all meth-
ods into the methods that require it.

D5 Eager Test Separate the test case into methods that test only one method of
the class under test. Additionally assign meaningful names to
the methods describing the goal of the test cases.

D6 Lazy Test Combine the individual test cases into one test method.
D7 Assertion Roulette Pass a message to the assertion to distinguish between different

assertions.
D8 Indirect Testing Move the test cases to the appropriate test classes.
D9 For Testers Only Move the methods in the production code used only by test

methods to a new subclass and perform the tests on that sub-
class.

Continuation on the next page

10 Chapter 2. Background & Related Work

Continuation of Table 2.5
ID Smell Name Refactoring
D10 Sensitive Equality Introduce real equality checks by adding an implementation for

the equals methods in the object’s class and check the equality
by using this method. Alternatively construct a new object that
holds all the expected values and compare the computed values
to the values in the new object.

D11 Test Code Duplica-
tion

Extract the duplication into a new method.

While van Deursen described test smells on a low level, Meszaros in [Mes07] went a step
further and described three different kinds of higher level smells:

• Code smells are smells that must be recognized by looking at code.

• Behavior smells are smells that are realized during the execution of a test as they affect its
outcome.

• Project smells are smells that are usually recognized by project managers, who do not come
in direct contact with the test code. These smells indicate the overall health of a project.

Since this thesis focuses on static analysis of tests, we further studied Meszaros’s Code smells.
Within his higher level smells [Mes07] splits smells into 5 more categories. Those categories rely
on observations made when a smell has occurred in the code. The smells are then labeled as the
causes of the made observations.
Note: Some of the below smells are a repetition of already discovered smells, but are listed and described for
the sake of completeness.

Obscure Test. A reviewer might observe that the test "is difficult to understand at first glance"
[Mes07]. This can be caused by any of the following smells:

• Eager Test: The test checks too much functionality/methods of the object under test in a
single test case.

• Mystery Guest: Part of the test is executed outside of the test case, i.e., the test uses external
resources.

• General Fixture: The fixture is too general. Individual test cases only access and require part
of the provided fixture.

• Irrelevant Information: The test exposes too many irrelevant details about the fixture. This
distracts the test reader from what really affects the behavior of the system.

• Hard-Coded Test Data: The fixture, assertions or arguments contain hard coded data values
of the system.

• Indirect Testing: The method interacts with the test object via another object.

2.1 Smelly Code 11

Conditional Test Logic. A reviewer might observe that the "test contains code that may or may
not be executed" [Mes07]. This can be caused by any of the following smells:

• Flexible Test: The test results varies depending on when or where it is run.

• Conditional Verification Logic: Conditional Test Logic is used to verify the expected outcome.
E.g. assertions are prevented to be executed if the wrong object was returned by the class
under test.

• Production Logic in Test: The verification section of the tests contains some form of Condi-
tional Test Logic.

• Complex Teardown: Complex fixture teardown is hard to verify and can result in "data leaks".

• Multiple Test Conditions: The same test logic is applied many sets of input values, each with
its own corresponding expected result.

Hard-to-Test Code. A reviewer might observe that the "code is difficult to test" [Mes07]. This
can be caused by any of the following smells:

• Highly Coupled Code: Testing a class cannot be done without testing several other classes.

• Asynchronous Code: Testing a method requires the start of an executable (such as a thread,
process, or application) and wait until its start-up has finished.

• Untestable Test Code: The test method is so obscure or contains enough Conditional Test
Logic that we wonder whether the test is correct.

Test Code Duplication. A reviewer might observe that "the same test code is executed many
times" [Mes07]. This can be caused by any of the following smells:

• Cut-and-Paste Code Reuse: Copies of the same code result in having to maintain all copies in
parallel.

• Reinventing the Wheel: The same sequence of statements was written in different tests.

Test Logic in Production. A reviewer might observe that "the code that is put into production
contains logic that should be exercised only during tests" [Mes07]. This can be caused by any of
the following smells:

• Test Hook: The production code contains conditional logic that determines whether the
“real” code or test-specific logic is run.

• For Tests Only: Code exists in the production code that is strictly used by tests.

• Test Dependency in Production: The production executables depend on test executables.

• Equality Pollution: Test specific equalities are implemented in the equals method of the class
under test.

12 Chapter 2. Background & Related Work

2.2 Smell Detection Tools
Fowler & Beck did not try to deliver precise criteria on how a smell can be found in the code,
because "no set of metrics rivals human intuition" [Fow99]. Many later realized that their vague
and informal descriptions leave too much space for interpretation and have come up with metrics
that precisely define a smell occurrence [TC09b,MGDLM10,PBDP+13,Mar04]. Contrary to Fowler
& Beck’s opinion on automatic detection of smells, starting from the defined metrics on smell
detection, tools have been researched and developed that are able to automatically detect code
smell in a given code [MTSV16, MGDLM10, Pal15]. Following are the four smell detection tools
that were considered for this thesis.
Note 1: Some of the below mentioned smells have been given different names in their respective papers. To
give a clear summary of the papers and simultaneously link them to the in sections 2.1.1 & 2.1.2 defined
smells, all further listed smells are followed by IDs corresponding to the IDs in tables 2.1 & 2.4.
Note 2: Along with code smells JDeodorant (section 2.2.1), DECOR (section 2.2.2), and Organic (section
2.2.4) are able to detect design smells1 and/or anti-patterns2 in the code. For the sake of completeness these
are also mentioned, but marked with AP/DS.

2.2.1 JDeodorant
JDeodorant is a tool that was developed by Nikolaos Tsantalis et al. for 7 years. It is a plug-in
for the well known IDE Eclipse and is able to detect three code smells and one design smell/anti-
pattern in Java source code [jde18]:

• Long Method (F2)

• God Class (F3)

• Feature Envy (F7)

• Type/State Checking (AP/DS)

JDeodorant is also able to parse the output of a clone detection tool and provide refactoring oppor-
tunities for a duplicated code (F1) smell [MTSV16]. JDeodorant does not find smells in the code,
but finds different refactoring opportunities in regard to the above mentioned smells. Examples
are Extract Method Refactorings [TC11, TC09a] and Move Method Refactorings [TC09b, FTC07].
These refactoring opportunities are visualized to the user and after being accepted are automati-
cally executed [MTSV16].

2.2.2 DECOR
Yann-Gaël Guéhéneuc et al. have proposed DECOR (DEtection & CORrection) [MGDLM10], a
method that allows the specification and detection of smells and anti-patterns. DETEX (DEtection
EXpert) is the implementation of DECOR and a stand-alone tool. DETEX (from this point called
DECOR) defines the detection of 8 code smells and 10 design smells/anti-patterns:

• AntiSingleton (AP/DS)

• BaseClassKnowsDerivedClass (AP/DS)

1Design smells are "structures in the design that indicate violation of fundamental design principles and negatively
impact design quality" [SSS14].

2"An AntiPattern is a literary form that describes a commonly occurring solution to a problem that generates decidedly
negative consequences." [WB98]

2.2 Smell Detection Tools 13

• BaseClassShouldBeAbstract (AP/DS)

• Blob (AP/DS)

• ClassDataShouldBePrivate (AP/DS)

• ComplexClass (AP/DS)

• FunctionalDecomposition (AP/DS)

• LargeClass (F3)

• LazyClass (F12)

• LongMethod (F2)

• LongParameterList (F4)

• ManyFieldAttributesButNotComplex (F20)

• MessageChains (F15)

• RefusedParentBequest (F22)

• SpaghettiCode (AP/DS)

• SpeculativeGenerality (F13)

• SwissArmyKnife (AP/DS)

• TraditionBreaker (AP/DS)

DECOR analyzes the structure of a system and detects smells or anti-patterns with the help of
previously defined rules.

2.2.3 TACO
Although research has explored the use of both structural and conceptual information for the
removal of smells, no approach for the identification of smells with the use of conceptual infor-
mation has been investigated. Palomba argues in [Pal15] that conceptual information can be used
to identify smells in code. To verify this TACO (Textual Analysis for Code smell detectiOn), a stand-
alone tool, has been developed, a tool that extracts conceptual information from the code using
textual analysis techniques. To achieve this TACO evaluates textual information that are con-
tained in elements of the source code and computes the textual similarity between code elements
that characterize a code component [PPDL+16]. In contrast to other detection tools, including
to its nouvelle detection approach, TACO has implemented detection algorithms for both code
smells and test smells. The test smells that are detected by TACO are

• Eager Test (D5),

• and General Texture (D4)

14 Chapter 2. Background & Related Work

2.2.4 Organic
Organic is an Eclipse plug-in that has implemented the rules published by Bavota et al. [BDLMO14]
to detect seven code smells and eleven design smells/anti-patterns. It uses the Eclipse JDT API to
parse the candidate classes, and then analyzes the syntactical structure of those classes by apply-
ing the aforementioned rules [org18,BDLDP+15]. E.g. a method is guilty of being Feature Envy if
the methods makes more calls with another class than the one they are implemented [BDLDP+15].
Organic is able to detect 7 code smells along with 4 design smells/anti-patterns.

• Class data should be private (AP/DS)

• Complex class (AP/DS)

• Feature envy (F7)

• Blob class (AP/DS)

• Lazy class (F12)

• Long method (F2)

• Long parameter list (F4)

• Message chain (F15)

• Refused bequest (F22)

• Spaghetti code (AP/DS)

• Speculative generality (F13)

2.3 Software Testing
With as much software was and is being developed to this day, proving the correctness of a system
is still beyond our abilities, and so is specifying its behavior [Mes07]. It does not take long for a
new software developer to realize that having bugs in your code is inevitable, and debugging
your code is an everlasting challenge. In the following sections will we look at goals of software
testing in general, and limitations of manual testing compared to the benefits and limitations that
are achieved by automatic software testing (AST). In this thesis automatic software testing means
automatically generated unit tests unless otherwise specified.

2.3.1 Goals of Software Testing
Bug-free Code Since we cannot prove the correctness of a system one goal of quality assurance
is to test so long and so often, that we cannot prove that there are still bugs in our systems. The
intent of testing is to find errors in the code by executing a program [MSB11]. In addition to
proving that there are currently no bugs in the code, the goal of testing is also to prevent bugs
from being introduced [Mes07]. Lastly, once a bug has occured, tests allow us to localize the
defect [Mes07].

2.3 Software Testing 15

Verification and Validation Having bug-free code is not the only reason to have tests. Testing
is also a mean to verify the correct execution of code [MSB11]. By running tests we are looking
to demonstrate that a program works as intended, but also to check whether it meets the defined
requirements [MSB11, KS10]. A testing report is akin to a status report comparing the actual
product to the product requirements [KS10].

Flexible Code Test suites additionally enable developers to easily and safely conduct changes
in the code. "If you have tests, you do not fear making changes to the code! Without tests every
change is a possible bug. No matter how flexible your architecture is, no matter how nicely par-
titioned your design, without tests you will be reluctant to make changes because of the fear that
you will introduce undetected bugs" [Mar08]. Tests allow your system to be flexible, maintainable
and reusable [Mar08]. After every change to the production code test cases can be used to verify
the validity of the code.

Test as Specification Following Martin’s three laws of Test-driven Development (TDD)3 lead
us to another revelation: tests enable us to specify the behavior of the system. By writing tests
before building the system, it allows us to capture how it will be used, and contemplating through
scenarios enables us to identify ambiguity in requirements [Mes07].

Test as Documentation Lastly tests are a mean to document code. Having well written and
clean tests enables developers to learn what and how a code is executed, by running a test and
stepping through it with a debugger. Furthermore without tests developers have to go over the
code in order to find out the result of an input and to answer the question “What should be the
result if. . . ” [Mes07], whereas a provided test quickly delivers the answer to that question.

2.3.2 Limitations of Manual testing
Effort and Time Historically speaking testing was performed manually. But as already men-
tioned is manual testing very time consuming as 50% of the effort spent on a project is required to
verify the produced code [PPB+16]. Every individual developer also spends up to a quarter of his
work time on testing [BDLMO14]. Agile Development additionally leads to shorter release sched-
ules, leaving less time to test, or forces developers to resort to narrower test scopes [MAK+15].

Rigid Code Time pressure can also lead to developers writing dirty tests. A result which "is
equivalent to, if not worse than having no tests" [Mar08]. Dirty tests can have the opposite effects
of a clean test. Instead of achieving flexible code by writing tests, changes in the code lead to more
time being spent on changing and adding tests [Mar08].

Reliability Reliability also comes into question, considering that a variance in results can be
caused by a manual tester running tests in different ways [RMPM12].

Benefits of Automatic Testing Table 2.6 displays the benefits of Automatic Software Testing
(AST) that resulted in a literature and practitioner survey conducted by Rafi et al. in [RMPM12].

3The three laws of TDD, taken from [Mar07]:
1. You may not write production code unless you’ve first written a failing unit test.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to make the failing unit test pass.

