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Abstract

User feedback plays a paramount role in the development and maintenance of mobile applica-
tions. The experience an end-user has with an app, is a key concern when creating and main-
taining a successful product. Consequently, developer teams need to incorporate opinions and
feedback of end-users in the evolutionary process of their software, in order to meet market re-
quirements. However, existing app distribution platforms provide limited support for developers
to systematically filter, aggregate, and classify user feedback to derive requirements. Moreover,
manually reading each user review to gather useful feedback is not feasible, considering the sheer
amount of reviews popular apps have received and continue to receive day after day. Even then,
the gathered information is restricted to user reviews, and no systematic way exists to link user
feedback to the related source code components to be changed, a task that requires an enormous
manual effort and is highly error-prone.

To fill this void, Palomba et al. [PSC+18] introduced ChangeAdvisor, an approach able to clus-
ter user reviews, useful for software maintenance tasks, into topics, in order to recommend de-
velopers, which source code entities to change. This already greatly simplifies the work for the
developer, as it is not necessary anymore to sift through the reviews, divide them in valuable or
valueless feedback, then try to figure out, which source code component is affected from the pro-
posed changes. However ChangeAdvisor, until now, existed only as a Proof of Concept, which was
limited in terms of extensibility and maintainability, as well as in functionality.

Thus, this thesis implements ChangeAdvisor as a library, in order to support future extensions
of the approach, as well as a client-server application, to allow developers to fully leverage the
power of the information contained in user feedback.





Zusammenfassung

Das Benutzerfeedback spielt eine wichtige Rolle bei der Entwicklung und Wartung von Mobile
Apps. Die Erfahrung, die ein Endbenutzer mit einer App hat, ist einer der wichtigsten Punkte
bei der Entwicklung und Wartung eines erfolgreichen Produkts. Aus diesem Grund müssen En-
twicklerteams Meinungen und Feedbacks von End-Usern in den Entwicklungsprozess ihrer Soft-
ware einfliessen lassen, um den Marktanforderungen gerecht zu werden. Bestehende App Stores
bieten Entwicklern jedoch nur begrenzte Unterstützung, um Benutzerfeedbacks systematisch zu
filtern, zu aggregieren, und zu klassifizieren. Ebenso fehlt es an Techniken, um aus diesen Feed-
backs Anforderungen an das Produkt herzuleiten. Ausserdem ist das Lesen jener Feedbacks nicht
praktikabel, wenn man die Menge an täglichen Bewertungen für beliebte Apps berücksichtigt.
Selbst wenn die Menge an Bewertungen kein Problem wäre, sind die gesammelten Informatio-
nen auf Benutzerbewertungen beschränkt und es gibt keine Möglichkeit die Benutzerfeedbacks
mit den zu ändernden Quellcode-Komponenten systematisch zu verlinken. Dies wäre nur mit
enormen manuellem Aufwand zu ermöglichen und wäre sehr fehleranfällig.

Um diese Lücke zu füllen, führte Palomba et al. [PSC+18] ChangeAdvisor ein. Der ChangeAd-
visor Ansatz erlaubt es, Benutzerfeedbacks, welche für die Softwarewartung nützlich sind, nach
Themen zu gruppieren. Dank diesen Themengruppen sehen die Entwickler welche Quellcode-
Komponenten verbessert werden sollten. Dadurch wird die Arbeit der Entwickler bereits verein-
facht, da es nicht mehr notwendig ist die Reviews manuell zu durchsuchen, zu unterteilen und
den Quellcode-Komponenten zuzuordnen.

Bisher war ChangeAdvisor nur ein Proof of Concept, welcher in Bezug auf Wartbarkeit, Erweit-
erbarkeit und Funktionalität sehr eingeschränkt war. In dieser Bachelorarbeit wird ChangeAdvi-
sor deshalb als Softwarebibliothek implementiert, um zukünftige Erweiterungen zu unterstützen.
Zusätzlich wurde eine Client-Server App implementiert, welche es Entwicklern erlaubt die gesamten
Informationen aus Benutzerfeedbacks zu nutzen.
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Chapter 1

Introduction

The importance of end-user perception of a product cannot be overstated. The experience users
have with an application, are, almost entirely, decisive for the success or failure of a project. Mod-
ern software development has moved away from a traditional paradigm such as waterfall, in fa-
vor of continuous delivery, were new updates are available every other week and new features are
added over time. This is particularly true for mobile apps. Indeed, the advent of mobile apps and
app stores, made it easier than ever to manage such release schedules. With app stores, came also
the possibility for users to voice their opinion regarding an application. This is, usually, in the
form of free text and a numerical score. Behind these two simple points, hides a literal trove of
information. Indeed, through text, a user can describe the problems he had, whether he likes the
app or not, or express their wishes for new options and features, while the rating concisely and
numerically represents the opinion the users has. It also contains other useful information, either
through the app store itself, such as review date, and software version, as well as, sometimes,
smartphone or tablet used. Developers, can and should take advantage of this information as a
backlog for development.

1.1 Motivation
There are difficulties in exploiting this information, however. The various app stores, usually
provide only limited support for sorting and aggregating this data. Additionally, it is not always
feasible to read through all reviews, considering popular apps may receive hundreds of reviews
a day.

In order to solve this problems, recent studies have come up with new approaches to classify
user reviews. Most of these, however, do not consider sentence structure and semantics, relying
solely on keywords [PSC+18]. Additionally, many of these studies only attempted a classification
or summarisation of reviews. It would be of great benefit to developers, if there were a tool to
help them in identifying the source code components that need change.

In this respect, Palomba et al. [PSC+18] introduced ChangeAdvisor, an approach able to cluster
user reviews into topics, and then link these topics to the source code components in need of
change. Such an approach, greatly reduces the amount of time needed to analyze user feedback,
and makes it less error-prone. However, ChangeAdvisor, existed only as a Proof-of-Concept (PoC),
which is not ready yet for continuous use, and lacks many features necessary, in order for it to be
adopted by software developers.

Thus in this work, we aim to redesign and implement ChangeAdvisor from the ground-up,
keeping in mind aspects, such as maintainability and extensibility, in order to lay the foundations,
for future work to expand on this tool, integrating newer and more advanced approaches, and
functionality.



2 Chapter 1. Introduction

1.2 Thesis Outline
This thesis is a report on the design and implementation of the ChangeAdvisor approach [PSC+18]
as a Java application. This Chapter provided an overview of the context and motivation for this
work.

Chapter 2 presents the research done in the field of App Store Review Mining, which is the field
this works is situated in. Also an overview of the original ChangeAdvisor paper is given at the
end of the Chapter (2.1.2).

In Chapter 3, we review the theory behind the newest iteration of ChangeAdvisor. Here the
high-level concept of the tool is described, including how each step of the process works.

Chapter 4, goes into detail of the actual implementation of the tool: this includes the software’s
architecture, as well as how each step is implemented, how scheduling is implemented, and what
tools and libraries are used, in order to achieve our goal.

Chapter 5, presents a qualitative evaluation of this work. Given the open-ended nature of this
implementation, the review is done by mainly presenting the non-functional requirements for
ChangeAdvisor, and showing how the various features of this tool, not only achieve the main
goal, but they even go beyond, showing how it enables many future prospects for extension.

Finally, Chapter 6, concludes this thesis, briefly reviewing the work done, and most impor-
tantly, presenting some of the possibilities for future extension.



Chapter 2

Related Work

In this section, I will briefly summarize the research done in the context of App Store Review Mining
and Linking of information contained in free-form text to source code.

2.1 App Store Mining for Software Engineering
User reviews provide an invaluable source of data regarding user perception of a product. Indeed,
Mudambi and Schuff showed in 2010, that there is a strong correlation between user reviews and
purchasing decisions of products on amazon.com [MS10]. The advent of App Stores, such as
Google Play Store and Apple’s App Store in 2008, made it easier than ever to access software and
review apps. This is made evident by the download and review numbers, presented in Table 2.1,
of popular applications. We can see that in the brief span of seven years, an app like Facebook
had between 1 and 5 billions unique installs, considering Android alone, and over 72 million users
commented on their problems, their praise, and their wishes for new features.

It is no wonder then, that researchers started to come up with ways to capitalize on this
wealth of, albeit unstructured, information to extract useful structured data. This brings us to
Harman et al. [HJZ12] which introduced the concept of App Store Mining as a form of Mining Soft-
ware Repositories. In their work, they showed a strong correlation between an app’s rating and
download rank. Their approach can roughly be described in the following three steps: (i) extract
raw data from the App store, (ii) parse data extracting all attributes regarding price, ratings, and
description, and (iii) use data mining to extract relevant features from gathered description.

Table 2.1: Release year, number of unique installs and reviews for popular apps on the Google Play Store
(standings Nov. 20172).

App name Release Year Unique Installs (in millions) Reviews (in millions)
Facebook 2010 1’000 - 5’000 72
Facebook Messenger 2011 1’000 - 5’000 49
Whatsapp 2010 1’000 - 5’000 60
Pokemon GO 2016 100 - 500 9

2Google Play Store statistics, as of November 2017:
https://play.google.com/store/apps/details?id=com.facebook.katana&hl=en
https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.nianticlabs.pokemongo

https://play.google.com/store/apps/details?id=com.facebook.katana&hl=en
https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.nianticlabs.pokemongo


4 Chapter 2. Related Work

The result of which are statistics regarding technical, customer, and business aspects of each
app.

Many researchers focused on the analysis of user reviews, as can be seen in the survey by
Martin et al. [MSJ+16]. In their work, the authors summarized and identified the following seven
subfields of App Store Analysis.

• API Analysis: studies that extract feature information by analyzing app APKs and/or source
code together with non-technical data [MSJ+16].

• Feature Analysis: studies that extract features from sources, other than source code and re-
quirements. In this subfield, information is extracted by analyzing descriptions, API usage,
manifest files, decompiled source strings, categories, and permissions [MSJ+16].

• Release Engineering: studies that extract feature information from app releases. It analyzes
how the content changes between releases, the effects on user perception, and the releases
strategies adopted by developers (e.g. app category diversification, free vs. paid, update
rollouts) [MSJ+16].

• Review Analysis: studies that extract feature information by examining user feedback [MSJ+16].

• Security: studies that explore various security aspects of apps, such as faults in code leading
to vulnerabilities, malicious apps, permissions, plagiarism, privacy, and update behaviour
of users [MSJ+16].

• Store Ecosystem: studies that explore "the ecosystem of each app store and the differences
between them" [MSJ+16].

• Size and Effort Prediction: studies that predict size or effort based on the list of functionali-
ties of an app [MSJ+16].

Of particular interest for this work are: (i) API Analysis, and (ii) Review Analysis.

2.1.1 API Analysis
API analysis refers to techniques that attempt to extract feature information by examining open-
sourced source code and combine such features with non-technical data (e.g. ratings). Mar-
tin et al. [MSJ+16] identified 4 subfields: (i) API usage, (ii) Class Reuse and Inheritance, (iii) Faults,
(iv) Permissions and Security.

API Usage. Azad [Aza15] mined apps from Google Play Store and F-droid, in particular, method
calls to suggest (i) related calls from the VCS history, (ii) similar calls found in Stack-Overflow
posts, (iii) possible copyright and license violations with open-source software. Tian et al. [TNLH15]
proposed a case study encompassing over 1400 apps, in which they identified 28 possible fac-
tors that might determine the rating of apps. Through this study they determined that, in high-
rated apps, 17 of the 28 characteristics proposed, deviate significantly from low-rated apps. The
most influential factors they found were: size of an app, use of promotional images, and target
SDK [TNLH15].

Faults. Many studies have concluded that there is a link between Fault and change-prone APIs
and low rated apps [MSJ+16]. Indeed, Linares-Vasquez et al. [BLVBC+15] studied how the use of
change- and fault-prone APIs impacted the success of apps. Their results indicate that there is an
inverse relation between the usage of such APIs and their rating.
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Syer et al. [SNAH15] proposed to use the degree of platform dependence (or independence)
as an indicator of software quality. The authors argue that system specific APIs are rapidly evolv-
ing, and thus often introduce defects. Through their study they found, that the more defect-prone
source files are those that depend more heavily on the platform, thus degree of platform depen-
dence could be used to prioritize QA resources.

Khalid et al. [KNH16] proposed the use of popular static analysis tool FindBugs to find pos-
sible relations between warnings and user rating. The authors found that the categories "bad
practice", "internationalization", and "performance", appeared more frequently in low rated apps,
and that seemed to reflect user perception.

2.1.2 Review Analysis
Review analysis refers instead to techniques that attempt to extract features by analyzing user
reviews, by employing Natural Language Processing, Sentiment Analysis, and Topic Modelling. The
goals of this analysis are multiple, the most important of which are mentioned here:

• Review classification

• Determining factors that affect user feedback

• Extraction of bug reports and feature requests

• Review prioritization

• Review summarisation

These subfields are of particular interest for this work, since they are the foundation it is based
on: by taking the work done in both categories and merging it into a tool capable of correlating
reviews and code, as seen in Chapter 3.

In the context of App Store Analysis, Pagano et al. [PB13] showed the need for automated tools
for review analysis. Indeed they proposed a case study which showed, that user feedback con-
tains important information for developers, which helps in software maintenance tasks. However
manually analyzing reviews, especially for popular apps, requires a considerable time invest-
ment. This is caused by the fact that user feedback is unstructed, and that the quality and content
varies greatly between users [PB13]. Additionally, users often do not posses the necessary ter-
minology to precisely describe what they would like and what their problems are. Their results
show the necessity for software support to categorize, analyze, and track user feedback [PB13].

Khalid et al. [KSNH15] ran a study over a set of over 6000 low-rated user reviews of 20 iOS
apps. They discovered 12 types of user complaints, the most frequent of which were functional
errors, feature requests, and app crashes. The authors argue that developers should devote particular
attention to user feedback, since negative reviews affect sales more than good review [KSNH15].
By categorizing the user feedback, they believe developers can better plan their limited quality as-
surance (QA) resources, by focusing on higher prioritized reviews. Their study results also stress
the importance of establishing trust and meeting expectations with their user base [KSNH15].

Review Classification and Summarisation. As mentioned before, Review classification is a sub-
field of App Store Mining that concerns itself with automatically being able to classify reviews
based on the textual features contained inside feedback. In this regard, Chandy and Gu [CG12]
mined over six million reviews from the iOS App Store. After manually labeling a subset of the
reviews as spam or not spam, they trained an unsupervised classifier to automatically catego-
rize reviews taking into account average user ratings, and number of apps rated. Continuing
from here, Ha et al. [HW13] manually examined reviews from the Google Play Store to determine
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Table 2.2: ARdoc categories [PDSG+16]
Category Description User Feedback Example

Information Giving
Sentences that inform or update
users or developers about an
aspect related to the app

"This app runs so smoothly
and I rarely have issues
with it anymore"

Information Seeking
Sentences related to attempts to
obtain information or help from
other users or developers

"Is there a way of getting
the last version back?"

Feature Request

Sentences expressing ideas,
suggestions or needs for
improving or enhancing the app
or its functionalities

"Please restore a way to
open links in external
browser or let us save
photos"

Problem Discovery Sentences describing issues with
the app or unexpected behaviours

"App crashes when new power
up notice pops up"

Other Sentences do not providing any
useful feedback to developers "What a fun app"

whether users were talking about the privacy and security aspects of an app. From their sample,
they determined that only 1% of the user reviews mentioned these aspects.

Chen et al. [CLH+14] proposed AR-MINER, a framework for App Review Mining, capable of
discerning informative reviews from the non-informative. Their approach works by (i) filtering
out noisy and irrelevant reviews, (ii) using topic modelling to cluster reviews together by topic,
(iii) ranking reviews, and (iv) presenting the ranked and clustered reviews to the developers.
They argue that their approach can facilitate the work of sifting through user feedback for big
review sets.

Panichella et al. [PDSG+15] presented a system, capable of analyzing user reviews to support
software maintenance and requirements evolution. The authors presented a taxonomy to classify
reviews, merging three techniques: (i) Natural Language Processing, (ii) Text Analysis, and (iii) Sen-
timent Analysis. Later the authors further developed this idea and introduced ARdoc [PDSG+16],
a review classifier, which this work heavily relies on. The authors divided reviews in 5 cate-
gories, presented in Table 2.2. They argue that ARdoc could be useful in combination with topic
modelling techniques, for example, dividing all reviews into categories before clustering, could
provide a higher degree of cohesion inside the clusters.

In recent work, Sorbo et al. introduced SURF (Summarizer of User Reviews Feedback) [DSPA+17],
a tool "able to (i) analyze and classify the information contained in app reviews and (ii) distill ac-
tionable change tasks for improving mobile applications" [DSPA+17]. It is capable of summariz-
ing thousands of user reviews to generate a task list of recommended software changes [DSPA+17].

ChangeAdvisor

Finally, Palomba et al. introduced ChangeAdvisor [PSC+18], a novel approach, built on the
work of Panichella et al [PDSG+16], able to cluster user reviews into topics, and link these topics
to source code entities. Additionally they developed a Proof of Concept (PoC) to demonstrate their
approach.

The approach works as follows [PSC+18]:

• User feedback is tagged based on predefined categories

• Source code and feedback are preprocessed
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• Feedback belonging to the same category is clustered, to group together similar user needs

• Determine code components related to user change requests

User Feedback Classification. In order to classify user feedback, ChangeAdvisor leverages
ARdoc [PDSG+16]. Given user feedback, this classifier is capable of identifying the category the
review belongs to. Table 2.2 shows an overview of the various categories.

Source Code and Feedback Preprocessing. In order to remove noise from both source code
and feedback, the data set is pre-processed. The result of this step is a bag of words that will be
used as input for the following steps.