16 Chapter 2. Background & Related Work

Table 2.6: Benefits of automatic testing according to [RMPM12]
ID Benefits of AST
B1 Improved product quality
B2 Higher test coverage
B3 Reduced testing time
B4 Higher reliability in repetition of tests
B5 Increase in confidence
B6 Higher reusability of tests
B7 Less requirement for human effort
B8 Cost reduction
B9 Higher fault detection

On one hand AST can leverage the benefits of software testing in general. A higher test cov-
erage (B2) and higher fault detection (B9) achieve an even better proof for a bug-free code. But
AST also counteracts the limitations that result from manual testing. A higher reusability of tests
(B6) leads to less rigid and therefore more flexible code. Effort and time is also saved due to re-
duced testing time (B3), less requirement for human effort (B7) and reductions of costs (B8). It
also achieves a higher reliability due to the increase in reliability in test repetitions (B4). These
benefits all lead to an increase in confidence in the quality of the system (B5) and to an improved
product quality (B1).

2.3.3 Limitations of Automatic Testing
Rafi et al. also recognized that there are not only benefits in automatic testing, but it also leads to
limitations. The results of the survey can be viewed in table 2.7.

Table 2.7: Limitations of automatic testing according to [RMPM12]
ID Limitations of AST
L1 Automation can not replace manual testing
L2 Failure to achieve expected goals
L3 Difficulty in maintenance of test automation
L4 Process of test automation needs time to mature
L5 False expectations
L6 Inappropriate test automation strategy
L7 Lack of skilled people

One of the limitations that Rafi et al. recognized is that test automation can not replace manual
testing. Some tasks still need to be manually executed, as they require extensive knowledge in
a specific domain (L1). The limitations further highlight that AST not only brings benefits, but
requires effort to set up (L7) and time to mature (L4). They also reflect a wrong understanding of
the actual benefits that result in AST (L5) and the set automation strategy (L6).

While the benefits of AST show a decrease of the costs in test production, the costs of checking
the results of the produced test are still high. This is due to the relative difficulty to understand
each created test [DCF+15, RFA15, ESČP17] as up to 50% of developers time is spend on under-
standing and analyzing automatically generated tests [FSM+15,FSM+13]. This is also reflected in
L3, which states a difficulty in maintaining test automation. The results of automatically gener-
ated tests are often tests that are not as nice to look at as manually written tests [DCF+15].

2.4 Summarization Techniques for Software Testing 17

2.3.4 Impact of Smells on Test Quality
Code smells can have or have an overall negative impact on the quality of test suites and test
cases. Smells like Duplicated Code, Mystery Guest or Test Run War make a test prone to bugs and de-
fects [BQO+15,VDMvdBK01]. Performing small changes on duplicated code will require changes
to multiple methods, which possibly introduces unexpected behavior countering a test’s intended
goal of bug-free code. If adapting your test code requires more time than writing new production
code, tests become increasingly viewed as a liability, an effect which will hurt the flexibility of
code that is achieved by having well written tests [Mar08]. This can occur if test cases are not
well separated in Long Methods or Eager Tests, but also in Large Classes [BQO+15,Mar08,BQO+12].
Having test cases that are well separated and which through that separation test individual oper-
ations of production code, helps developers in learning what the intent of that code is and how to
correctly use it [Mar08]. Introducing Long Methods or Eager Tests make tests less concise and hurt
the documentational purpose of tests [VDMvdBK01, Fow99]. From these scenarios it is apparent
that smells can not only impact test suites negatively by countering intended goals of software
testing, but can also amplify its limitations. Servicing tests that are smelly will require even more
time and effort, than they would without smells [BQO+15, BQO+12]. A General Fixture will slow
the execution of a test case, as much of the fixture is not required by the test case [VDMvdBK01].
Furthermore, as mentioned already, adapting code housing duplicated code is more difficult than
servicing non smelly tests, this makes tests simultaneously more rigid and less reliable [BQO+12].

2.4 Summarization Techniques for Software Test-
ing

In 2016 Panichella et al. tackled some of the above mentioned limitations in AST. Their the-
sis [PPB+16] builds on the results that were achieved in the experiment conducted in [DCF+15].
Daka et al. proposed a on human judgments based domain-specific model of unit test readability,
which was then used to augment automatically generated tests. This resulted in more readable
tests. Their subsequent study showed that the improved tests helped their test subjects to answer
tests 14% faster with no change in accuracy.
Panichella et al. developed the tool TestDescriber (TD), which generates summaries of the code
under test and delivers information regarding the coverage each case reaches. The summaries
contribute to the understanding of the test and aims to provide empirical evidence that "read-
ability improvements produce tangible results in terms of the number of bugs actually found by
developers" [PPB+16].
The TD approach works in five steps. The tool requires a test suite along with the production
code. The test suites can be provided, or generated by TD from the provided production code.
This is done with the help of EvoSuite [PMGZ13]. In the next step TD relies on Cobertura4 and a
self constructed parser based on JavaParser5 to provide information regarding the branches and
statements that are tested by each test case. This information is then used to build the textual cor-
pus of the summaries, and to produce a quantitative analysis of the tests. For that the information
are first pre-processed, then analyzed by LanguageTool6, a Part-of-speech tagger, and lastly catego-
rized in Noun Phrases, Verb Phrases and Prepositional Phrases. The different types of phrases are
used in the next step to produce summaries at three different levels of abstractions: a summary
providing a general description of the class that is tested by the JUnit test, a summary of the struc-
tural code coverage that is achieved by the test cases, and a description of each statement of the

4http://cobertura.github.io/cobertura/
5https://github.com/javaparser/javaparser
6https://github.com/languagetool-org/languagetool

18 Chapter 2. Background & Related Work

test cases. TD then aggregates and enriches the original test with the produced summaries in the
last step. The subsequent study showed that the with summaries enriched tests help developers
to find twice as many bugs in comparison to non-summarized tests.

Chapter 3

Approach

The goal of this thesis is to bring attention to the quality of test suites and to further help develop-
ers to improve their test code. We want to achieve this by delivering qualitative information to the
tester regarding their test suite by indicating problematic areas in their tests as well as informa-
tion on how to eliminate those problems. The critical areas will be located by detecting code/test
smells (section 2.1). The detection of smells will be performed by automatic smell detection tools,
which will be combined into one tool, TestSmellDescriber. TestSmellDescriber will then use these
information to generate descriptions detailing the characteristics of the found smell, the method
to refactor that smell and and to parse additional project relevant information. The deliverance of
those descriptions will be performed by the from Panichella et al. in [PPB+16] developed tool Test-
Describer (section 2.4). Using the TestDescriber method to inject descriptions directly at the cause
of the smell will aid in bringing awareness to the test quality and to enable developers to localize
the cause of the problem along with the refactoring description. The steps to accomplish this are:

1. We will study from the literature the types of existing Test and Code Smells (sections 3.1).
This information constitutes the basis of knowledge required for this thesis and enables us
to construct the textual descriptions and refactoring that are displayed to the user in step 5.

2. We will study from the literature the available tools and ways to automatically detect Test
and Code Smells in the code (sections 3.2).

3. The researched list of tools in step 2 will be tested on a dataset of 100 projects (section 3.3) to
analyze the effectiveness and the capability of the tool to be implemented in TestSmellDe-
scriber.

4. The accepted tools will then be combined in a single tool to provide a detector of Test Smells
(chapter 4).

5. We will generate descriptions and refactoring messages for the smelly classes and methods
(chapter 4) using the output of the implemented detection tools and the gained knowledge
in step 1.

3.1 Literature Study on Test and Code Smells
Following is the list of literature that was used for the study on test and code smells:

• Improving the design of existing code, Martin Fowler [Fow99]

• When and why your code starts to smell bad, Tufano et al. [TPB+15]

20 Chapter 3. Approach

• An exploratory study of the impact of antipatterns on class change- and fault-proneness, Khomh et
al. [KDPGA12]

• An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on Program Com-
prehension, Abbes et al. [AKGA11]

• An exploratory study of the impact of code smells on software change-proneness, Khomh et al.
[FKG09]

• AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, Brown et al. [WB98]

• Bad Smells in Software: a Taxonomy and an Empirical Study, Mäntylä [Mä03]

• Refactoring test code, van Deursen [VDMvdBK01]

• xUnit Test Patterns: Refactoring Test Code, Meszaros [Mes07]

The result of the literature study can be found in section 2.1. The resulting list of literature outlined
above is not exhaustive, but was selected by conducting and researching papers that provide
information for refactoring code in the face of code smells. By concentrating on the references
from researches that actively use code smells, we used commonly accepted views and definitions
regarding code smells. [Pal15] provided only a short definition for smells, but provided references
to literature that extensively researched code smells, and references to papers that discussed other
smell detection method, such as [KDPGA12], [AKGA11] and [FKG09]. These papers provided
references to literature that represent the basis of the literature study on code smells: [Fow99],
[WB98] and [Mä03]. Google Scholar was able to provide the test smell catalog by van Deursen
[VDMvdBK01] by conducting the search engine test smell refactorings, while the book [Mes07] by
Meszaros on the refactoring of test code was found through the Martin Fowler Signatures Series1.
We provided definitions from Fowler and van Deursen for the individual smells in the code and
test smell sections, and followed it up with a categorization by Mäntylä and Meszaros.

3.2 Literature Study on Automatic Smell Detection
Following is the list of literature that was used for the study on automatic test and code smell
detection tools:

• JDeodorant: clone refactoring, Mazinanian et al. [MTSV16]

• JDeodorant: Identification and Removal of Type-Checking Bad Smells, Tsantalis et al. [TCC08]

• Identification of Extract Method Refactoring Opportunities for the Decomposition of Methods, Tsan-
talis et al. [TC11]

• Identification of Extract Method Refactoring Opportunities, Tsantalis et al. [TC09a]

• Identification of Move Method Refactoring Opportunities, Tsantalis et al. [TC09b]

• JDeodorant: Identification and Removal of Feature Envy Bad Smells, Fokaefs et al. [FTC07]

• DECOR: A Method for the Specification and Detection of Code and Design Smells, Moha et al.
[MGDLM10]

• Textual Analysis for Code Smell Detection, Palomba [Pal15]

1https://martinfowler.com/books/

3.3 Assessment of Smell Detection Tools 21

• Automating extract class refactoring: An improved method and its evaluation, Bavota et al. [BDLMO14],

• An experimental investigation on the innate relationship between quality and refactoring, Bavota et
al. [BDLDP+15]

The literature study regarding Smell Detection Tools can be found in section 2.2. The paper [Pal15]
constructed the start of our literature study. TACO is a tool that follows a not yet commonly used
concept. Due to this Polomba contrasts the tool with other tools, namely JDeodorant [MTSV16,
TCC08, TC11, TC09a, TC09b, FTC07], and DECOR [MGDLM10]. By consulting Google Scholar
regarding automatic smell detections the paper [BDLDP+15] was found and subsequently its
implementation Organic. To narrow down the scope of this thesis, we concentrated on the above
mentioned papers and in them mentioned tools. Other Java tools with some aspects of automatic
code smell detection exist and have been listed below for completeness sake. These tools were
found by further inquiring Google Scholar for automatic code smell detection. Some tools were
found by consulting [PDFS17] and [FBZ12].

• Checkstyle [che17]

• iPlasma [MMMW05]

• PMD [pmd17]

• StenchBlossom [MHB10]

• JSpIRIT [VVDP+15]

• ConQAT [con18]

• CloneDigger [clo18]

• JCosmo [VEM02]

• CodeVizard [ZA10]

3.3 Assessment of Smell Detection Tools

3.3.1 Overview
Starting from the literature study on automatic smell detection tools (section 3.2) we next tried to
get an assessment of the developed tools and their detection on the following points.

Integrability. Due to scalability reasons TestSmellDescriber will be a stand alone tool as this
allows the tool to be used flexibly by many users, for a large number of projects, as well as to be
integrable into other tools. The automatic smell detection tools are therefore required to be usable
without any additional requirements and environment.

Applicability on Test Suites. Since the purpose of TestSmellDescriber is to detect smells in test
suites, the tool should be able to detect smells in test classes or test cases. The smell detection
tools have shown to be effective in detecting code smells, but we have found no record of its use
for the detection of test smells.

22 Chapter 3. Approach

Detectable Smells. Only one out of four tools are specified for the detection of smells in test
code. The assessment will help us to gain knowledge about which implemented code smell de-
tections are relevant for test code.

For that we first found tools that are capable of automatically detecting code smells in the code.
This was done in section 3.2. Next we selected several projects on which the tools could be applied
to based on several requirements outlined in section 3.3.2. This resulted in 67 projects. And lastly
we made an assessment of the candidate tools. This assessment and its result can be viewed in
section 3.3.3.

Candidate Tools

The list of tools resulted from the literature study conducted in section 3.2 & 2.2. The candidate
tools are

• TACO,

• DECOR,

• JDeodorant,

• and Organic.

We want to help developers to improve their tests by delivering qualitative information to the
tester regarding their test suite by indicating problematic areas in their tests. These areas are
symptoms of poor design and implementation choices, i.e. smells. The aforementioned tool are
able to identify smells in the code and indicate those to the user. Identifying the guilty smell also
enables us to provide information to the developer on how to eliminate those problems.

Candidate Smells

Not all aforementioned smells could be considered for this thesis. The smell detection process in
our tool TestSmellDescriber will be conducted by the in section 3.3.1 researched tools or a subset
of those tools. These tools have implemented methods and metrics for a subset of all code and
test smells. The detectable smells are listed in the tool’s associated subsection in section 2.2. These
smells are

• Long method (F2),

• Large Class (F3),

• Long Parameter List (F4),

• Feature Envy (F7),

• Lazy Class (F12),

• Speculative Generality (F13),

• Message Chains (F15),

• Data Class (F20),

• Refused Bequest (F22),

• General Fixture (D4),

3.3 Assessment of Smell Detection Tools 23

• and Eager Test (D5).