User Feedback Clustering. Similar user needs are clustered in the following step. This is done
for two reasons: (i) linking single reviews does not result in good accuracy results, and (ii) mul-
tiple users will probably have the same problems or needs that refer to the same change request.
By clustering, this approach can achieve better results, all the while giving the developer a better
overview of the users’ perception and needs.

Recommending Source Code Changes. Clustered change requests (user feedback referring
to the same task) are linked against the preprocessed source code component, to find out which set
of classes need to be changed, according to user feedback. Links are computed using a similarity
metric. Only pairs of code components and clusters that achieve a minimum similarity threshold
are considered as related. The output is then a list of tuples (cluster, component, similarity), links,
representing the reviews cluster, the source component, and their similarity metric. Concretely,
each tuple is the class that needs to be changed in order to fulfil the users’ request.

Limitations. The ChangeAdvisor tool at the moment exists solely as a PoC. It consists of a mix
of Java code and Python Scripts, with some glue code in the form of Shell scripts inside a docker
container. It takes the path to the source code and a review set and runs the process. As such,
it is not yet flexible enough to be of real use for a team of developers, and is hard to maintain.
Ideally, in order to become productive with ChangeAdvisor, a developer would need to be able
to configure it, according to its need. Such needs would include, at a minimum, the possibility to
automatically import user reviews, according to a schedule, and the possibility to import source
code, ideally from a Version Control System (VCS). With these functions in place, the tools could be
further developed to allow a developer to explore the reviews and the links to the source code by
playing around with time intervals, running the linking only on certain categories, or even test
different clustering methods or similarity metrics.

Combining all these functions with a UI, would be of great help to developers, allowing them
to gather more insight into their code, and explore the perception a user has of their work in many
different ways.

This work, then, has as a goal, to use the ChangeAdvisor [PSC+18] PoC, to lay the ground
work for a new implementation of ChangeAdvisor, that is first of all configurable and maintain-
able. This tool should contain all of the features of the original work, plus new features such as
a UI for the configuring of the parameters, scheduling of long running tasks, and a way to better
explore user reviews through the use of visuals, such as diagrams. In doing so, it will become
possible for future work to continue to evolve ChangeAdvisor adding new features, in order
to better support developers, in the tedious task of gathering and understanding user change re-
quests, by proposing entities that need change, in a fully automatic fashion. This would enable
developers to leverage the wealth of information contained in reviews, and better plan their QA
resources.





Chapter 3

Approach

In this work, we aim to build a tool that is capable of a giving a team of developers insight into
user reviews and the change requests contained within by (i) automatically importing user re-
views, (ii) analyze these reviews in order to (iii) extract the top topics discussed and sentiments of
the users, and finally (iv) link these topics to the source code which is going to need change. This
tool is called ChangeAdvisor and it is composed of two parallel data processing pipelines. Fig-
ure 3.1 shows the two pipelines; (i) the Review Pipeline and (ii) the Code Pipeline, and the key steps
of each pipeline and how they come together to compute the links between code and feedback.

Figure 3.1: ChangeAdvisor Pipeline

This Chapter explains the overall functioning of ChangeAdvisor as it was implemented for
this thesis, while further implementation details can be found in Chapter 4. Section 3.1 describes
the Review Pipeline, while Section 3.2 the Source Code Pipeline. Section 3.3 explains how the linking
algorithm determines links between source code and feedback. Finally, Section 3.4, gives a brief
overview of the differences between the Proof of Concept and the implementation done as part of
this thesis.
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3.1 Review Pipeline
The ChangeAdvisor approach requires two inputs: user reviews and code. In this section, I
shall describe the first pipeline, the Review Pipeline, that contributes to the system by feeding the
linking step with reviews.

User feedback come in many shapes and forms. If we consider feedback regarding a broken
feature for example, the same problem might be described very differently by different people,
ranging from the very generic "ur app is terrible, i cant even login!", to the more specific "I tried
going under settings and tapping the blue button and then the app crashed. Happens on a Sam-
sung Galaxy S7" and again to "Clicking on the log-in with Facebook button doesn’t work". All three
reviews are discussing about the same problem they are having and yet are very different under
many aspects. In order to be able to correctly identify similar feedback, certain steps are necessary
to normalize user reviews.

As such a pipeline for reviews was devised that could process reviews into a usable format
for the ChangeAdvisor linker. Its main steps, which can be seen in Figure 3.2, are:

• the Review import step imports users reviews into ChangeAdvisor. It uses the Review
Crawler Tool [Gra] implemented in-house at UZH to mine user reviews from the Google Play
Store.

• the Review Categorization and Analysis step, processes user reviews into various categories
such as FEATURE REQUEST or BUG REPORT, so that in the last step we can apply topic
modelling more effectively, having grouped together reviews. In order to do so, we lever-
age ARdoc [PDSG+16], a review classifier which uses Natural Language Processing (NLP),
Sentiment Analysis and Text Analysis to classify reviews.

• the Preprocessing step handles the normalization of user feedback, in order to reduce noise
in the reviews. This step is composed of classic NLP techniques such as stop word removal,
stemming, and Part-of-Speech filtering in order to clean up user feedback.

• the Clustering step groups reviews discussing the same change request together. Two clus-
tering algorithms were implemented for this work: Hierarchical Dirichlet Process [TJBB05] (HDP,
3.1.4) and Term Frequency-inverse Document Frequency [JON72] (TFIDF, 3.1.4).

3.1.1 Review Import
As mentioned, ChangeAdvisor requires reviews as an input. As such, this work includes the
functionality to mine user reviews from the Google Play Store. This import function takes the Google
Play Store Id of an app, and includes the possibility to import reviews either in a scheduled manner
or triggered by user action. The review miner was written at the University of Zurich [Gra] and
was integrated into ChangeAdvisor. This functionality represents one of the biggest changes in
respect to the PoC. With the proof of concept, a developer would have had to separately export all
his reviews, maybe writing them to a database or to a file. ChangeAdvisor would then run its
computation over the entire data set. If he wanted to regularly use ChangeAdvisor, he would
have to regularly append the most recent reviews export to his database, export into a format
suitable for the tool, and then re-run the same computation even though only a small part of the
ever-growing data set has changed. Thus, providing the possibility for a user of ChangeAdvisor
to import reviews directly into the tool, using a predefined schedule, or even just by manually
triggering the process, represents a huge step forward in terms of usability.
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Figure 3.2: Review pipeline. The result of each step, represents the input to the following one.

3.1.2 Review Analysis
The goal of the Review Analysis step is to categorize reviews, as a pre-clustering step, to increase
the overall accuracy of the system, as mentioned in Section 2.1.2. Reviews present in the database
are analyzed using ARdoc [PDSG+16], in order to assign to the feedback one of the categories
presented in [PDSG+15]. An overview of these categories can be seen in Table 2.2. A review might
be composed of multiple sentences, while ARdoc analyzes single sentences in isolation. Consider
a review such as "Great game very addicting would give it 5 stars. Unfortunately ever since the
last update, the game crashes after the fourth turn". This review is composed of two sentences, the
first part would be categorized as Information Giving, while the second part as Problem Discovery.
This example shows that a single review might have different categories assigned to each sentence
of the review. To keep track of context after processing, the review is split into it’s composing
sentences and saved separately, but each with a reference to the original sentence. Thus, the
example above, would become two separate entities in the review pipeline. This is particularly
useful when showing the linking results at the end, where the context of the entire sentence might
be of use, instead of just part of it.

3.1.3 Review Preprocessing
Preprocessing is necessary in order to remove the noise contained in user reviews that might
hinder the accuracy of the NLP techniques used and to make reviews consistent to each other.
For this a series of steps were defined to transform the categorized reviews into input suitable for
ChangeAdvisor:

Sentence Correction. The feedback’s sentences are checked for spelling and grammar mis-
takes using the LanguageTool [lan] API. This tool is capable of parsing sentences and suggesting
changes to correct them, but it is only able to make suggestions. Because of this, ChangeAdvisor
applies each suggestion automatically. Since LanguageTool checks both spelling and grammar,
it comes with a noticeable performance penalty, when processing thousands of reviews. Future
work might want to look into possible alternatives for sentence correction, or limiting the correc-
tion to only spelling mistakes.
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Contractions Expansion. All English (colloquial) contractions are replaced with their expanded
forms (e.g. "it’s" becomes "it is"). Contractions are identified by the use of regular expressions for
both two parts contractions (e.g. "it’s") and three parts contractions (e.g. "wouldn’t’ve"). Once
a contraction is identified, its expanded form is found from a dictionary of contractions and it is
replaced.

Tokenization and Part of Speech Tagging (PoS). User feedback is split into tokens using the
well known Stanford CoreNLP library [MSB+14]. Tokenization follows the rules of the Penn
Treebank tokenization [MSM93] using Stanford’s PTBTokenizer and works by enhancing each
parsed token with its PoS tag and lemma, which will be useful in the following two steps Nouns
and Verbs filtering and Singularization. Depending on the clustering algorithm used in the follow-
ing steps of the pipeline, token order may or may not be maintained.

Nouns and Verbs filtering. According to Capobianco et al. [CLO+13], nouns and verbs carry
the most meaning inside a document and can greatly help in increasing the accuracy of Information-
Retrieval (IR) tasks. As such, in the Preprocessing step, we filter our document to keep only verbs
and nouns. Nouns and verbs are identified in the previous step were each token was tagged with
its PoS tag by the tokenizer.

Singularization. Tokens are normalized by means of transforming all plural forms into their
singular forms. This is done by using their lemma.

Stop word removal. Stop words are all those words that carry little to no semantic meaning
(e.g. "the", "a", etc...). Since these words carry no real meaning, they are discarded at this step. A
stop word dictionary and a filter is included together with ChangeAdvisor. Future work may
want to extend this dictionary or add support for multiple languages by extending the filter.

Stemming. Each token is reduced to its stem utilizing Porter’s stemmer [Por80], to reduce the
variation, since tokens such as "play", "playing", and "played" all convey the same semantic.

Repetition removal. As mentioned above, depending on the clustering algorithm used next,
duplicates may or may not be allowed. As an example, TF-IDF [JON72] clustering on N-gram
tokens would lose it’s significance if duplicates were removed, since it would greatly change the
structure of a sentence.

Short tokens removal. As with repetition removal, depending on the clustering used, short to-
kens may or may not be removed. According to Mahmoud et al. [MN15], tokens containing less
than 3 characters are usually irrelevant for IR purposes.

Short documents removal. In this step, document shorter than three tokens are discarded,
since they cannot convey a change request clearly, according to Palomba et al. [PSC+18].

Preprocessing Example. Below we can find an example of running our IR preprocessing on a
sample review:

"One thing that I would really love if this app had is if it lets you create an account (or log in with your
email) because whenever I get a new phone, or my phone’s been reseted, I need to download the app and
music all over again, which can waste a bit of time (especially since I’ve got lots of music on this app)."
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We now process the review, maintaining duplicates and order, but removing stop words and
using a PoS-filter:

"One thing that I would really love if this app had is if it lets you create an account (or log in with your
email) because whenever I get a new phone, or my phone’s been reseted, I need to download the app and
music all over again, which can waste a bit of time (especially since I’ve got lots of music on this app)."

We then stem each token:
["love", "app", "create", "account", "log", "email", "phone", "phone", "reseted", "download", "app",
"music", "waste", "bit", "time", "lots", "music", "app"]

And the resulting Bag-of-Words after the Preprocessing step is:
["love", "app", "creat", "account", "log", "email", "phone", "phone", "reset", "download", "app", "mu-
sic", "wast", "bit", "time", "lot", "music", "app"]

At the end of this step, we have a set of bag-of-words, that will be suitable to be used as input
for the clustering and linking steps.

3.1.4 Clustering
Clustering is the process of grouping together a set of objects, which in some way, are more similar
to one another, than to those belonging to other groups. Each group is then called a cluster. This
process works by defining a set of features we use to compare one item to another and a metric,
in order to quantitatively measure the similarity, in terms of distance between the features of any
two items.

Consider the following example, adapted from the ChangeAdvisor paper [PSC+18]: John is
the mobile app developer behind, FrostWire, a BitTorrent client for Android, with a presence
on Google Play Store. FrostWire has quite a user base at the moment. In an attempt to increase
his user base even further, John recently released an overhaul of the app, redesigning the UI and
adding new features. Suddenly, the average ratings for his app are plummeting, and many users
are complaining in their reviews. A lot of people seem to be complaining about having problems
downloading files, while others seem to be having various usability difficulties. From the sheer
amount of reviews alone, it is hard to judge, exactly, how many unique problems there are. So,
John starts sifting through reviews, trying to isolate the various problems his users are having.
Unfortunately, there are too many reviews to go through, so after a while, John stops and starts to
plan, which issue he wants to tackle first. This is where clustering comes into play. By running a
clustering algorithm, we can do this job automatically, without having John go through the trouble
of reading all the reviews. Now, he has an overview of how many problems the current version
of the app has, and can plan each fix and their priority based on gravity and number of people
discussing this problem.

The goal of the Clustering step is, thus, to group together feedback discussing the same change
requests. This step is required and is useful for two reasons: (i) as has been shown in the work
of Palomba et al. [PSC+18], linking single reviews tends to return poor results, and (ii) clustering
allows us to group together feedback referring ideally to the same, or at the very least similar,
change request, thus avoiding duplicates and making the system more comprehensible and gen-
erally easier to follow for the developer.

The original ChangeAdvisor paper experimented with three different methods for cluster-
ing textual documents: (i) Latent Dirichlet Allocation (LDA) [AAT10], (ii) genetic algorithms
applied to LDA (LDA-GA) [PDO+13], and (iii) Hierarchical Dirichlet Process (HDP) [TJBB05].
While experimenting, they found that LDA-GA was not efficient enough, and thus running
it against a big data set (in the order of thousands of reviews) wasn’t feasible. The original
ChangeAdvisor PoC chose to implement HDP, as the authors found that it provided a good
balance between speed of execution and quality of results. Thus for this work, HDP was im-
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plemented as well (3.1.4). Additionally this work experimented with Term Frequency-inverse
Document Frequency (TF-IDF) as well, the details of which can be found in Section 3.1.4

Hierarchical Dirichlet Process

Hierarchical Dirichlet Process (HDP) [TJBB05], is a non-parametric Bayesian model for topic
extraction. It is an extension of Latent Dirichlet Allocation (LDA), with the advantage that it does
not require the number of topics to be known a priori. Given that we have thousand of reviews
and we attempt to cluster reviews by change requests, there is no way to determine the number of
clusters in advance. HDP trains a hierarchical model to distinguish the topics, i.e. clusters, over a
fixed number of iterations, based on a probability distribution, the Dirichlet Process [TJBB05].

Ideally at the end of this clustering step, each resulting cluster, i.e. topic, should contain a set
of reviews and a Bag-of-words containing the features extracted from these reviews. Each cluster
should identify a unique change requests. The Bag-of-words are the most meaningful words
representing a cluster and are then used as a sort of label while presenting the results to the user.

The following shows an example of a topic and two reviews that were assigned to it:

• Topic: One of the topics (in Bag-of-Words format) that was found using HDP on a set of
reviews for FrostWire:

[ "app", "love", "reinstal", "error", "look", "version", "lot", "download", "file", "fix", "phone", "try",
"gui", "sai", "time", "wast", "issu", "internet", "card" ]

• Two of the reviews that were assigned to this topic:

1. "I try to get the plus version and every time I open the file it keeps saying can’t open file"

2.
"[...] Also when I downloaded some songs and days later I go back to play them,
the app would display a message saying "file not available" when it clearly shows on my playlist.

• And their Bag-of-Words, which are used to link a review to a topic:

1. [ "file", "sai", "try", "time", "version" ]

2. [ "song", "app", "plai", "download", "file", "playlist", "displai", "sai", "messag", "dai" ]

TF-IDF

As can be seen above, HDP computes topics, where each topic represents a change request. A
topic is essentially composed of a list of tokens, representative of all reviews discussed inside
said topic. This list of tokens is then used as a sort of label, to quickly give an idea to the
developer about what a set of reviews is talking about. However, as in the example above,
a label consisting of 20 or more tokens doesn’t convey the information about the topic very
well. Because of this, a second approach was experimented for the computation of clusters:
Term Frequency-inverse Document Frequency (TF-IDF) [JON72]. TF-IDF is one of the most
popular term-weighting scheme and is a technique often used in Information-Retrieval and text
mining. It is commonly used on many websites, to automatically tag posts and articles, by deter-
mining the most relevant terms in a document. It works by weighting the frequency of a token
inside a document against the number of documents in which the token appears over the entire
corpus.

More specifically the TF-IDF is the product of Term Frequency (TF) and Inverse Document Fre-
quency [JON72] (IDF). While there are multiple different formulations of TF and IDF, the follow-
ing shows the way it was applied for ChangeAdvisor.
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Term Frequency. The Term Frequency tf(t, d) is the frequency of a token t inside a document d.
Simply put, it is the number of occurrences of t in the document d, nt,d, divided by the number of
tokens in d, |d| [MRS08]:

tf(t, d) =
nt,d

|d|
A high tf(t, d) means that the token t appears many times in respect to the entirety of the

document, which might indicate higher relevance. However, TF considers all tokens equally as
relevant, which is not always the case. Consider for example this thesis: the words "review" and
"feedback" appear many times. The resulting TF would probably be higher than any other word
(aside from stop words). However, the above mentioned words probably convey little meaning
in the context of this work. So in order to compute the actual relevancy of the token, tf(t, d) is
weighted by multiplying it with the Inverse Document Frequency.

Inverse Document Frequency. The Inverse Document Frequency (IDF) is used to attenuate the
effect of terms, that appear too often to be relevant in the context of the entire corpus. For this we
use the inverse document frequency idf(t, C) [MRS08]:

idf(t, C) =
N

|d ∈ C : t ∈ d|

where N is the number of documents inside the corpus C and |d ∈ C : t ∈ d| is the number of
document in which the token t occurs. Thus, a token that occurs in many documents scores lower
than one that appears in many documents.