This list of smells enables us to detect smells from 70% of all categories defined by Mäntylä:
Bloaters (F2, F3, F4), Dispensables (F12, F13, F20), Encapsulators (F15), Couplers (F7) and Others (F22).
The detection of test specific smells, General Fixture and Eager Test, covers 20% of all test smell
categories by Meszaros: Obscure Test.

3.3.2 Test Projects
The projects were selected from a number of 100 candidates from two well-known open-source
repositories, the Apache Software Foundation and Black Duck Open Hub, starting from the
projects with the most number of committers, respectively projects with the highest rating. Tools
were rejected based on the availability of their source code, the availability of test suites, their lan-
guage, their capability to build and the overextension of a time limit during the detection process.
The final list of projects can be found in table 3.4.

Selection Process

The projects underwent three selection steps. In the preliminary selection we gathered 100 projects.
We believe this number is large enough to leave us with a sufficiently large number of projects at
the end of the selection process. Projects were selected based on the following requirements for
the first selection:

1. The source code of the project has to be available. The source code is necessary to detect
smells in the code with the tool TACO. More importantly are we looking to display the
results of the smell detection as comments in the code. The source code is therefore required
to augment the comments in the code.

2. Since we want to detect smells in test code, the project has to offer test suites. It was not
relevant if those tests were manually written or automatically generated.

3. The project is written in Java.

To meet requirements number one and three we decided to gather the projects evenly split from
two well known open source communities:

• the Apache Software Foundation,

• and Black Duck Open Hub.

Apache hosts 389 open source projects with over 59% of those (partially) written in Java
[apa18]. Open Hub indexes 472,078 open source projects [ope18]. By querying for "Java" we
received a list of projects that are (partially) written in Java. To meet the second requirement we
concluded that the likelihood of projects having test suites is higher the more popular the project
is, popular in terms of either by the number of committers on Apache 2, or the received user rating
on Open Hub 3. With above requirements we looked at 50 projects from Open Hub, while seven
of those had to be rejected due to no available source repositories. We further looked and checked
out 50 Apache projects.

2https://projects.apache.org/projects.html?number
3https://www.openhub.net/p?query=java&sort=rating

24 Chapter 3. Approach

Table 3.1: Projects’ availability of source code

Source available No source available

OpenHub Apache OpenHub Apache
43 50 7 0

93 7

To parse and detect code smells DECOR requires the code in binary format. TestDescriber also
requires source as well as binary versions of the given code. Some projects where available in
both source and binary format, while others had to be manually built and compiled. While we
were able to successfully built many projects, some experienced compile error or could otherwise
not be build and had to therefore be rejected. This second selection step left us with 31 Open Hub
projects, and 39 Apache projects.

Table 3.2: Projects’ build status

No build issues Build issues

OpenHub Apache OpenHub Apache
31 39 12 11

70 23

In the third selection step we ran those 70 projects in a preliminary test run with TACO, Or-
ganic, DECOR, and JDeodorant. Since testing and running the projects with the given tools have
to be repeated many times over the course of the development, and to achieve a repeatability of
the received results, projects that took more than 30 minutes to parse were rejected in this last
step. Here two Open Hub projects and one Apache projects were discarded.

Table 3.3: Projects’ testability

Time not exceeded Exceeded time

OpenHub Apache OpenHub Apache
29 38 2 1

67 3

The selection process resulted in 67 Java projects with test suites, in source and binary format,
that are testable in less than 30 minutes. 29 of the 67 are from Open Hub and 38 from Apache.
The whole list of projects along with their status can be found in table 3.4.

Table 3.4: Test projects
ID Project name Version Considered? Reason for rejection

1 Apache Hadoop 2.9.0 Yes –
2 Apache Cloudstack 4.10.0 Yes –
3 Apache Ambari 2.6.0 No Build error
4 Apache Cordova Android 7.0.0 No Build error
5 Apache Geode 1.3.0 No Time limit exceeded
6 Apache Cocoon 2.1 No Build error
7 Apache MyFaces Core 2.2.13 Yes –

Continuation on the next page

3.3 Assessment of Smell Detection Tools 25

Continuation of Table 3.4
ID Project name Version Considered? Reason for rejection

8 Apache Geronimo 3.0.1 Yes –
9 Apache Hive 2.3.2 Yes –

10 Apache HBase 1.3.1 Yes –
11 Apache Felix 5.6.10 Yes –
12 Apache ActiveMQ 5.15.2 Yes –
13 Apache Camel 2.20.1 Yes –
14 Apache Struts 2.5.13 Yes –
15 Apache Directory DS 2.0.0 Yes –
16 Apache Maven 3.5.2 Yes –
17 Apache Aries Application 1.0.0 Yes –
18 Apache Spark 2.2.0 Yes –
19 Apache Jackrabbit 2.16.0 Yes –
20 Apache ServiceMix 7.0.1 Yes –
21 Apache Cassandra 3.11.1 Yes –
22 Apache Qpid 0.23.0 Yes –
23 Apache OODT 1.2 Yes –
24 Apache OFBiz 16.11.03 Yes –
25 Apache Tomcat 9.0.1 Yes –
26 Apache CXF 3.2.1 Yes –
27 Apache Portals Pluto 3.0.0 Yes –
28 Apache Apex Core 3.6.0 Yes –
29 Apache Atlas 0.8.1 No Build error
30 Apache Sling 9 Yes –
31 Apache Bahir Flink 2.2.0 Yes –
32 Apache Chemistry Client 1.1.0 Yes –
33 Apache Drill 1.11.0 Yes –
34 Apache Sentry 1.8.0 No Build error
35 Apache Tez 0.9.0 Yes –
36 Apache James 3.0.0 No Build error
37 Apache cTakes 4.0.0 Yes –
38 Apache Metron 0.4.1 No Build error
39 Apache ORC 1.4.1 No Build error
40 Apache POI 3.17 Yes –
41 Apache Storm 1.1.1 Yes –
42 Apache Nifi 1.3.0 No Build error
43 Apache Reef 0.16.0 No Build error
44 Apache Synapse 3.0.0 Yes –
45 Apache Airavata 0.16 Yes –
46 Apache Deltaspike 1.8.0 Yes –
47 Apache Ignite Fabric 2.3.0 Yes –
48 Apache OpenJPA 2.4.2 Yes –
49 Apache Phoenix HBase 4.13.0 Yes –
50 Apache Beam 2.1.1 No Build error
51 toxiclibs 20110103 Yes –
52 jPOS 2.1.1 Yes –
53 Axis2 1.7.6 Yes –
54 iText7 7.0.5 Yes –
55 Jackrabbit Oak 1.7.11 Yes –

Continuation on the next page

26 Chapter 3. Approach

Continuation of Table 3.4
ID Project name Version Considered? Reason for rejection
56 jBehave 4.1.3 No Build error
57 Netty Project 4.1.17 Yes –
58 Hippo Site Toolkit 5.0.1 No Build error
59 M2E Android Configurator 1.4.0 No Build error
60 Apache Karaf 4.2.0 Yes –
61 Nifty GUI 1.4.2 No Build error
62 oVirt engine 4.1.8 No Build error
63 WildFly 12.0.0 Yes –
64 Apache Tika 1.16 Yes –
65 Apache Marmotta 3.3.0 Yes –
66 jogl 2.3.2 No Build error
67 Apache Zookeeper 3.4.11 Yes –
68 OrientDB 2.2.30 Yes –
69 Errai Framework 4.0.2 No Time limit exceeded
70 Apache UIMA 2.10.2 Yes –
71 Protocol Buffers 3.5.0 No Build error
72 WSO2 Carbon 4.4.11 Yes –
73 Apache Ant 1.10.1 Yes –
74 Encog 3.4 No Build error
75 Apache ODE 1.3.7 Yes –
76 OpenNMS 21.0.0 No Build error
77 Jope 5.1.0 No Source not available
78 DataNucleus 5.1.3 Yes –
79 Apache jclouds 2.0.2 Yes –
80 OpenDaylight Carbon SR2 No Source not available
81 JORAM 5.14.0 Yes –
82 Apache Cayenne 4.1 Yes –
83 JaCoCo 0.7.9 Yes –
84 geogson 1.4.2 Yes –
85 Eclipse Scout Oxygen Yes –
86 Aion-Unique NA No Source not available
87 Caucho Resin 4.0 No Source not available
88 Slick 2D NA No Source not available
89 google-gson 2.8.2 Yes –
90 vert.x 3.5.0 Yes –
91 Spring Boot 1.5.8 Yes –
92 GATE NA No Source not available
93 Apache Shindig 2.5.2 Yes –
94 Hazelcast Jet 0.5 Yes –
95 Tekir NA No Source not available
96 Android Studio 14.1.2 No Time limit exceeded
97 Sonar IDE 1.0 No Build error
98 Eclipse Sapphire 9.1 No Build error
99 Marauroa 3.9.2 Yes –

100 Griffon 2.8.0 No Build error

3.3 Assessment of Smell Detection Tools 27

3.3.3 Tools Assessment Results

Integrability

To analyze the integrability of each tool, results from the literature review (sections section 3.2 &
2.2) were considered. Additionally the source code of the tools were analyzed to find whether the
tool has a requirement that it depends on for critical operations. Non critical operations are e.g.
the drawing of a GUI, critical operations are connected to the parsing and detecting of smells in
the code.

JDeodorant. JDeodorant is not a standalone tool, but a plug-in for the IDE Eclipse [TCC08].
JDeodorant depends strongly on Eclipse JDT for the parsing of the to-be-examined code, but
more importantly to bind information provided by the compiler after the project is built. To
use JDeodorant Eclipse has to be installed and the to-be-examined project imported into the
workspace. Efforts were made to make JDeodorant usable outside of the Eclipse GUI based on
instructions by the development team4, but were not successful. Due to this JDeodorant was
rejected for this thesis.

DECOR. DECOR comes as part of the Ptidej5 tool suite and offers a GUI for the detection of
code smells. Nonetheless DECOR is also available as a stand alone tool. It does not require any
additional environment.

TACO. TACO is a standalone tool and usable without any additional requirements. TACO is
therefore integrable into TestSmellDescriber and was further considered for this thesis.

Organic. Organic is a plug-in for the IDE Eclipse. It requires the Eclispe JDT API in order to
parse and analyze the syntactical structure of Java classes. Organic was therefore rejected for this
thesis.

Applicability on Test Suites

To detect the usability of the accepted tools we selected 67 projects in section 3.3.2. In the next step
we examined the projects with the accepted tools TACO and DECOR. To efficiently apply the tools
on the projects, we developed the module TestSmellRunner that acts as a common entry point
for each project. The module allows for easy integration and extensibility with other detection
tools. We additionally modified the tools to only consider code from test classes. For TACO we
only consider Java files, which contain the string " extends TestCase" or the annotation "@test".
DECOR considers all Java files, that are in a folder whose name contains the string "test" and files,
whose names contain the string "test".

TACO. TACO was found to be universally usable on 100% of all selected projects. It was suc-
cessfully able to parse and examine the test code on smells.

4https://users.encs.concordia.ca/ñikolaos/jdeodorant/index.php?option=com_content&view=article&id=87:how-
can-i-execute-jdeodorant-in-headless-mode&catid=27:installation-questions&Itemid=41 (last visit: 14.01.18)

5http://www.ptidej.net/tools/ (last visit: 14.01.18)

28 Chapter 3. Approach

DECOR. DECOR was able to detect smells at least partially in 57 out of 67 projects (85% of all
projects). 10 projects were not parsable by DECOR. Upon further investigation it was found that
all 10 projects are compiled with the Java SE Development Kit version 9. The current version of
DECOR is able to parse bytecode that was compiled with Java 8 or lower. A statistic6 has shown
that in 2017 35% of 1400 different JVMs are using Java 7 or lower. We conclude from this that
although Java 8 was released three years before the release of the statistic, older versions are still
in use. In 2018, mere months after the release of Java 9, Java 8 or older versions will still be in use
and demand for a tool that is able to parse Java 8 compiled code will still be there. DECOR was
therefore further used in this thesis.

The list of projects and their applicability with the tools can be found in table 3.6.