TF-IDF. The Term Frequency-inverse Document Frequency metric is simply the product of TF and
IDF, or in other words, the TF-IDF score of a token t in a document d belonging to a corpus C
is [MRS08]:

tf -idf(t, d, C) = tf(t, d)× idf(t, C)

where a higher tf-idf weight for a token t implies a higher relevancy inside a document d, whereas
a lower weight implies that t is not as relevant in the context of the document d.

TFIDF and ChangeAdvisor Given that TF-IDF computes the relevancy of a token inside a doc-
ument, the choice of what is a document becomes particularly important, i.e. a single review
should not be chosen as a document for certain reasons. The problem is that the tf term of TF-
IDF is almost a binary value in the context of reviews and as such it does not do a good job as a
discriminating feature. This is caused by the fact that reviews typically are very short and rarely
contain duplicate terms (exception made for stop words). The same problem was mentioned by
Naveed et al. [NGKA11]. The authors researched new methods to extract features from Twitter
posts. Twitter posts because of their nature, are similar to user feedback in that it is kept short (<
140 characters) and informal. Additionally we do not care about the importance of a token inside
a review but rather the relevance of a token inside the set of reviews labeled with a given ARdoc
category. Because of this, the set of all reviews belonging to an ARdoc category was chosen as a
document d while the corpus C is composed of the set of all reviews for a particular app. Addi-
tionally the TF-IDF component developed for ChangeAdvisor allows the possibility to compute
the score using single tokens as term t, as well as N-grams (further details in Section 4.

The process of clustering using TF-IDF then works as follows and can be seen in Figure 3.3.

• For each ARdoc category fetch all reviews belonging to said category, this is our document
d.

• For each token t ∈ d, compute the TF-IDF weight tf -idf(t, d, C).



16 Chapter 3. Approach

• For each document d, fetch the N tokens with the highest TF-IDF weight.

• For each of the fetched tokens ti, fetch all reviews in the same ARdoc category that contain
said token ti.

Figure 3.3: TF-IDF clustering approach in ChangeAdvisor. 1) The initial set of reviews. 2) The reviews
are grouped by ARdoc category. 3) We run TF-IDF for each group. 4) For each group we take the top N
tokens with the highest TF-IDF score and fetch the reviews containing said token.
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The following shows an example of a cluster determined by using TF-IDF, for the category
"Problem Discovery", with an N-gram size of 1, for the app FrostWire:

• Topic: One of the topics found using TF-IDF
"Crash"

• Three reviews, verbatim, that were assigned to this topic and belong to the category "Prob-
lem Discovery":

1.
"I updated it when the description said the crashes we’re fixed.
Literally after I updated and started playing my music it crashed twice. Please fix it.."

2. "It crashes and I lose all of my torrent and downloads stop. Edit: now it turns itself
on. Grrrr"

3.
"It was okay at first but then it kept crashing and couldn’t download or find hardly
any rock bands I looked up. If they fixed that it would be great."

3.2 Source Code Pipeline
The second input to the ChangeAdvisor process is source code. Similarly as with reviews,
source code is also plagued by noise, which is why a second pipeline was devised specifically
for it. This second pipeline, is much simpler than the first one. This is because source code
doesn’t have the same nature of reviews: (i) documents do not tend to be short, (ii) they adhere,
syntactically, to the strict rules of a programming language, and (iii) even in teams of develop-
ers, guidelines are usually enforced helping making the source code more homogeneous. These
reasons contribute to a lower overall noise level than online reviews. Thus, this simpler pipeline,
which can be seen in Figure 3.4, is divided in two steps:

• Source Code Import: source code is imported from the file system or from version control.

• Source Code Processing: source code is processed into a suitable format for input into the
ChangeAdvisor linker.

3.2.1 Source Code Import
The goal of this step is to import the source code into ChangeAdvisor. Source code that is
imported, is parsed and divided into its components. We define a source code element as the basic
building block of an application, i.e. in Java a class. It is important to note that we use Java
classes as elements and not compilation units (i.e. .java files) which might be composed of multiple
classes, e.g. nested classes. Furthermore, we exclude interfaces from being elements as they do not
contain any implemented logic and as such would rarely be targets of change requests. Although
Java 8 introduced default methods which add implementation to an interface, this is not used as
often. Future work might want to look into this, especially considering the recent release of Java
9 and the increased adoption of Java 8. As such, candidates for being picked up as source code
element are classes (normal, nested, and static nested) and enums.

As in the PoC, for each source code element, we parse its public API and related comments. The
terms of each element are collected for processing in the following step.

Here, again, the biggest newest feature is the possibility to automatically import source code
from git, which increases the overall usability of the tool. Other VCS options, can easily be added
in future. Further details can be found in Chapter 4.
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Figure 3.4: Source Code pipeline. Again, the results of a step, are passed to the following one as inputs.

3.2.2 Source Code Preprocessing
In the preprocessing step, we normalize the terms of each source code element to lower the noise
level and to bring the elements into a usable format for linking. The preprocessing steps are similar
to those of the Review pipeline seen in Section 3.1.3:

Separation of composed identifiers. We split composed identifiers, commonly found in many
programming languages, such as camelCase, snake_case and digit separated text. To do this, we
employ regular expressions.

Removal of special characters. Special characters such as brackets are removed from the doc-
ument as they do not convey any semantics.

Removal of stop words. In addition to normal english stop words, source code also includes
programming stop words, i.e. terms such as private, public, void, etc. These terms are also removed
as they are not usable as discerning features.

Stemming. We normalize each token by replacing it with its stem, computed using Porter’s
stemmer [Por80].

Removal of short tokens. As a last step, we remove all tokens shorter than a threshold, for the
same reason we removed them during the Review Preprocessing step (3.1.3).

At the end of this step, we should, ideally, have a set of Bag-of-words, each representing a
source code element, suitable to be used for linking with reviews.

3.3 Linking
Regardless of the clustering algorithm used for reviews, we now have a set of clusters, each con-
taining an ARdoc category [PDSG+16] and a set of reviews as Bag-of-Words, ideally representing
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the same, or at least similar, change requests, and a set of source code elements, also in Bag-of-words
format.

Our goal is to find links between our feedback clusters and source code, each link representing
a set of classes that are probable candidates for modification, in order to fulfill the change request
represented by the cluster. In order to compute links, we must first define how we measure the
vicinity of two documents, i.e. a metric.

3.3.1 Metric
As mentioned, we must first define a metric. As it was the case in the ChangeAdvisor PoC,
we compute the similarity using the Asymmetric Dice coefficient, the definition of which can be
found below [PSC+18]:

similarity(clusteri, sourcej) =
|Wclusteri ∩Wsourcej |

min(|Wclusteri |, |Wsourcej |)

where Wclusteri represents the set of words contained in cluster i. Wsourcej represents the
set of words contained in the source code element j. The min function normalizes the similarity
score with respect to the shortest document between i and j. We normalize with respect to the
shortest document, because user feedback is, in most cases, considerably shorter than our source
code elements. Due to the normalization step, the Dice coefficient range is [0, 1].

3.3.2 ChangeAdvisor Linking
Having defined the inputs, and a suitable metric for document similarity, we now define the steps
and conditions needed to compute links between a review cluster and a source code element. Given
a set Esource which represents the set of all source code elements, Ccluster the set of all clusters, and
T the threshold to reach in order for a cluster and element to be considered a link:

• define a bucket bi for each cluster ci ∈ Cclusters.

• for each cluster ci compute the Dice coefficient score with each code element ej ∈ Esource.

• if the Dice score reaches the threshold T , add the element ej to the bucket bi

The linking process can be seen in Figure 3.5. At the end of these simple steps, we shall have
a set of buckets, where each bucket bi contains the set of all links found for the cluster ci, or an
empty set, meaning that no links were found for a given change request.

3.4 ChangeAdvisor Proof of Concept Limitations
This chapter gave an overview of the approach implemented in ChangeAdvisor. This is mostly
unaltered from the approach applied in the Proof of Concept [Cha17]. During the development of
this thesis, it became apparent that the PoC deviates slightly from the process as explained in the
work of Palomba et al. [PSC+18]. Thus for the implementation, we chose to mostly concentrate
on the PoC interpretation of ChangeAdvisor.

However, the PoC is limited under many aspects. Under the usability aspect, the PoC is run
as a command line program. It outputs its results in a CSV (comma separated values) file. It is
not possible, to visually explore the results using charts and diagrams for example, which could
help in understanding and interpreting the results. Additionally a user is required to dump his
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Figure 3.5: ChangeAdvisor linking.

reviews in a plain text file. Source code is imported by providing the path to the root folder
of an app. The PoC doesn’t persist any values between runs so, every time we want to re-run
ChangeAdvisor we need to create an updated version of the review file, which in turn, greatly
impacts its efficiency: the PoC will then recompute all values from scratch, which means that as
the code base grows and, in particular, the number of reviews increases, ChangeAdvisor will
become more and more slow. There is also no support for stopping and restarting a job at a later
time. Once the PoC has started, it either has to go through the entire process, which might take
hours for a relatively small data set, or if we want to interrupt it, we will have to restart the process
from the beginning at a later time.

The PoC is also not configurable in any way. All of its steps are hard-coded, so it isn’t possible
to, say, swap out a clustering algorithm for another one, or modify the preprocessing steps, at
run-time. This kind of configurability would require a substantial change in the tool’s design and
a complete rewrite of the source code.

On the maintainability side of things, it is very hard to maintain a code base, consisting of
various scripts written in different languages and brought together by glue code. A maintainer of
the tool might find himself tracking down a bug through different applications.

Thus, one of the main contributions of this work, is the complete rewrite of ChangeAdvisor
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as a cohesive Java application, including a GUI in the form of a web application. This all translates
to:

• Increased usability for the developer: features such as the automatic import of reviews
based on a schedule, import of code through VCS, visual representation of reviews, rat-
ings distributions in the form of diagrams and charts, all greatly help in making the best
use of a developer’s time when dealing with feedback. Not to mention, that the GUI greatly
simplifies the use of ChangeAdvisor under many key aspects:

– Configuration: e.g. creation of a project, setting a schedule, setting the remote path to
a repository, etc.

– Exploration of results: e.g. the usage of labels computed through TFIDF clustering, for
example, can more quickly transmit to the developer, what the main topics discussed
in the reviews are.

– Starting long-running jobs: e.g. even with a schedule, it is still possible to manually
start a review import.

• Increased performance: we leverage the database, in order to not have to recompute values
that can be persisted. Given, that the database contains data of a previous pipeline step, a
job can resume from the following step. Additionally, we can use the database for costly
operations such as search and aggregation operations.

• Increased configurability for the researcher, testing possible research questions and links
between reviews and code (e.g. Release Engineering), allowing them to run ChangeAdvisor
with different processing steps and/or clustering algorithms.

• Increased maintainability and extensibility, since ChangeAdvisor itself is an application,
which undergoes evolution, in much the same way, as the apps it analyzes.

The concrete details of all changes can be found in Chapter 4.





Chapter 4

ChangeAdvisor - the Tool

This section presents the architectural considerations and details, that went into the implemen-
tation of ChangeAdvisor. First, we describe the underlying architecture, such as how the ap-
plication is divided in its components and how these interact. Afterwards, we will look at how
each component was designed, its architecture, and its technical challenges. We shall follow a
top-down approach in our explanation, each section expanding more in detail. Thus, this chapter
is divided as follows:

• In Section 4.1, the overall architecture is described.

• In Section 4.2, the core engine of ChangeAdvisor, e.g. how scheduled tasks work, how are
the pipelines orchestrated, etc., is explained.

• Starting from Section 4.2.3, the core business logic is reviewed. Specifically the review (4.2.3)
and source code pipeline (4.2.4) implementations are explained.

• In Section 4.2.6 and Section 4.3, we shall briefly discuss persistence in ChangeAdvisor and
the included thin client.

• Finally, in Section 4.4, the installation and usage notes can be found.

4.1 Architecture
At the beginning of this work, ChangeAdvisor was conceived as a plug-in for an Integrated
Development Environment (IDE). The basic concept was that, it would be of great use to a developer,
if there were an application that could show a view of change requests and the code that is a
candidate for change, directly from within the IDE. This way, all information could be contained
into a single application, avoiding the mental overhead of having multiple applications. During
development, however, it became apparent that ChangeAdvisor might be better suited as a
standalone application, because of performance considerations: e.g. mining user reviews requires
a noticeable amount of RAM. Most IDEs are, as-is, already heavy-weight applications, requiring
a considerable amount of resources. ChangeAdvisor might risk slowing down the entire IDE
and as such be more of a nuisance, rather than being helpful. Additionally, long running tasks
and scheduled jobs are better suited as a background service, decoupled from the editor they
are working in: e.g. a developer might not keep his/her IDE open during the entire work day.
Indeed, a considerable amount of the time of a developer is spent away from code: brainstorming,
design meetings, administrative tasks, etc. In the context of a company, it could prove to be
more useful to host ChangeAdvisor on a server in the intranet, in order to handle all of the
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firm’s applications. This would free up a lot of resources on each developers computer, while
maintaining the same level of usability. Indeed, it would translate in increased performance,
since we could dedicate a machine for the sole purpose of running ChangeAdvisor.

In order to keep open the possibility of developing a plug-in in future, it was decided that
ChangeAdvisor should become a standalone application, providing an API with which all func-
tions can be exerted and a decoupled UI. This would allow for future work to develop any sort
of UI, from IDE plug-in to mobile app, to a web application. Much in the same way, as how the
popular static analysis tool SonarQube [Son17] works.

Thus, ChangeAdvisor was, in the end, designed as a client-server application, with the UI
being a thin client. This client can then be hosted on any static web server. While the back-end,
which does all the heavy lifting, would be installed as a service, ideally, on a dedicated machine,
or less optimally, on the developer’s machine, providing an HTTP API to which the client can
connect.

Below follows the description of the back-end service (4.2), while the client, is described in
Section 4.3.

4.2 ChangeAdvisor Server
As mentioned previously, the back-end contains the core functionality of ChangeAdvisor. It is
the engine that does all of the processes discussed in Chapter 3, and as such, it is the most com-
plicated part of this work. The Java application was developed following the layered architecture
pattern, and is composed of three layers:

• REST API (top-layer, 4.2.2)

• ChangeAdvisor business logic (mid-layer, 4.2.3, 4.2.4, 4.2.5)

• persistence (bottom-layer, 4.2.6)

The main purpose of the back-end, is to handle all long running jobs, such as the scheduled im-
port of reviews, review processing, etc. Because of this, most of its logic, does not require user in-
tervention, rather it is triggered by events, such as a schedule. Thus, most of the ChangeAdvisor
pipeline is run offline, with only the last step of the pipeline, the linking, triggered by the user,
due, unfortunately, to time constraints.

In order to support fully automatic, long running jobs, the ChangeAdvisor’s pipelines were
implemented following a batch processing approach.

4.2.1 Batch Processing
Batch processing is the execution of a series of non-interactive job, i.e. with minimal or no user
intervention. Each job is defined as a list of steps, each step taking something as input and out-
putting something for the following step. Each steps is triggered automatically once the previous
step is done, and uses the output of the previous step as input. This approach allows to maxi-
mize the efficiency of a process, since it removes the biggest cause of low resource usage: user
input. Additionally, it creates a clear separation of concerns, as each step has a simple interface
and depends only on the input from the previous step and doesn’t concern itself with any other
details.
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ItemReader, ItemProcessor, ItemWriter.

Batch processing was implemented using Spring Batch [Piv17a], which provides reusable build-
ing blocks to define jobs, extensive support for scheduling, retry logic, monitoring, parallelization,
chunk-oriented processing and transaction management.

Figure 4.1: Key concepts of the Spring Batch domain language [Piv17a].

Figure 4.1 highlights the key concepts of a batch job. A job consists of steps, each step having
exactly one ItemReader, one ItemProcessor, and one ItemWriter. A job has a JobLauncher
which concerns itself with starting the process, and metadata about the currently running process
which is stored using the JobRepository. Finally, an ItemReader concerns itself only with
reading items from a source, an ItemProcessor runs a certain process on said items, and an
ItemWriter writes the results of the processor to a destination. With this simple definition al-
most the entirety of the ChangeAdvisor process was implemented. Indeed, most steps in the
pipelines can be seen as (i) read an item (e.g. get reviews), (ii) process an item (e.g. compute
ARdoc [PDSG+16] category), and (iii) write an item (e.g. pass processed review to the next step).
These interface, allow for extensive flexibility: thanks to their simplicity, it is particularly simple
to swap one processor out for another one, for example, making it easier for future works to test
new approaches. Listing 4.1 through Listing 4.3 shows an example of how the ARdoc processing
step was implemented in the back-end: each review is read one at a time and passed on to the
processor. To avoid continuously opening and closing the database connection, chunk-oriented
processing was used. With chunk-oriented processing we read and process items one at a time.
Before sending them to the writer, however, we wait until a certain configurable threshold of items
has been processed. Only then are the processed items sent to the writer, which will then write
them all in a single transaction, thus lowering the overhead of managing the database connection.
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1 public class ReviewReader implements ItemReader<Review> {

2
3 ...

4
5 @Override

6 public Review read() throws Exception {

7 return readNext();

8 }

9
10 private Review readNext() {

11 if (isNotYetInitialized()) {

12 List<Review> reviewsSinceLastAnalyzed =

13 service.getReviewsSinceLastAnalyzed(appName);

14 contentIterator = reviewsSinceLastAnalyzed.iterator();

15 }

16
17 if (!contentIterator.hasNext()) {

18 contentIterator = null;

19 return null;

20 }

21
22 return contentIterator.next();

23 }

24 }

Listing 4.1: An example of an ItemReader: the ReviewReader class reads reviews one at a time, starting
from the last review analyzed.