Detectable Smells

The tools were further modified to allow a summarization of each detected smell in all 67 projects.
The result shows that there are 9 smells that are detectable by TACO and DECOR. Both TACO test
smells (Eager Test & General Fixture) were found in the test projects. Out of the code smells that
are detectable by DECOR, 6 of them were found in test code: Long Parameter List, Long Method
and Message Chains, Lazy Class, Speculative Generality, Large Class and Refused Bequest. The
full result along with the number of occurrence can be found in table 3.5, while table 3.7 displays
which smell was found in each project. We decided to further concentrate on the smells that have
some relevance in test code. A smell has to be detected in at least 10% of all tested projects (7
projects). The for the summarization considered smells are therefore:

• Long Parameter List

• Eager Test

• General Fixture

• Long Method

• Lazy Class

• Refused Parent Bequest

Table 3.5: Occurrence of detected smells in the test projects
ID Smell Tool # of occurences in # of projects
R1 LongParameterList DECOR 23 9
R2 EagerTest TACO 54797 60
R3 MessageChains DECOR 1 1
R4 GeneralFixture TACO 926 48
R5 LongMethod DECOR 71 11
R6 LazyClass DECOR 16 8
R7 SpeculativeGenerality DECOR 6 4
R8 LargeClass DECOR 3 1
R9 RefusedParentBequest DECOR 44 10

6https://plumbr.io/blog/java/java-version-and-vendor-data-analyzed-2017-edition (last visit: 14.01.18)

3.3 Assessment of Smell Detection Tools 29

Table 3.6: Results of applicability. D: DECOR, T: TACO
ID Project name D T

1 Apache Hadoop Y Y
2 Apache Cloudstack N Y
7 Apache MyFaces Core N Y
8 Apache Geronimo N Y
9 Apache Hive N Y

10 Apache HBase Y Y
11 Apache Felix Y Y
12 Apache ActiveMQ Y Y
13 Apache Camel Y Y
14 Apache Struts Y Y
15 Apache Directory DS Y Y
16 Apache Maven Y Y
17 Apache Aries Application N Y
18 Apache Spark Y Y
19 Apache Jackrabbit Y Y
20 Apache ServiceMix Y Y
21 Apache Cassandra Y Y
22 Apache Qpid Y Y
23 Apache OODT Y Y
24 Apache OFBiz Y Y
25 Apache Tomcat Y Y
26 Apache CXF Y Y
27 Apache Portals Pluto Y Y
28 Apache Apex Core Y Y
30 Apache Sling Y Y
31 Apache Bahir Flink Y Y
32 Apache Chemistry Client Y Y
33 Apache Drill N Y
35 Apache Tez Y Y
37 Apache cTakes Y Y
40 Apache POI Y Y
41 Apache Storm Y Y
44 Apache Synapse Y Y
45 Apache Airavata Y Y

ID Project name D T
46 Apache Deltaspike Y Y
47 Apache Ignite Fabric N Y
48 Apache OpenJPA Y Y
49 Apache Phoenix HBase Y Y
51 toxiclibs Y Y
52 jPOS N Y
53 Axis2 Y Y
54 iText7 Y Y
55 Jackrabbit Oak N Y
57 Netty Project Y Y
60 Apache Karaf Y Y
63 WildFly N Y
64 Apache Tika Y Y
65 Apache Marmotta Y Y
67 Apache Zookeeper Y Y
68 OrientDB Y Y
70 Apache UIMA Y Y
72 WSO2 Carbon Y Y
73 Apache Ant Y Y
75 Apache ODE Y Y
78 DataNucleus Y Y
79 Apache jclouds Y Y
81 JORAM Y Y
82 Apache Cayenne Y Y
83 JaCoCo Y Y
84 geogson Y Y
85 Eclipse Scout Y Y
89 google-gson Y Y
90 vert.x Y Y
91 Spring Boot Y Y
93 Apache Shindig Y Y
94 Hazelcast Jet Y Y
99 Marauroa Y Y

30 Chapter 3. Approach

Table 3.7: Detected smells in the test projects
ID Project name Smell

1 Apache Hadoop R1, R2, R4,
R5, R6, R7,
R9

2 Apache Cloudstack R2, R4
7 Apache MyFaces Core –
8 Apache Geronimo R2, R4
9 Apache Hive R2, R4

10 Apache HBase R1, R2, R4,
R5, R6

11 Apache Felix R2, R4
12 Apache ActiveMQ R2, R4
13 Apache Camel R1, R2, R4,

R6, R7, R9
14 Apache Struts R2, R4
15 Apache Directory DS R2, R4
16 Apache Maven R2
17 Apache Aries Application R2, R4
18 Apache Spark R1, R2, R4,

R6, R9
19 Apache Jackrabbit R1, R2, R4,

R6, R9
20 Apache ServiceMix R1, R5, R8,

R9
21 Apache Cassandra R2, R4
22 Apache Qpid –
23 Apache OODT R1, R2, R4,

R5, R9
24 Apache OFBiz R1, R2, R3,

R5, R9
25 Apache Tomcat R2, R4
26 Apache CXF R2, R4
27 Apache Portals Pluto R2
28 Apache Apex Core R2
30 Apache Sling R2
31 Apache Bahir Flink –
32 Apache Chemistry Client R2
33 Apache Drill R2, R4
35 Apache Tez R2, R4
37 Apache cTakes R2, R4
40 Apache POI R2, R4

ID Project name Smell
41 Apache Storm R2, R4, R5,

R6, R9
44 Apache Synapse R2, R4
45 Apache Airavata R2, R4
46 Apache Deltaspike R2, R5, R6,

R9
47 Apache Ignite Fabric R2, R4
48 Apache OpenJPA R2, R4
49 Apache Phoenix HBase R2, R4
51 toxiclibs R2, R4
52 jPOS R2, R4
53 Axis2 R2, R4
54 iText7 R2, R5, R7
55 Jackrabbit Oak R2, R4
57 Netty Project R2, R4
60 Apache Karaf R2, R4
63 WildFly R2, R4
64 Apache Tika R2, R4, R5
65 Apache Marmotta R2, R4
67 Apache Zookeeper R2, R4
68 OrientDB R2, R4, R5,

R7
70 Apache UIMA R2, R4
72 WSO2 Carbon R1, R2, R5,

R9
73 Apache Ant R2, R4, R6
75 Apache ODE R2, R4
78 DataNucleus R2, R4
79 Apache jclouds R2, R4
81 JORAM R2
82 Apache Cayenne R2, R4
83 JaCoCo R2
84 geogson –
85 Eclipse Scout R2, R4
89 google-gson R2
90 vert.x R2, R4
91 Spring Boot R2, R4
93 Apache Shindig R2, R4
94 Hazelcast Jet R2
99 Marauroa R2

Chapter 4

TestSmellDescriber

In this chapter we depict the development and structure of our tool TestSmellDescriber. Section
4.1 talks about the architecture of the tool and gives a general picture of its structure. All further
sections describe the individual modules and steps that are necessary to construct a description
for found smells and are outlined in section 4.1. The source code of TestSmellDescriber can be
checked out from our repository1.

4.1 Architecture
TestSmellDescriber consists of four modules that are used to check an object of interest on smells
and generate a textual description. The activity diagram in figure 4.1 shows the structural or-
ganization of TestSmellDescriber along with the interaction among its modules, while figure 4.2
shows an overview of the module TestSmellUtil. In the following are the steps for the detec-
tion of test smells and generation of descriptions explained, which are enumerated in the activity
diagram.

(1) TestSmellRunner is the interface that is called by a tool to start the process of detecting
and generating test smell descriptions. The TestSmellRunner delegates the passed input
consisting of the root folder of a project and the desired output folder to the smell detection
tools DECOR and TACO. The class diagram of TestSmellRunner can be viewed in figure
4.3. The module will be further explained in section 4.2.

(2) The smell detection tools TACO and DECOR gather all files that are part of the test suite
and examine the code for any smells (3). The inner working of DECOR and TACO along
with the detection of the smells will be explained in section 4.3.

(3) Whenever a new smelly entity was found, that information will be forwarded to the Test-
SmellUtil. All detected smelly entities are stored in the SmellyClassContainer, which
consists of 0–N SmellyClass objects. A SmellyClass object denotes a class which has a
smell. This smell can be specific to the whole class or an attribute, i.e., a method or field.
To define this SmellyClass objects have a SmellyAttributeContainer, which stores 0–N
SmellyAttribute objects. A SmellyAttribute can be a SmellyField or a SmellyClass

object. Before a smell is assigned to a SmellyClass the enum ClassSmell is used to eval-
uate, whether a smell is explicit to a class or an attribute. The smell detection tools use
different libraries to read and store classes, methods and attributes. To allow the imple-
mentation of different smell detection tools into TestSmellDescriber the EntityAdapter is

1http://bit.ly/2DUiZrC

32 Chapter 4. TestSmellDescriber

available to unify the returned entities. The detailed class diagram showing the classes in-
volved in the storage are in figure 4.9. This along with the changes made to DECOR and
TACO to gather those information will be detailed in section 4.4.

(4) TestSmellUtil then generates a textual description of the problems in a class and their be-
longing methods along with procedures to remove those problems. This is achieved by
calling the TestSmellDescriptionWrapper, which acts as the entry point for obtaining a
smell description. The TestSmellDescriptionWrapper obtains the specified smelly entity
from the SmellyClassContainer, uses the SmellyParser to gather necessary quantitative
data about the smelly entity and the project, and finally pases those values to Description

which generates the textual descriptions. This step will be explained in detail in section 4.5.

Figure 4.1: Activity Diagram: TestSmellDescriber

4.2 Test Smell Runner

Figure 4.3: Class Diagram:
TestSmellRunner

The TestSmellRunner consists of multiple functions that are used
to start the smell detection process. The functions run(String,

String, String, String) and run(String, String, String)

allow the specification of the smell detection method which will
be applied on the project. The methods require the following pa-
rameters:

1. The first parameter denotes the type of smell detection, cur-
rently this can be either "textual", denoting a smell detection

by TACO, or "structural", which starts the smell examination using DECOR.

4.2 Test Smell Runner 33

Figure 4.2: Class Diagram: TestSmellDescriber

2. It further requires the path where the root folder of the project is located.

3. The third parameter points to the requested output path for the results generated by TACO
and DECOR.

4. As already mentioned is DECOR detecting smells in the code by examining the bytecode.
To correctly identify the files either "class" or "jar" needs to be specified, denoting whether
the files can be found in class or JAR format. This parameter can be omitted, if only a textual
detection is requested, i.e., a detection by TACO.

If a detection with all detection tools is requested, the method testOneProject(String, String,

String) can be invoked. The method requires three parameters:

1. The first parameter is the path to the project to be parsed. To use both DECOR and TACO
for the test smell detection, both binary and source code of the project have to be available.
TestSmellRunner delegates the sub folder /src/ of the passed project path to TACO, while it
passes the sub folder /bin/ to DECOR.

2. The second parameter is the path to the desired output destination for the code smell detec-
tion tools. Here detailed information about the smell detection results can be viewed.

34 Chapter 4. TestSmellDescriber

3. The last parameter declares the file type of a project’s binary files. This can be either "class",
or if all class files are packaged in a JAR file "jar".

To replicate the in section 3.3 conducted analysis of the smell detection tools, the method
testAllProjects() can be used.

4.3 Smell Detection
This section describes the inner working of the smell detection tools DECOR and TACO in detail.
Besides presenting the tools in general, we also present each method and metric used for the
detection of the 9 smell that were evaluated in section 3.3.3.

4.3.1 DECOR

Figure 4.4: DECOR detection technique (Boxes represent steps and arrows connect inputs and outputs of
each step. Gray boxes are fully automated steps.) Source: [MGDLM10]

To define the detection of a smell in DECOR a code smell has to be first analyzed (1) and then
translated into their own domain specific language (2), coined POM. The result is a "Rule Card"
that describes the detection of a smell. DECOR then uses those Rule Cards to automatically gen-
erate an algorithm (3). The resulting algorithm is then used on the model of the system (4), i.e.,
the code under test. Unlike other research DECOR performs the translation of code/design smell
specifications into detection algorithms transparently. This process can be viewed in figure 4.4.
Before starting the detection process, DECOR first finds the list of files that are to be examined.
These are either all JAR files, or all Test Class files that are contained in the root and every subse-
quent sub folders. The Test Class files are all class files, that have a parent folder with a name that
contains the string "test". Here we cover all projects that follow the Standard Directory Layout
defined by the Apache Maven Project2. To cover projects that do not follow the Maven guidelines
we additionally search for files with a name that contains the string "test". After creating a model
from the files, DECOR goes through the list of detection classes and examines the model for anti-
patterns.
In the following are the metrics and methods explained for the detection of the from DECOR
detectable smells as defined in section 3.3.3.

Large Class. The detection of a Large Class is done with the combination of two rules: Large
Class Only and Low Cohesion Only. The result of the Large Class detection is done by performing

2https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html (last visit:
17.01.18)

4.3 Smell Detection 35

an intersection of both intermediate findings (LC = LClO ∩ LCoO). The Rule Card for the Large
Class smell can be viewed in Listing 4.1. The individual rules are applied from bottom to top.

RULE_CARD : LargeClass {

RULE : LargeClass { INTER LargeClassOnly LowCohesionOnly } ;

RULE : LargeClassOnly { (METRIC: NMD + NAD, VERY_HIGH, 0) } ;

RULE : LowCohesionOnly { (METRIC: LCOM5, VERY_HIGH, 20) } ;

};

Listing 4.1: Rule Card for Large Class Smell taken from DECOR source code

A rule is defined with a metric that is applied on all entities of a system, and values that de-
note if the rule has been met. The first value is a numerical or ordinal value. While numerical
values define thresholds, ordinal values define values that are relative to all the entities of a sys-
tem [MGLM+10]. The second value is the acceptable degree of fuzziness, "which is the margin
acceptable in percentage around the numerical value [. . .] or around the threshold relative to
the ordinal value" [MGLM+10]. To detect a Large Class smell the metric of the first rule Low-
CohesionOnly is applied on all entities of a model. The metric returns a number which identifies
the lack of cohesion in methods of an entity. From the set of values only the high outliers with a
fuzziness of 20 are considered. The second rule LargeClassOnly is defined by a combination of two
metrics. NMD returns the number of methods declared by an entity, while NAD returns the number
of attributes declared by an entity. From the resulting sum are again only the high outliers con-
sidered. Here with a fuzziness of 0. Both rules then contain a set of classes. By performing an
intersection of both sets we obtain a list of classes that contain a Large Class smell.

Long Parameter List. The rule card for a Long Parameter List smell consists of one rule:
METRIC: NOParam, VERY_HIGH, 20. To detect a LPL smell the metric NOParam is first applied
on all entities of a model. The metric returns a value denoting the largest number of parameters
from all methods of a class. Entities contain a LPL smell if that value is a high outlier (VERY_HIGH)
with a set fuzziness of 20. The rule card for the LPL smell can be seen in Listing 4.2.

RULE_CARD : LongParameterList {

RULE : LongParameterListClass { (METRIC: NOParam, VERY_HIGH, 20) } ;

};

Listing 4.2: Rule Card for Long Parameter List Smell taken from DECOR source code

Message Chains. The rule card for a Message Chains (MC) smell also consists of one rule:
METRIC: NOTI, SUP_EQ, 4, 0. The metric NOTI returns the highest number of transitive invo-
cations among methods of a class. The rule is met if that number is larger than or equal to (SUP_EQ)
4.0. The full rule card for the MC smell can be seen in Listing 4.3.

RULE_CARD : MessageChains {

RULE : MessageChainsClass { (METRIC: NOTI, SUP_EQ, 4, 0) } ;

};

Listing 4.3: Rule Card for Message Chains taken from DECOR source code

Long Method. The lone rule for the Long Method (LM) smell is METRIC: METHOD_LOC, HIGH,

8. Again is the metric first applied on all entities of a class. The metric METHOD_LOC calculates the
number of line of codes for the largest method of an entity. A method is smelly if it is in the 75th
percentile or upper quartile (HIGH) with a set fuzziness of 8. Listing 4.4 displays the rule card for
the LM smell.

36 Chapter 4. TestSmellDescriber

RULE_CARD : LongMethod {

RULE : LongMethodClass { (METRIC: METHOD_LOC, HIGH, 8) };

};

Listing 4.4: Rule Card for Long Method Smell taken from DECOR source code

Refused Parent Bequest. Refused Parent Bequest consists of three rules as can be seen in list-
ing 4.5. The metric IR for rule RareOverriding computes the number of accepted bequests, i.e.,
how many protected methods and fields of a superclass a subclass has overwritten or called. If the
class has no superclass, the metric returns 0. From the computed values only the low outliers are
considered (VERY_LOW). These are the values that are lower than the minimum bound. The result
of the first rule is therefore a list of all classes that have no parents or use only a low amount of
the fields and methods of their parents. The second rule ParentClassProvidesProtected uses
the metric USELESS, which returns the value 1.0. By checking if the value is equal to 1.0 ([...]
EQ, 1,0) a list of all entities in the model is returned. The last rule examines both list of classes
on their relationship, specifically if there exists an inheritance between a class in the first list and
the classes in the second list, i.e., all other classes. By applying this rule the classes from rule
RareOverriding are filtered based on whether they extend an entity.

RULE_CARD : RefusedParentBequest {

RULE : RefusedParentBequest {

INHERIT: inherited FROM: ParentClassProvidesProtected

ONE TO: RareOverriding ONE } ;

RULE : ParentClassProvidesProtected { (METRIC: USELESS, EQ, 1,0) } ;

RULE : RareOverriding { (METRIC: IR, VERY_LOW, 0)};

};

Listing 4.5: Rule Card for Refused Parent Bequest Smell taken from DECOR source code

4.3.2 TACO
Unlike DECOR which analyzes a system structurally, TACO detects smells in the code by per-
forming a textual analysis. The detection of test files is also performed textually, as it only con-
siders Java files that contain the strings " extends TestCase" or the annotation "@test". TACO then
iterates through the list of test files and examines them for smells. TACO then detects smells
by evaluating textual information that are contained in elements of the source code and by com-
puting the textual similarity between code elements. To achieve this TACO computes the cosine
similarity (CS) between two textual elements. Before the cosine similarity can be computed the
content of those elements are first normalized. For this, terms are first split by underscores, capital
letters and digits, then set to lower case letters, and lastly are special characters, common English
stop words and programming keywords removed. In a second step are the normalized words
then weighted by computing their occurrence within the content. The resulting normalized ele-
ments are thereupon modeled as vectors. The textual similarity is measured as the cosine of the
angle between those vectors [BDLMO14].

General Fixture. To detect a General Fixture, TACO first searches for a test fixture within the
test class, by searching for a method with the name "setUp". A fixture is a General Fixture, if the
following conditions hold3:

3Source: TACO source code.

4.4 Gather Information from Detection Tools 37

• The fixture is composed of more than or equal to 10 lines of code.

• The test class of that fixture contains at least two methods that have a cosine similarity
compared to the fixture larger than 0.0.

• The cosine similarity between those two methods is smaller than 0.1.

Eager Test. To detect if a test case (TC) is an Eager Test, TACO first gathers the content of all
production methods (PM) that are called (i.e., tested) within the test case. Here, only methods
with more than 3 lines of code are considered. A test case is an Eager Test3, if the sum of all cosine
similarities between test case and production methods (CS(TC, PM)), and the sum of all cosine
similarities of the n-permutations of all production methods (CS(PM !)) is smaller than 2N2−3N

5 ,
where N is the number of called production methods. With a test case that calls two production
methods (A & B), the following has to be true, for the test case to be considered an Eager Test:
CS(TC,A) + CS(TC,B) + 2 · CS(A,B) < 2N2−3N

5 .

4.4 Gather Information from Detection Tools

4.4.1 Storing Smell Information
We have constructed several entities to retain smell information. The class diagram of the storage
can be found in figure 4.9. The SmellyClassContainer stores the smelly entities in SmellyClass

objects. By invoking addClass(String) a new SmellyClass object is created and added to the
list smellyClasses. The smelly part of an entity can either be the whole class (i.e., Class Smell) or
a smelly attribute (i.e., Field or Method Smell). E.g. a Large Class smell denotes that the class
is smelly, whereas a Long Method denotes a smelly attribute. Those attributes are stored in
SmellyMethod or SmellyField objects and are added by invoking addMethod(String, String)

or addField(String, String), and by passing the header of the attribute, along with the name
of the smell. If a class has been found to being guilty of having a Class Smell, the class is set
smelly by invoking setClassSmelly(String), while passing the name of the smell. To differ-
entiate between a Class and Attribute Smell, the enum ClassSmell is available. The method
isClassSmell(String) compares the values stored in the enum to the passed smell. To re-
tain the number of occurrences a smell has in a class, the smells are stored as keys in a Map
and assigned an Integer denoting the number of appearances. Each SmellyClassContainer

holds a SmellyAttributeContainer, which retains Attribute Smells, i.e., SmellyMethod and
SmellyField. The containers store the SmellyClass and SmellyAttribute objects and act as
the entry point for the generation and obtainment of those objects. The SmellyClassContainer

is a singleton. This enables us to obtain one class container for all detection tools.
Important to note is that TACO and DECOR use different libraries to store class entities and their
attributes. TACO uses the Eclipse JDT API, while DECOR uses the library Toad4. This leads to
some irregularities regarding method parameters.

1. TACO maps every subclass of Collection to its superclass.

2. DECOR maps I to Iterable.

3. DECOR maps org.w3c.dom.Element to w3Element.

4. DECOR adds the package path to classes.

4http://www.research.ibm.com/haifa/projects/systems/cot/toad/

38 Chapter 4. TestSmellDescriber

The class EntityAdapter is available to accurately store, obtain and compare methods from dif-
ferent tools. To account for the first three cases listed above, the method compareMethodNames(

String, String) is used to compare method headers between DECOR, TACO and TestDe-
scriber. The method equalizeParameterStyle(String) is used to equalize the method headers
from DECOR and TACO, by removing all package paths from the parameters.

4.4.2 TACO
The test smell detection of TACO takes place in the TestSmellDetectionRunner (see class dia-
gram in figure 4.5). The class has access to all the information about the class under test and its
methods. At the start of the detection, the class under test is relayed to the SmellyClassContainer
by invoking addClass(String), which preserves the class in a SmellyClass object. The
TestSmellDetectionRunner passes the test class to be examined to the GeneralFixtureRule

class, and each test case to the EagerTestRule. After examining a method for a smell, a boolean
is returned reporting the result of the detection. If a smell was detected, the method along with
the smell are reported to the SmellyClassContainer by calling addMethod(String, String),
which in turn adds SmellyMethod object to the SmellyClass object. If the class was not found
to being smelly, the SmellyClass is removed from the SmellyClassContainer. The process can be
view in the activity diagram in figure 4.6.

Figure 4.5: Class Diagram: TACO

4.4.3 DECOR
The smell detection in DECOR takes place in many entities. As already mentioned is a smell
composed of one or more rules. In DECOR each rule is called a "code smell", whereas a code
smell, as defined in this thesis, is called "design smell". DECOR automatically generates detection
classes (i.e., DesignSmell and CodeSmell classes) through the composition of a Rule Card and
the execution of RuleCreator. By defining a new Rule Card or by editing an existing one a new
algorithm is created that dictates the detection process. To allow flexibility in the definition of
smell detections, we decided not to gather information in the concrete detection classes, since a
redefinition of a smell detection algorithm would remove the collection of smell information. The
activity diagram in figure 4.7 shows a simplified version of the detection and forwarding of infor-
mation to the TestSmellUtil. IDesignSmellDetection is the interface of a concrete DesignSmell,

4.5 Generation of Descriptions 39

Figure 4.6: Activity Diagram: TACO – smell detection and forwarding of information

while ICodeSmellDetection is the interface of a concrete CodeSmell. Figure 4.10 displays a class
diagram that shows the hierarchy of the detection classes using the example of the Long Method
smell detection. In DECOR a smelly class is composed of a ClassProperty object, and 0 – N other
objects, such as FieldProperty, MethodProperty and MetricProperty. To relay the information
to TestSmellUtil we iterate over the collection of ClassProperties and map them to their corre-
sponding entities in the TestSmellUtil, i.e., FieldProperty to SmellyField and MethodProperty

to SmellyMethod. If a ClassProperty has no FieldProperty or MethodProperty the smell in
question is a Class Smell.

4.5 Generation of Descriptions
After detecting a smell in a test class, that information will be displayed to the developer. The
goal is to help developers to improve their code, therefore, alongside to bringing attention to
the problem itself by displaying a description, we additionally relay a text describing how to
eliminate the discovered problem. These descriptions are relayed to the user as comments in
the source of his code. To augment a class with descriptions we will use the tool TestDescriber
(section 2.4). The tool is able to contribute to the quality of tests by summarizing the code under
test as well as delivering information regarding the coverage of each case. We integrate our tool
TestSmellDescriber into TestDescriber for two reasons:

• As TestDescriber is able to deliver some qualitative information regarding the test code
by making an assessment about its code coverage, we want to further contribute to that
fact by delivering more qualitative information. This information is attained by our tool
TestSmellDescriber by examining the code for test smells and generating descriptive infor-
mation to help developers to narrow down the problem and to improve their code.

• TestDescriber is able to read the content of a test code and to define or augment the com-
ments of the class or its methods. We will use this ability to append our descriptions to the
code.

The description texts are composed with the smell specifications and categorizations by Fowler,
van Deursen, Mäntylä and Meszaros (sections 2.1.1 & 2.1.2). There are short and long version
of descriptions available. The long smell descriptions are used at the class level, while short

40 Chapter 4. TestSmellDescriber

Figure 4.7: Activity Diagram: DECOR – smell detection and forwarding of information

smell descriptions are for method level comments. The smell descriptions serve the purpose
of defining the (potential) problem to the developer. By relaying a detailed description of the
smell we aim to provide the opportunity for the developer to first assess the situation and the
severity of the potential problem that is caused by the smell, and to localize the cause of the
smell. If a smell is strong by causing problems and confusions, a refactoring should be per-
formed [Fow99]. The shorter method descriptions further assist in localizing the cause of a
smell. Parallel to smell descriptions are refactoring descriptions available in short and long form.
After assessing the severity of the problem caused by a smell and localizing its root through
the smell description, the refactoring description provides the information to eliminate a smell
by performing a refactoring. We number refactoring descriptions to allow users to easily link
the shorter method refactoring messages to the detailed descriptions located in the class com-
ment. The texts are parameterized and are adapted using the StringTemplate library5. The pa-
rameterized descriptions can be found in our repository6. These strings can be obtained by in-
voking the methods getAttributeDescription() and getClassDescription() from the class
TestSmellDescriptionWrapper, which gathers information from the SmellyClassContainer,
and uses the SmellyClassParser to calculate required values. The class Description then gen-
erates the textual description using the library StringTemplate. The class diagram for the obtain-
ment of description can be found in figure 4.8.

4.5.1 Class Descriptions
Class descriptions consist of four elements:

a) a pretext stating that problems were found,

b) a long detailed description of the smell,

c) a long description on how to conduct a refactoring to remove the smell,

5http://www.stringtemplate.org/
6Folder: /TestDescriberTestSmellUtil/descriptions/, link to repository: http://bit.ly/2DUiZrC

4.5 Generation of Descriptions 41

d) and a quantitative description denoting the frequency of the smell in the class and the whole
project.