1 public class ReviewProcessor implements ItemProcessor<Review, ArdocResults> {

2
3 ...

4
5 @Override

6 public ArdocResults process(Review item) throws UnknownCombinationException {

7 List<Result> results = parser.extract(ARDOC_METHODS, item.getReviewText());

8 ArdocResults result = new ArdocResults(item, results);

9 trackProgress();

10 return result;

11 }

12 }

Listing 4.2: An example of an ItemProcessor: the ReviewProcessor class processes each review
using ARdoc.

1 public class ArdocResultsWriter implements ItemWriter<ArdocResults> {

2
3 private MongoItemWriter<ArdocResult> writer = new MongoItemWriter<>();

4
5 ...

6
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7 @Override

8 public void write(List<? extends ArdocResults> items) throws Exception {

9 for (ArdocResults results : items) {

10 writer.write(results.getResults());

11 }

12 }

13 }

Listing 4.3: An example of an ItemWriter: the ArdocResultsWriter class writes the results of the
processing step to the database.

Batch Job Configuration

The steps of a batch job are configured through the definition of Spring Configuration classes.
Listing 4.4 shows the definition of the ARdoc step with the previously mentioned classes. Each
configuration class decides which implementation of Item{Reader, Processor, Writer}
it wants to use to implement a step. Additionally, it defines the input and output types of the
processor, and the size of the processing chunks.

1 @Component

2 public class ArdocStepConfig {

3
4 public Step ardocAnalysis(final String appName) {

5 return stepBuilderFactory.get(STEP_NAME) // "ardoc_step"

6 .<Review, ArdocResults>chunk(100)

7 .reader(reviewReader(appName))

8 .processor(reviewProcessor())

9 .writer(ardocWriter())

10 .build();

11 }

12
13 private ItemReader<Review> reviewReader(String app) {

14 return new ReviewReader(ardocService, app);

15 }

16
17 @Bean

18 public ItemProcessor<Review, ArdocResults> reviewProcessor() {

19 return new ReviewProcessor();

20 }

21
22 @Bean

23 public ItemWriter<ArdocResults>() {

24 return new ArdocResultsWriter();

25 }

26
27 ...

28 }

Listing 4.4: An example of the configuration of a step: the ArdocStepConfig. Through its fluent API, we
define the behavior of a step.
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Finally, a job is composed of a list of steps. Each job is configured in the same way as a step,
using a configuration class. Listing 4.5 shows the configuration for the entire Review Pipeline.

1 ...

2 public Job reviewPipelineJob(String googlePlayId, Map<String, Object> params) {

3 return jobBuilderFactory.get(REVIEW_PIPELINE)

4 .incrementer(RUN_ID_INCREMENTER)

5 .flow(reviewImport(googlePlayId, params))

6 .next(ardocConfig.ardocAnalysis(googlePlayId))

7 .next(feedbackProcessingStepConfig.transformFeedback(googlePlayId))

8 .next(documentClusteringStepConfig.documentsClustering(googlePlayId))

9 .next(tfidfStepConfig.computeLabels(googlePlayId))

10 .next(linkingStepConfig.clusterLinking(googlePlayId))

11 .end()

12 .build();

13 }

Listing 4.5: Definition of the the Review Pipeline.

Figure 4.2: Sequence of read(), process(), write() calls for the ARdoc processing step with a chunk size of
2.
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Once a job has been created and executed through the use of a JobLauncher, it is entirely
handled by Spring Batch, which does the actual passing of inputs and outputs, and decides when
to send a chunk to the writer. Figure 4.3 shows, as an example, the sequence of actions for the
ARdoc processing step.

Tracking Progress

Many of the ChangeAdvisor jobs are long-running. For example, an initial review import with
a limit of 5000 reviews can take between 7 and 8 hours, while the ARdoc analysis of a single re-
view can take up to 3 seconds, which means that the first two steps of the Review pipeline can
take around 12 hours to complete. During this time, it would be useful to have a way to mon-
itor progress. Because of this, monitoring was added. Spring Batch already includes tools to
check the progress of a job, through its JobRepository interface. However, I found that it
was a bit hard to use, and the monitoring reports were hard to read and overly verbose. Addi-
tionally, the reports included information only, from the Spring Batch side of things. It wasn’t
possible to know, for example, how many reviews have been mined up to a certain point. Thus,
I added a simpler way to check for status updates. A JobService class was added, which cen-
tralizes all access to the JobLauncher class, so anytime a new job is executed, it goes through
the service class. There, each new job is saved after launch in a JobHolder class, using a map,
where the jobId is the key and the JobExecution class is the value. From here, custom reporting
logic was implemented, which includes custom reports with more domain-specific information.
Each JobExecution instance includes a list of StepExecution instances, each with its own
StepExecutionContext, which one can use as a map to write information. This was mostly
designed for passing extra data between steps, but can also be used for execution metadata. Fig-
ure 4.3 shows the classes involved and their dependencies.

Figure 4.3: Class diagram of the job launching and monitoring part of the tool.
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Scheduling Jobs

ChangeAdvisor includes the possibility to schedule jobs. At the moment the scheduling is re-
stricted only to review import, while source code import must be triggered manually, through the
API. This is because, it would be more appropriate to trigger source code imports by means of
VCS hooks, e.g. anytime that someone pushes a set of commits to the master branch.

Through the API (or the client) a user can set a schedule using the setSchedule() method, seen
in Listing 4.7. In order to be able to cancel scheduled jobs, for example in the case the user changes
his mind, e.g. he had the recurrence set for weekly but now wants daily imports, the previous
scheduled task must be canceled and replaced by a new schedule. To be able to do this, we
keep track of all scheduled tasks inside the ScheduledReviewImportConfig using a map of
projectId and scheduledTask.

Finally, a schedule is defined using cron expressions. Cron expressions were, originally, ex-
pressions used by the Cron job scheduler in Unix-like systems, to define recurring tasks. Nowa-
days, however, they are often used in many other systems, due to the fact they are easy for ma-
chines to parse and powerful enough to define any kind of periodic schedule.

1 # -------------------- minute (0 - 59)

2 # | -------------------- hour (0 - 23)

3 # | | -------------------- day of month (1 - 31)

4 # | | | -------------------- month (1 - 12)

5 # | | | | -------------------- day of week (0 - 6) (Sunday to Saturday)

6 # | | | | |

7 # | | | | |

8 # | | | | |

9 # * * * * * command to execute

10
11 # Run the backup shell script daily at 12:00 (24h clock)

12 0 0 12 * * ./backup.sh

Listing 4.6: Anatomy of a cron expression and an example of a recurring task.

These cron expression are sent to a custom scheduler, that leverages the Spring framework
scheduling abstractions, to set the date and time of the following execution. Scheduled jobs are
managed by the Spring framework using triggers. A trigger is an abstraction, representing the
condition with which a job must be executed, by means of setting a nextExecutionDate as can be
seen in the return of the trigger() method in Listing 4.7. The basic idea is that the execution times
may be based on previous runs or based on arbitrary conditions. This information is available
inside the TriggerContext. As such, anytime the trigger is set off, it computes the following
execution time and schedules itself for the next run, creating a recurring job. Additionally, each
task receives its own thread from a pool of threads, thus enabling multi-threading and allowing
ChangeAdvisor to handle multiple applications simultaneously.
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1 public class ScheduledReviewImportConfig implements SchedulingConfigurer {

2
3 private ScheduledTaskRegistrar taskRegistrar;

4 private Map<String, ScheduledTask> scheduledTasks;

5 ...

6 public void setSchedule(final Project project) {

7 logger.info(String.format("Updating schedule for [%s]",

8 project.getAppName()));

9 final String projectId = project.getId();

10 TriggerTask task = triggerTask(project);

11 cancelScheduledTaskIfAnyExists(projectId);

12 ScheduledTask scheduledTask = taskRegistrar.scheduleTriggerTask(task);

13 scheduledTasks.put(projectId, scheduledTask);

14 }

15
16 private TriggerTask triggerTask(final Project project) {

17 Trigger nextExecutionTrigger = trigger(project.getId());

18 return new TriggerTask(

19 () -> startReviewImport(project),

20 nextExecutionTrigger

21 );

22 }

23
24 private Trigger trigger(final String projectId) {

25 return triggerContext -> {

26 Project project = projectService

27 .findById(projectId).orElseThrow(IllegalArgumentException::new);

28
29 Date next = getNextExecutionTime(project.getCronSchedule());

30 ...

31 logger.info(

32 String.format("Setting next execution time for [%s]: %s",

33 project.getGooglePlayId(),

34 next));

35 return next;

36 };

37 }

38 ...

39
40 private void cancelScheduledTaskIfAnyExists(final String projectId) {

41 if (scheduledTasks.containsKey(projectId)) {

42 ScheduledTask previouslyScheduledTask = scheduledTasks.get(projectId);

43 previouslyScheduledTask.cancel();

44 }

45 }

46 }

Listing 4.7: Scheduling of review import.
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4.2.2 REST API
The main goal of this component, is to allow communication between the back-end and any front-
end. It is a thin layer with close to no logic, its main tasks being:

• Fetching data from the database, such as linking results, or reviews.