In addition to describing the smell, the quantitative data helps a developer in evaluating the
severeness of the problem in the class and the whole project. By identifying this developers will
not only be able to assess the quality of their current tests, but also gain knowledge into their
overall test writing performance. Listing 4.6 displays part of the class smell description for the
class UtilCacheTest from Apache OFBiz. Here we can observe the different elements of the
description outlined above.

/**
a) * Some problems were detected in this test class:

b) * - This test contains a method that does too many things at once. This

* makes the code hard to understand and maintain.

c) * (0) Shorten the method using Fowler’s Extract Method, by finding parts

* of the method that go together and extracting them to new methods.

d) * This method accounts for 50.00% of all found problems in this test class.

* This smell represents 28.85% of all found problems in the project with

* 6.67% occurring in this test.

**/

Listing 4.6: Class Smell Description for UtilCacheTest

Before obtaining a class description the currently viewed class is passed to
TestSmellDescriptionWrapper by invoking setCurrentClass(String). This obtains the cor-
responding SmellyClass object from the SmellyClassContainer. A class description is then
generated by calling getClassDescription() on the TestSmellDescriptionWrapper. First the
pretext is generated by invoking Description::preClassDescription(int) and passing the
number of found smells, which is provided by the SmellyClass object, then all class smell de-
scriptions are generated by invoking getAllClassDescriptions(Iterator), passing the smells
iterator that is obtained from the SmellyClass object. The method obtains the texts from
Description by invoking classDescription(int, String) to generate the long detailed de-
scription of the smell, longRefactoring(int) to generate the long refactoring description, and
postClassDescription(int, String, String, String) to generate the quantitative descrip-
tion.

Class Smell Descriptions

Table 4.1 lists the class smell descriptions that are displayed to the developer.

Table 4.1: Class level smell descriptions
Smell Description
Eager Test This test contains a method that checks/<numberOfMethods> number

of methods that check too many methods of <classUnderTest> in a
single test case, which makes this test difficult to read, understand and
maintain.

General Fixture The fixture in this test is too general. Individual test cases only require
part of the provided features. This makes this test hard to read, under-
stand, and may slow down the execution of test cases.

Long Parameter
List

This test contains methods/a method that requires a large amount
(<amountOfParameters>) of parameters. A long list of parameters is
hard to understand, to use and may becomes inconsistent over time.

Continuation on the next page

42 Chapter 4. TestSmellDescriber

Continuation of Table 4.1
Smell Description
Long Method This test contains methods/a method that does too many things at once.

This makes the code hard to understand and maintain.
Lazy Class This class has been found to do too little, which artificially increases the

code size and makes the system hard to maintain.
Refused Bequest This test class does not require all methods and fields of its superclass.

This often points to a wrong hierarchy. The relation hurts the clarity
and organization of your system.

Class Refactoring Descriptions

Table 4.2 lists all class refactoring descriptions that are displayed to the developer.

Table 4.2: Class level smell refactoring descriptions
Smell Refactoring description
Eager Test (<refactoringNumber>) Consider using Fowler’s Extract Method tech-

nique on the guilty test case by separating the code into test methods
that only test one method. Simultaneously improve the documentative
purpose of this test by using meaningful names that describe the goal
of the individual test cases.

General Fixture (<refactoringNumber>) Use the fixture only for code that is shared by
all tests. Extract the rest using Fowler’s Extract Method technique into
the methods that use it. This will speed up the execution of your test.

Long Parameter
List

(<refactoringNumber>) If all parameters belong to the same object, re-
place the individual data with the object itself. Otherwise introduce a
new object that contains all the passed data.

Long Method (<refactoringNumber>) Shorten the method using Fowler’s Extract
Method, by finding parts of the method that go together and extract-
ing them to new methods.

Lazy Class Refactor it by eliminating this class.
Refused Bequest Refactor your test by creating a new sibling and pushing your fields

and methods down to the new sibling.

Lazy Class and Refused Bequest are Class Smells and are therefore not numbered.

Quantitative Descriptions

The quantitative description relays three information to the user. First it states how dominant
the smell is in the class compared to all the smells in the class. The calculation for this is 100 ×
thisSmellOccurrencesInClass
allSmellOccurencesInClass . Secondly, it states how often this smell was found in the project rela-

tive to all found smells in the project by calculating 100 × thisSmellOccurencesInProject
allSmellOccurencesInProject . And lastly

it displays how often this smell has occurred in this class compared to all the smell occurrences in
the project with 100× thisSmellOccurrencesInClass

thisSmellOccurencesInProject .
The following shows the string template that is used to display the quantitative description.

This method accounts/This accounts for <smellInClassToAllInClass>% of all found prob-
lems in this test class. This smell represents <smellInProjectToAllInProject>% of all
found problems in the project with <smellInClassToAllInProject>% occurring in this
test.

4.5 Generation of Descriptions 43

With the help of the quantitative description, we give the developer the opportunity to assess
the problematic areas in the current class, as well as over the whole project. This information
indicates reoccurring problems or deficit in the test code. By acknowledging this users are able to
assess their overall test writing skills, and to not only improve their current code by eliminating
smells, but to improve their tests for the future.

4.5.2 Method Descriptions
Method level comments are used to narrow down the root of the problem. Those comments are
generated for Method Smells, i.e., problems whose source of smell is a method. The Method
Smells are Eager Test, General Fixture, Long Parameter List and Long Method. Method descrip-
tions consist of two elements:

a) a short description of the smell,

b) a short refactoring message pointing to the long description in the class comment.

These elements can also be observed in listing 4.7, which presents the method description for
UtilCacheTest::asserKey(String, UtilCache, K, V, V, int, Map). Here we can addi-
tionally perceive the subsequent numbering of the refactoring description that links the method
refactoring message (listing 4.7b) to the class refactoring message (listing 4.6c).

/**
a) * - This method requires too many parameters.

b) * Apply a refactoring suggested in (0) to improve the code.

*/

Listing 4.7: Method Description for UtilCacheTest.assertKey

The method descriptions are obtained by calling getAttributeDescription() on the
TestSmellDescriptionWrapper. The method gathers all smells that a method is guilty of, and
passes it to getAllAttributeDescriptions(Iterator), which obtains all method descriptions
from Description by invoking methodDescription(String) and shortRefactoring(int).

Method Smell Descriptions

Table 4.3 lists all method smell descriptions that are displayed to the developer. Lazy Class and
Refused Bequest are Class Smells and have therefore no method level descriptions.

Table 4.3: Method level smell descriptions
Smell Description
Eager Test This method checks too many methods of <classUnderTest> in a sin-

gle test case.
General Fixture This fixture is too general. Not everything here is required for all test

cases.
Long Parameter
List

This method requires too many (<amountOfParameters>) parameters.

Long Method This method does too many things at once.

Method Refactoring Descriptions

Table 4.4 lists all class refactoring descriptions that are displayed to the developer.

44 Chapter 4. TestSmellDescriber

Table 4.4: Method level smell refactoring descriptions
Smell Refactoring description
Eager Test Apply (<refactoringNumber>) to improve it.
General Fixture Apply (<refactoringNumber>) to improve the test.
Long Parameter
List

Apply a refactoring suggested in (<refactoringNumber>) to improve
the code.

Long Method Improve it by applying (<refactoringNumber>).

4.5 Generation of Descriptions 45

Figure 4.8: Class Diagram: Obtaining smell descriptions

46 Chapter 4. TestSmellDescriber

Figure 4.9: Class Diagram: Storing smelly information

4.5 Generation of Descriptions 47

Figure 4.10: Class Diagram: DECOR code and design smell hierarchy

Chapter 5

Prototype

In chapter 4 we have seen a detailed description of TestSmellDescriber (TSD) and the definition of
smell description and refactoring templates. This chapter will showcase the utilization of TSD on
the tool Apache OFBiz. For this we will first download and compile the to be examined project. In
the next step we will download TestSmellDescriber and export it as a library. The library is then
imported into TestDescriber. Finally we will run the test smell detection on the downloaded and
compiled project. We will highlight the individual steps it requires to run TSD and to augment
classes with test smell descriptions.

5.1 Project Under Test
The test smell detection is performed on a system with a test suite. For this prototype we will
present TSD on the Apache project OFBiz. First, download the source code of Apache OFBiz1.
The results of the smell examination will be added as comments in the source code. TACO addi-
tionally requires the source code to conduct a smell examination. To examine the project on smells
using DECOR a compiled version of the code has to be provided. To compile Apache OFBiz run
the Gradle command gradlew build2. The user guide for the installation of Gradle can be found
on the Gradle website3.

5.2 Smell Description Tools
To augment a class with descriptions using the tool TestDescriber, we will export TSD and then
import it as a library into TestDescriber. The following steps describe how to generate a library
from TSD. This is additionally presented in figure 5.1.

1. Clone TSD from our GitHub repository4.

2. To set up the included module DECOR, navigate to the folder containing the recently down-
loaded repository and execute the following commands:

• git submodule init

• git submodule update

1https://ofbiz.apache.org/developers.html
2https://github.com/apache/ofbiz/blob/trunk/README.md
3https://docs.gradle.org/current/userguide/installation.html
4http://bit.ly/2DUiZrC

50 Chapter 5. Prototype

3. Import the project into your IDE5.

4. Select the class testsmell.runner.TestSmellRunner and run it as a Java Application. This
step is required to make TestSmellRunner available as a launch configuration for step 7.

5. Open the context menu of testsmell.runner.TestSmellRunner and click the item Export.

6. Select Runnable JAR file.

7. Set the launch configuration to TestSmellRunner - TestSmell and select the desired output path
in the Export destination field.

8. Select "Copy required libraries into a sub-folder next to the generated JAR".

9. Click Finish.

In the next step, import TestDescriber, or any other tool with the capability to filter method and
class names, and the ability to edit the Javadoc comment of a Java file, into your workspace.
Include the newly created TestSmell.jar as a library into your application. The for TSD required
dependencies can be found in the folder TestSmell_lib. The folder has to be located in the same
location as TestSmell.jar.
Finally the folder containing the smell description templates has to be added to the root path
of your application. Our repository includes the by us defined templates that are used for the
generation of smell descriptions. The folder is located in /TestDescriberTestSmellUtil/descriptions/.

5.3 Smell Detection
There are two ways to start the smell detection process:

• If the source files of the project under test are contained in the sub folder /src/ and bi-
nary files in a sub folder /bin/, the method TestSmellRunner.testOneProject(rootPath,

toolOuputPath, "class") can be used to easily start the smell detection. The method then
starts the smell detection with TACO, passing it the sub folder /src/, and upon finishing the
task will start DECOR, passing it the sub folder /bin/.

• If source and binary root paths are in different locations, the paths need to be passed indi-
vidually to TSD. This can be achieved by invoking the following methods in this order:

1. TestSmellRunner.run("textual", sourcePath, toolOutputPath)

2. TestSmellRunner.run("structural", sourcePath, toolOutputPath, "class")

The order ensures that the by both smell detection tools detected smell entities are stored
in the same SmellyClassContainer. Starting a new textual examination of a project will
reset the content of your SmellyClassContainer. This allows for the subsequent detection
of more than one project.

TSD will then evaluate the desired project on test smells with the help of the smell detection
tools. Table 5.1 shows the results of the examination detailing the smell occurrences per class,
omitting classes with no smells. Out of five runs TACO required approximately 17.5 seconds for
the examination of Apache OFBiz, while DECOR required 4.5 seconds.

5We used the following IDE: Eclipse Java EE, version Oxygen.1a Release (4.7.1a)

5.3 Smell Detection 51

Table 5.1: Test Smell Detection Results for project Apache OFBiz
Class ET LM LPL MC RB Total
AssertTests 0 1 0 0 0 1
CCServicesTest 0 0 0 0 1 1
ComparableRangeTests 0 0 1 0 0 1
EntityQueryTestSuite 0 1 0 0 0 1
EntitySaxReaderTests 1 0 0 0 0 1
EntityTestSuite 0 1 0 0 0 1
EntityXmlAssertTest 0 0 0 0 1 1
FinAccountTest 0 0 0 0 1 1
FinAccountTests 0 0 0 0 1 1
FlexibleMapAccessorTests 0 1 1 0 0 2
FlexibleStringExpanderTests 1 1 1 0 0 3
GenericMapTest 0 1 0 0 0 1
GenericTestCaseBase 3 0 1 0 0 4
InventoryItemTransferTest 0 0 0 0 1 1
IssuanceTest 0 1 0 0 1 2
LuceneTests 0 0 0 0 1 1
MiniLangTests 0 0 0 0 1 1
ModelTestSuite 1 1 0 1 0 3
ObjectTypeTests 0 0 1 0 0 1
OFBizTestCase 0 0 0 0 1 1
OrderTestServices 0 1 0 0 0 1
PerformFindTests 0 1 0 0 1 2
PurchaseOrderTest 0 0 0 0 1 1
SalesOrderTest 0 1 0 0 1 2
ServiceEngineTests 0 0 0 0 1 1
ServiceEntityAutoTests 0 0 0 0 1 1
ServiceSOAPTests 0 0 0 0 1 1
ServiceTest 0 0 0 0 1 1
SimpleMethodTest 0 0 0 0 1 1
StockMovesTest 0 0 0 0 1 1
StringUtilTests 0 1 0 0 0 1
TestJSONConverters 2 0 0 0 0 2
TestRunContainer 0 1 0 0 0 1
TimeDurationTests 0 1 1 0 0 2
UspsServicesTests 0 0 0 0 1 1
UtilCacheTests 0 1 1 0 0 2
WidgetMacroLibraryTests 0 0 0 0 1 1
XmlRpcTests 0 0 0 0 1 1
Total 8 15 7 1 21 52

We will further present the results of the smell descriptions for the class
FlexibleStringExpanderTests. We chose this class to display a class with more than one class
description, i.e., a class with more than one smell, and which includes a method with more than
one smell occurrence. The smell detection has shown that this class contains three types of smells:
Long Parameter List, Long Method and Eager Test.

52 Chapter 5. Prototype

5.3.1 Long Parameter List
The project has 7 Long Parameter List occurrences. As outlined in section 4.3 is the NOParammetric
used to calculate how many number of parameters a method has. Applying the metric on the
method doFseTest(String, String, FlexibleStringExpander, Map, TimeZone, Locale,

String, Object, boolean) yields the result 9.0. The ordinal value VERY_HIGH with a fuzziness
of 20 results in a value relative to all the entities of the system. A method has a Long Parameter
List smell if the number of parameters is a high outlier. The max bound for the Long Parameter
List smell for the project Apache OFBiz is 6.0. FlexibleStringExpanderTests::doFseTest was
therefore found to contain a Long Parameter List smell.

5.3.2 Long Method
There are 15 occurrences of the Long Method smell in this project. The metric METHOD_LOC calcu-
lates the number of lines of code the methods have. The method doFseTestwas found to have 489
lines of code. The relative upper quartile of the project Apache OFBiz is 280.
FlexibleStringExpanderTests::doFseTest was consequentially found to contain a Long
Method smell.

5.3.3 Eager Test
TACO determines that a method is an Eager Test if the following calculation6 holds:
CS(TC, PM) + CS(PM !) < 2N2−3N

5 . The test case doFseTest in the class
FlexibleStringExpander calls 6 production methods, therefore, the sum of cosine similari-
ties between TC and PM, and between the n-permutation of all PMs has to be smaller than
2×62−3×6

5 = 10.8. The sum of all cosine similarities in doFseTest is 2.398236703944477. TACO
therefore determines that the test case FlexibleStringExpander::doFseTest is an Eager Test.

5.4 Generating Comments
To generate a comment using TSD templates have to be provided that contain the textual content
of the description. We provide templates for the in section 4.5 defined descriptions. These files can
be found in our repository in the sub folder /descriptions/. To use these descriptions copy the folder
into the root path of your application. To then obtain a comment we first have to set the currently
observed entity by invoking TestSmellDescriptionWrapper.setCurrentClass(String), and
passing the class name along with the full path. The full class name for above class is
org.apache.ofbiz.base.util.string.test.FlexibleStringExpanderTests. The method will then obtain the
SmellyClass object from the SmellyClassContainer.
TestDescriber first iterates over all methods of the class, i.e., over all test cases. By invoking
TestSmellDescriptionWrapper.methodIsSmelly(String) we receive a boolean stating if a
smell was found in the method. The passed string has to contain the method name as well
as its parameters. This is important to differentiate between methods that are overloaded. For
the method FlexibleStringExpanderTests::doFseTest, which can be found at the end of the
chapter in listing 5.3, we pass the following parameter: doFseTest(String, String,

FlexibleStringExpander, Map, TimeZone, Locale, String, Object, boolean). The
TestSmellDescriptionWrapper then tries to obtain the method from the corresponding
SmellyAttributeContainer, which contains all smelly attributes, such as fields and methods.

6PM = Production Method, TC = Test Case, CS = Cosine Similarity, N = Number of Production Methods

5.5 Results 53

To recover the correct method, TSD will use the class EntityAdapter, which matches method
headers between TACO, DECOR and TestDescriber. As mentioned is this necessary due to the
different implementations in the tools.
As outlined in the previous section has the method doFseTest been found of being guilty of two
types of smells: Long Parameter List & Long Method. Invoking TestSmellDescriptionWrapper

.getAttributeDescription() will then generate a text describing the smells that were found
in this method. It first generates a short description for the smell and then a short description of
the refactoring. The refactoring strings are numbered consecutively starting from 0. The returned
string for the method doFseTest is:

- This method requires too many parameters.
Apply a refactoring suggested in (0) to improve the code.
- This method does too many things at once.
Improve it by applying (1).

Additionally, calling TestSmellDescriptionWrapper.methodIsSmelly("setUp()") followed
by TestSmellDescriptionWrapper.getAttributeDescription() will return the following
smell description:

- This method checks too many methods of the class being tested.
Apply (2) Extract Method to improve it.

Finally the class description is obtained by invoking TestSmellDescriptionWrapper

.getClassDescription(). Here, the pretext is first generated depending on the number of
smells that were found in this class:

Some problems were detected in this test class:

It then generates a description for all found smells by first generating a description of the smell,
followed by a string describing the refactoring, and finally the quantitative description. The full
string for the Long Method smell is:

- This test contains a method that requires a large amount of parameters.
A long list of parameters is hard to understand, to use and may become
inconsistent over time.
(0) If all parameters belong to the same object, replace the individual
data with the object itself. Otherwise introduce a new object that
contains all the passed data.
This method accounts for 33.33% of all found problems in this test class.
This smell represents 13.46% of all found problems in the project with
14.29% occurring in this test.

TestDescriber augments each description returned by TestSmellDescriber as comments into
the code.

5.5 Results
In the following are the results of the test smell detection and augmentation of descriptions in the
classes FlexibleStringExpanderTests and TestJSONConverters presented.

54 Chapter 5. Prototype

5.5.1 FlexibleStringExpanderTests
Listing 5.1 shows the results achieved by running TestSmellDescriber on the class
FlexibleStringExpanderTests and augmenting the descriptions as comments with the help
of TestDescriber. Only the descriptions, along with class header, and method header of smelly
methods are displayed. We have marked, with letters along the left side, the different sections of
the comment.

/**
a) * Some problems were detected in this test class:

b) * - This test contains a method that requires a large amount of parameters.

* A long list of parameters is hard to understand, to use and may become

* inconsistent over time.

c) * (0) If all parameters belong to the same object, replace the individual

* data with the object itself. Otherwise introduce a new object that

* contains all the passed data.

d) * This method accounts for 33.33% of all found problems in this test class.

* This smell represents 13.46% of all found problems in the project with

* 14.29% occurring in this test.

e) * - This test contains a method that checks too many methods of

* the class being tested at once, which makes this test difficult to read,

* understand and maintain.

f) * (2) Consider using Fowler’s Extract Method technique on the guilty test

* case by separating the code into test methods that only test one method.

* Simultaneously improve the documentative purpose of this test by using

* meaningful names that describe the goal of the individual test cases.

g) * This method accounts for 33.33% of all found problems in this test class.

* This smell represents 15.38% of all found problems in the project with

* 12.50% occurring in this test.

h) * - This test contains a method that does too many things at once. This

* makes the code hard to understand and maintain.

i) * (1) Shorten the method using Fowler’s Extract Method, by finding parts

* of the method that go together and extracting them to new methods.

j) * This method accounts for 33.33% of all found problems in this test class.

* This smell represents 28.85% of all found problems in the project with

* 6.67% occurring in this test.

**/

public class FlexibleStringExpanderTests extends TestCase {

[...]

/**
k) * - This method requires too many parameters.

* Apply a refactoring suggested in (0) to improve the code.

* - This method does too many things at once.

l) * Improve it by applying (1).

*/

private static void doFseTest(String label, String input,

FlexibleStringExpander fse, Map<String, Object> context,

TimeZone timeZone, Locale locale, String compare,

5.5 Results 55

Object expand, boolean isEmpty) {

[...]

}

/**
m) * - This method checks too many methods of the class being tested.

* Apply (2) Extract Method to improve it.

*/

@Override

public void setUp() {

[...]

}

}

Listing 5.1: Smell detection result: FlexibleStringExpanderTests

With a) marked text displays the pretext that states that a smell or multiple smells were found in
this class. Letters b) – d) are the parameterized descriptions for the Long Parameter List smell,
while you can find the description of the Long Method smell in e) – g), and the descriptions for
the Eager Test smell in h) – j). Along with the description of smells in the class comment, are
smelly methods also augmented with comments. The method doFseTest is guilty of two smells,
Long Parameter List (k) and Long Method (l), while setUp has been found to be an Eager Test (m).
To gain the ability to easily find the longer description of a smelly method in the class comment
and its refactoring message, method comments and refactoring messages are numbered. The
quantitative descriptions (d, g, & j) relate the number of occurrences each smell has in the class to
the occurrence in the project.

5.5.2 TestJSONConverters
Listing 5.2 presents the result of the TestJSONConverters class. Here we can observe a smell
which occurs twice in a class. In addition to commentating the methods is this also reflected in
the class smell description stating that "2 number of methods" of the respective smell were found.

/**

* A problem was detected in this test class:

* - This test contains 2 number of methods that check too many methods of

* the class being tested at once,

* which makes this test difficult to read, understand and maintain.

* (0) Consider using Fowler’s Extract Method technique on the guilty test case

* by separating the code into test methods that only test one method.

* Simultaneously improve the documentative purpose of this test by using

* meaningful names that describe the goal of the individual test cases.

* These methods account for 100.00% of all found problems in this test class.

* This smell represents 18.52% of all found problems in the project with

* 20.00% occurring in this test.

**/

public class TestJSONConverters extends TestCase {

[...]

56 Chapter 5. Prototype

/**

* - This method checks too many methods of the class being tested.

* Apply (0) Extract Method to improve it.

*/

public void testJSONToMap() throws Exception {

[...]

}

/**

* - This method checks too many methods of the class being tested.

* Apply (0) Extract Method to improve it.

*/

public void testJSONToList() throws Exception {

[...]

}

}

Listing 5.2: Smell detection result: TestJSONConverters

5.5 Results 57

private static void doFseTest(String label, String input,

FlexibleStringExpander fse, Map<String, Object> context,

TimeZone timeZone, Locale locale, String compare,

Object expand, boolean isEmpty) {

assertEquals("isEmpty:" + label, isEmpty, fse.isEmpty());

if (input == null) {

assertEquals("getOriginal():" + label, "", fse.getOriginal());

assertEquals("toString():" + label, "", fse.toString());

assertEquals("expandString(null):" + label, "", fse.expandString(null));

assertEquals("expand(null):" + label, null, fse.expand(null));

if (timeZone == null) {

assertEquals("expandString(null):" + label, "", fse.expandString(null,

locale));

assertEquals("expand(null):" + label, null, fse.expand(null, locale));

} else {

assertEquals("expandString(null):" + label, "",

fse.expandString(null, timeZone, locale));

assertEquals("expand(null):" + label, null,

fse.expand(null, timeZone, locale));

}

} else {

assertEquals("getOriginal():" + label, input, fse.getOriginal());

assertEquals("expandString(null):" + label, input, fse.expandString(null));

assertEquals("expand(null):" + label, null, fse.expand(null));

if (timeZone == null) {

assertEquals("expandString(null):" + label, input,

fse.expandString(null, locale));

assertEquals("expand(null):" + label, null, fse.expand(null, locale));

} else {

assertEquals("expandString(null):" + label, input,

fse.expandString(null, timeZone, locale));

assertEquals("expand(null):" + label, null,

fse.expand(null, timeZone, locale));

}

}

if (locale == null) {

assertEquals(label, compare, fse.expandString(context));

assertEquals("expand:" + label, expand, fse.expand(context));

} else {

Locale defaultLocale = Locale.getDefault();

TimeZone defaultTimeZone = TimeZone.getDefault();

try {

Locale.setDefault(locale);

TimeZone.setDefault(timeZone);

assertEquals(label, compare, fse.expandString(context, null, null));

assertEquals(label, expand, fse.expand(context, null, null));

Locale.setDefault(badLocale);

58 Chapter 5. Prototype

TimeZone.setDefault(badTimeZone);

assertNotSame(label, compare, fse.expandString(context, null, null));

if (input != null) {

assertNotSame(label, expand, fse.expand(context, null, null));

}

Map<String, Object> autoUserLogin = new HashMap<String, Object>();

autoUserLogin.put("lastLocale", locale.toString());

autoUserLogin.put("lastTimeZone",

timeZone == null ? null : timeZone.getID());

context.put("autoUserLogin", autoUserLogin);

assertEquals(label, compare, fse.expandString(context, null, null));

assertEquals(label, expand, fse.expand(context, null, null));

autoUserLogin.put("lastLocale", badLocale.toString());

autoUserLogin.put("lastTimeZone", badTimeZone.getID());

assertNotSame(label, compare, fse.expandString(context, null, null));

if (input != null) {

assertNotSame(label, expand, fse.expand(context, null, null));

}

context.remove("autoUserLogin");

context.put("locale", locale);

context.put("timeZone", timeZone);

assertEquals(label, compare, fse.expandString(context, null, null));

assertEquals(label, expand, fse.expand(context, null, null));

context.put("locale", badLocale);

context.put("timeZone", badTimeZone);

assertNotSame(label, compare, fse.expandString(context, null, null));

if (input != null) {

assertNotSame(label, expand, fse.expand(context, null, null));

}

context.remove("locale");

context.remove("timeZone");

assertEquals(label, compare,

fse.expandString(context, timeZone, locale));

assertEquals(label, expand,

fse.expand(context, timeZone, locale));

assertNotSame(label, compare,

fse.expandString(context, badTimeZone, badLocale));

if (input != null) {

assertNotSame(label, expand,

fse.expand(context, badTimeZone, badLocale));

}

} finally {

Locale.setDefault(defaultLocale);

TimeZone.setDefault(defaultTimeZone);

}

}

}

Listing 5.3: Smelly Method: doFseTest

5.5 Results 59

Figure 5.1: Export TestSmellDescriber from Eclipse Jave EE

Chapter 6

Conclusion and Future Work

In this thesis we presented TestSmellDescriber, a tool able to detect smells in test suites and to
display them to the developer. The goal of TestSmellDescriber is to bring awareness on the qual-
ity of test code, to help developers to improve the quality of test cases, and to improve writing
test code in general. This is achieved by detecting and describing potential problems in the code
and inserting them as Javadoc comments in the source code. Those areas are detected by stati-
cally examining the code for smells. A code smell occurs due to poor design and implementation
choices. Smelly code is especially prone to bugs and defects, but more than simply contributing
to the incorrectness of code, code smells negatively impact the intentions of software testing by
countering the goals of software testing, as well as amplifying its limitations.
The examination of a test suite is done with the help of automatic smell detection tools. We
initially selected four tools by conducting a literature study, and then assessed these on their us-
ability on test suites, their integrability into one tool, and if and which of the implemented smell
detections metrics are applicable on test cases. The assessment resulted in two tools: DECOR
and TACO. We then combined both tools into one tool, by developing a common entry point for
both tools. The resulting module TestSmellRunner allows for the integration of additional smell
detection tools. We additionally developed a module to unify and collect the results of the by the
tools performed code smell detection, taking different implementations into account.
Furthermore, we have conducted a literature study on the definition and categorization of code
and test smells. The study provided our basis of knowledge for the definition of smell and refac-
toring descriptions. Those messages are parameterized and then displayed to the user. Along
with the descriptions are quantitative information provided in regards to the overall quality of the
examined test suite. The information are intended to help developers in assessing their overall
test writing skills by pointing out reoccurring problems or deficits. With the use of TestDescriber
are the descriptions then integrated as comments into the source code of the examined code.

There are several opportunities for future work that can be conducted on top of this thesis.
TestSmellDescriber currently provides a smell examination with two tools: DECOR and TACO.
In the future more tools could be integrated into TestSmellDescriber to expand the number of de-
tectable smells and to increase the thoroughness of the smell examination. Alternative automatic
smell detection tools could present the ability to detect more as well as different smells than the
currently nine detectable smells. The architecture of TestSmellDescriber enables this as it allows
for easy integration of smell detection tools, and unification of different implementations. This
expansion would allow users to conduct a better assessment of their tests.
Current smell descriptions are rather general and lack low level information in terms of what the
precise problem is per smell. For the smell Test Code Duplication this could be e.g., a set of calls
that were found in more than one test case. This information would lead to more concrete and
detailed refactoring messages, providing better explanations as to how users could improve their

62 Chapter 6. Conclusion and Future Work

code, such as: "extract lines 100–105 from the method." To achieve this tools have to be found or
changes have to be made to the currently used tools, to obtain data detailing what information
lead to the detection of a concrete smell.
This thesis has additionally brought to our attention that while many tools and automatizations
were researched on the detection of code smells, not much research was conducted on the au-
tomating of test smell detections and the development of test smell detection tools. With the
importance of software this is a rather surprising finding, We suggest that research is to be con-
ducted on automating test smell detection, defining test smell metrics and the applicability of
currently available code smell metrics on test cases.
In general a study has to be conducted on TestSmellDescriber, if and to what degree the aug-
mented comments, detailing the cause of the smell, the refactoring, and quantitative data, help
developers to improve their tests, as well as to help them in improving their test writing skills.

Bibliography

[AKGA11] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.
An empirical study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension. In Software maintenance and reengineering (CSMR),
2011 15th European conference on, pages 181–190. IEEE, 2011.

[And11] Marc Andreessen. Why software is eating the world. The Wall Street Journal,
20.08.2011.

[apa18] Apache: Projects by language. https://projects.apache.org/projects.html?language,
2018. [accessed 03. January 2018].

[BDLDP+15] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. An experimental investigation on the innate relationship be-
tween quality and refactoring. Journal of Systems and Software, 107:1–14, 2015.

[BDLMO14] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Au-
tomating extract class refactoring: an improved method and its evaluation. Em-
pirical Software Engineering, 19(6):1617–1664, 2014.

[BML07] Andreas Leitner Bertrand Meyer, Ilinca Ciupa and Lisa (Ling) Liu. Automatic
testing of object-oriented software. In SOFSEM 2007: Theory and Practice of Com-
puter Science, pages 114–129. Springer Berlin Heidelberg, 2007.

[BQO+12] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In Software Maintenance (ICSM), 2012 28th IEEE
International Conference on, pages 56–65. IEEE, 2012.

[BQO+15] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Are test smells really harmful? an empirical study. Empirical Software
Engineering, 20(4):1052–1094, 2015.

[CGP+06] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. Exe: Automatically generating inputs of death. In Proceedings of the Confer-
ence on Computer and Communications Security (CCS), pages 322–335. ACM, 2006.

[che17] checkstyle. http://checkstyle.sourceforge.net/, 2017. [accessed 26. January 2018].

[clo18] Clone digger: discovers duplicate code in python and java.
http://clonedigger.sourceforge.net/, 2018. [accessed 26. January 2018].

64 BIBLIOGRAPHY

[con18] Conqat. https://www.cqse.eu/en/products/conqat/overview/, 2018. [accessed
26. January 2018].

[Csa04] Christoph Csallner. Jcrasher: an automatic robustness tester for java. pages 1025–
1050, 2004.

[DCF+15] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
Modeling readability to improve unit tests. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages 107–118. ACM, 2015.

[ESČP17] Eduard Enoiu, Daniel Sundmark, Adnan Čaušević, and Paul Pettersson. A com-
parative study of manual and automated testing for industrial control software.
In Software Testing, Verification and Validation (ICST), 2017 IEEE International Con-
ference on, pages 412–417. IEEE, 2017.

[FA15] Gordon Fraser and Andrea Arcuri. 1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with evosuite. Empirical Software
Engineering, 20(3):611–639, 2015.

[FBZ12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detec-
tion of bad smells in code: An experimental assessment. Journal of Object Technol-
ogy, 11(2):5–1, 2012.

[FKG09] M. Di Penta F. Khomh and Y.-G. Guéhéneuc. An exploratory study of the impact
of code smells on software change-proneness, June 2009.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. 1999.

[FSM+13] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
Does automated white-box test generation really help software testers? In Pro-
ceedings of the 2013 International Symposium on Software Testing and Analysis, pages
291–301. ACM, 2013.

[FSM+15] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
Does automated unit test generation really help software testers? a controlled em-
pirical study. ACM Transactions on Software Engineering and Methodology (TOSEM),
24(4):23, 2015.

[FTC07] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou. Jdeodorant:
Identification and removal of feature envy bad smells. In Software Maintenance,
2007. ICSM 2007. IEEE International Conference on, pages 519–520. IEEE, 2007.

[jde18] Jdeodorant on github. https://github.com/tsantalis/JDeodorant, 2018. [ac-
cessed 05. January 2018].

[KDPGA12] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano An-
toniol. An exploratory study of the impact of antipatterns on class change-and
fault-proneness. Empirical Software Engineering, 17(3):243–275, 2012.

[KS10] Pavan Kumar and Khasim Syed. Software testing–goals, principles, and limita-
tions. International Journal of Engineering Science & Advanced Technology, (1):52–56,
2010.

[Mä03] Mika Mäntylä. Bad smells in software: a taxonomy and an empirical study, 2003.

BIBLIOGRAPHY 65

[MAK+15] Mika V. Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström, and Kai Pe-
tersen. On rapid releases and software testing: a case study and a semi-systematic
literature review. Empirical Software Engineering, 20(5):1384–1425, Oct 2015.

[Mar04] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design
flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE International Conference
on, pages 350–359. IEEE, 2004.

[Mar07] Robert C. Martin. Professionalism and test-driven development. IEEE Software,
24(3):32–36, May 2007.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. 2008.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. 2007.

[MGDLM10] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. Decor: A method for the specification and detection of code and design
smells. IEEE Transactions on Software Engineering, 36(1):20–36, 2010.

[MGLM+10] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, Laurence
Duchien, and Alban Tiberghien. From a domain analysis to the specification and
detection of code and design smells. Formal Aspects of Computing, 22(3-4):345–361,
2010.

[MHB10] Emerson Murphy-Hill and Andrew P Black. An interactive ambient visualiza-
tion for code smells. In Proceedings of the 5th international symposium on Software
visualization, pages 5–14. ACM, 2010.

[MMMW05] Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, and R Wettel.
iplasma: An integrated platform for quality assessment of object-oriented design.
In In ICSM (Industrial and Tool Volume. Citeseer, 2005.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 2011.

[MTSV16] Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta.
Jdeodorant: clone refactoring. In Software Engineering Companion (ICSE-C),
IEEE/ACM International Conference on, pages 613–616. IEEE, 2016.

[ope18] Open hub, the open source network. https://www.openhub.net/, 2018. [ac-
cessed 03. January 2018].

[org18] Organic on github. https://github.com/opus-research/organic, 2018. [accessed
05. January 2018].

[Pal15] F. Palomba. Textual analysis for code smell detection. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 2, pages 769–771,
May 2015.

[PBDP+13] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. Detecting bad smells in source code using
change history information. In Proceedings of the 28th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 268–278. IEEE Press, 2013.

[PDFS17] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna.
On the evaluation of code smells and detection tools. Journal of Software Engineer-
ing Research and Development, 5(1):7, 2017.

66 BIBLIOGRAPHY

[PE07] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random test-
ing for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 815–816. ACM, 2007.

[PKT15] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformu-
lating branch coverage as a many-objective optimization problem. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference on,
pages 1–10. IEEE, 2015.

[pmd17] Pmd: An extensible cross-language static code analyzer. https://pmd.github.io/,
2017. [accessed 26. January 2018].

[PMGZ13] Fayola Peters, Tim Menzies, Liang Gong, and Hongyu Zhang. Balancing privacy
and utility in cross-company defect prediction. IEEE Transactions on Software En-
gineering, 39(8):1054–1068, 2013.

[PPB+16] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C Gall. The impact of test case summaries on bug fixing performance:
An empirical investigation. In Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on, pages 547–558. IEEE, 2016.

[PPDL+16] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. A textual-based technique for smell detection. In Program Comprehen-
sion (ICPC), 2016 IEEE 24th International Conference on, pages 1–10. IEEE, 2016.

[RFA15] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Automated unit test gen-
eration during software development: A controlled experiment and think-aloud
observations. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, pages 338–349. ACM, 2015.

[RMPM12] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen, and
Mika V Mäntylä. Benefits and limitations of automated software testing: System-
atic literature review and practitioner survey. In Proceedings of the 7th International
Workshop on Automation of Software Test, pages 36–42. IEEE Press, 2012.

[RT01] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In
Proceedings of the 23rd international conference on Software engineering, pages 25–34.
IEEE Computer Society, 2001.

[SSS14] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring for
Software Design Smells: Managing Technical Debt. 2014.

[TC09a] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities. In Software Maintenance and Reengineering,
2009. CSMR’09. 13th European Conference on, pages 119–128. IEEE, 2009.

[TC09b] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of move method
refactoring opportunities. IEEE Transactions on Software Engineering, 35(3):347–
367, 2009.

[TC11] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of methods. J. Syst.
Softw., 84(10):1757–1782, October 2011.

BIBLIOGRAPHY 67

[TCC08] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
Jdeodorant: Identification and removal of type-checking bad smells. In Soft-
ware Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference
on, pages 329–331. IEEE, 2008.

[Ton04] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Software Engi-
neering Notes, volume 29, pages 119–128. ACM, 2004.

[TPB+15] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and why your code
starts to smell bad. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, volume 1, pages 403–414. IEEE, 2015.

[VDMvdBK01] Arie Van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactor-
ing test code. In Proceedings of the 2nd international conference on extreme program-
ming and flexible processes in software engineering (XP2001), pages 92–95, 2001.

[VEM02] Eva Van Emden and Leon Moonen. Java quality assurance by detecting code
smells. In Reverse Engineering, 2002. Proceedings. Ninth Working Conference on,
pages 97–106. IEEE, 2002.

[VVDP+15] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessan-
dro Garcia, and Willian Oizumi. Jspirit: a flexible tool for the analysis of code
smells. In Chilean Computer Science Society (SCCC), 2015 34th International Confer-
ence of the, pages 1–6. IEEE, 2015.

[WB98] Hays McCormick William Brown, Raphael Malveau. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. 1998.

[ZA10] Nico Zazworka and Christopher Ackermann. Codevizard: a tool to aid the anal-
ysis of software evolution. In Proceedings of the 2010 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, page 63. ACM, 2010.