• Configuration of long-running jobs, such as the scheduling of the review import.

• Manual triggering of said jobs, mostly to be used for development.

It was decided to develop a REST API rather than other messaging protocols, since it is the
most portable, allowing the widest range of clients to be developed. The API was then imple-
mented using Spring MVC [Piv17c].

To simplify the usage of the API, Swagger [Sof17] was added to the project. Swagger handles
the documentation of the endpoints, while also adding tools for testing.

4.2.3 Review Pipeline
Having looked at how the Review Pipeline is composed and how it is orchestrated, we now look
at the implementation details of the various steps.

Review Import

The review import process is the first step in the entire process and at the same time represents
one of the biggest step forward in terms of usability of the system. This step, when triggered,
start an automatic import of reviews from the Google Play Store by crawling the app store in order
to mine reviews. The import works by using the Reviews Crawling Tool developed at UZH [Gra].

The Reviews Crawling Tool relies on PhantomJS [Hid17] and Selenium [Sel17]. PhantomJS
is a headless scriptable webkit while Selenium is a tool for browser automation. PhantomJS,
basically, acts as a browser. With selenium, the crawler is, then, scripted into perusing page after
page of reviews from the app store and making copies of each review.

The tool works as follows:

• In case no reviews are present in the database for a given app, it starts crawling from the
current date backwards until the configured review limit is reached (4.2.3)

• In case reviews are present in the database, it first fetches the last review imported during
the previous run, by sort the reviews in ascending order by review date, and then picking
the first review. It then starts crawling from the current date backwards until either the
configured review limit or the date of the last review is reached, whichever comes first.

Configuration. First of all, the review crawler must be configured. The original library suggests
using a properties file. In Listing 4.8 an example of the properties file is shown. Most of these
properties do not need to be modified by a user, however, a user might be interested in modifying
the following two properties:

• "to": sets the end date for the review import. Reviews after this date are not imported and
the process terminates. This can obviously be helpful in case we are not interested in all
reviews but only those up to a certain point.

• "limit": represents the maximum number of reviews to import.
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1 to=31/12/2013

2 limit=2000

3 thread=2

4 store=google

5 extractor=reviews

6 get_reviews_for=newest

7 export_to=mongodb

8 phantomJS_path=phantomjs

Listing 4.8: Default Review Crawler properties.

Additionally a user might want to be able to set a custom configuration on a per app basis.
The ReviewCrawler uses a singleton instance of the class ConfigurationManager to

manage all properties set in the config file. Thus, in order to allow for a user to customize the
crawlers configuration at run-time, a new class was introduced: ReviewsConfigurationManager.
This class takes the user’s input and merges it together with default config values. Through com-
position, it keeps a reference to a ConfigurationManager instance, which is going to be passed
on to the review crawler afterwards.

Crawlers and Extractors. The ReviewCrawler, defines two interfaces central to its function-
ing: the Crawler and the Extractor interface. The Crawler interface represents an instance
of an app store crawler which can be spawned inside a thread. The Extractor is, then, used to
launch a crawler. It handles the actual thread creation and launch.

As entry point to the review crawler, ChangeAdvisor uses the GoogleReviewsCrawler
class, which implements Crawler, allowing us to, easily, start a crawling process into his own
thread. Unfortunately, it is also designed to finish mining all reviews up to his configured limit
or end-date (see 4.2.3), before saving the reviews in the database. Additionally, through the use
of a webkit for crawling, we are severely bottle-necked by the network’s transmission rate, web
server response time, and simply from the way the app store is designed. Indeed, at the time this
thesis was written, the web page of the Google Play Store only shows between 3 and 5 reviews at a
time, depending on the amount of content. A few pages of reviews are present at the beginning,
with additional pages loaded via AJAX upon clicking on the "next" button. Because of this, the
crawler has a 250 milliseconds sleep time between each page. This all translates to a job spanning
over the course of multiple hours, if not days.

The crawler writes to the standard output stream log messages indicating its process every
50 reviews. However, a user of ChangeAdvisor wouldn’t have access to these logs. In order to
allow for a user to access the progress of the crawler through the API/client a custom implementa-
tion of the Extractor abstract class was added. The Reviews Crawling Tool uses the Extractor
interface as an adapter to simplify starting crawling threads. The custom implementation sees
two methods added to its public API. In addition to the execute() (Listing 4.9) method, it has a
getProgress() and isDone() method, which work as follows.

1 /**
2 * @author giograno

3 */

4 public abstract class Extractor {

5 ...

6 public abstract void extract();

7 ...

8 }

Listing 4.9: Extractor abstract class. Through its simple interface, it simplifies usage of the crawlers. Taken
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from the source code of [Gra].

After starting a crawler, we keep a reference to the Future<?> returned from the ExecutorService,
which allows us to cancel an asynchronous operation or to know whether it is done. Thus, to
know whether all started crawlers are done, we, simply, iterate over the list of Future<?> in-
stances and check whether they are all done (Line 47, Listing 4.10).

As mentioned before, to be able to track the progress done, in the form of number of re-
views mined, we keep a reference to the crawler. The reviewsCount and reviews list which, re-
spectively, hold the number of reviews mined, and the actual reviews are private inside the
GoogleReviewsCrawler. So, we use the Java Reflection API, through the popular Apache
Commons [Fou17] library, to access the fields (Line 40, Listing 4.10).

1 public class MonitorableExtractor extends Extractor {

2 ...

3 private Map<String, GoogleReviewsCrawler> crawlers = new HashMap<>();

4
5 private List<Future<?>> crawlersRunning;

6
7 ....

8
9 @Override

10 public void extract() {

11 final int numberOfThreadToUse =

12 this.configurationManager.getNumberOfThreadToUse();

13 ExecutorService executor = Executors

14 .newFixedThreadPool(numberOfThreadToUse);

15
16 for (String app : this.appsToMine) {

17 GoogleReviewsCrawler crawler =

18 new GoogleReviewsCrawler(app, this.configurationManager);

19 this.crawlers.put(app, crawler);

20 }

21
22 this.crawlersRunning = crawlers.values().stream()

23 .map(executor::submit)

24 .collect(Collectors.toList());

25
26 executor.shutdown();

27 }

28
29 public Map<String, Integer> getProgress() {

30 Map<String, Integer> progress = new ConcurrentHashMap<>();

31 crawlers.forEach((key, value) ->

32 progress.put(key, getReviewsCounter(value)));

33 return progress;

34 }

35
36 private Integer getReviewsCounter(GoogleReviewsCrawler crawler) {

37 Integer reviewsCounter = 0;

38 try {
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39 reviewsCounter = (Integer)

40 FieldUtils.readDeclaredField(crawler, "reviewsCounter", true);

41 } catch (IllegalAccessException e) {

42 logger.error(e);

43 }

44 return reviewsCounter;

45 }

46
47 public boolean isDone() {

48 return crawlersRunning.stream().allMatch(Future::isDone);

49 }

50 }

Listing 4.10: MonitorableExtractor: adds functionality that enables the user to track the progress of
the review crawler.

Tasklet. The review import functionality, being the first step of the process, and being that the
crawler actually manages all reviews until the mining process is over, is one of the few steps in
ChangeAdvisor that does not use chunk processing and does not follow the usual read-process-
write process. Instead, it uses what Spring calls a Tasklet. Tasklets were designed specifically
for use cases that do not conform to chunk-oriented processing: e.g. calling stored procedures,
cleanup processes, executing a script, etc. The Tasklet is an interface containing a single execute()
method and can then be integrated as a step into a job. Indeed, the definition of a step allows
more then just chunk-oriented processing, but allows also to use an existing job as a step or, as in
this case, a Tasklet.

As can be seen in Listing 4.11, the ReviewImportTasklet handles starting the crawler
through the Extractor’s interface. Since the tasklet is run on his own thread, there is no need
to immediately return to the caller. Instead, after starting the job and before returning, we keep
track of its progress by using the custom implementation’s methods (Line 11-13 4.11). To avoid
refreshing the context to often and thus adding a lot of overhead caused by the Reflection API,
we only check for progress every 2 seconds. This is, at the moment, hard-coded, but can of course,
easily be made configurable at a later moment.

1 public class ReviewImportTasklet implements Tasklet {

2 ...

3 @Override

4 public RepeatStatus execute(StepContribution contribution,

5 ChunkContext chunkContext) {

6
7 MonitorableExtractor extractor =

8 new MonitorableExtractor(this.apps, this.config);

9 extractor.extract();

10
11 while (!extractor.isDone()) {

12 Thread.sleep(2000); // do not refresh context too often.

13 writeIntoExecutionContext(chunkContext, extractor.getProgress());

14 }

15 return RepeatStatus.FINISHED;

16 }

17
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18 private <T> void writeIntoExecutionContext(ChunkContext context, T progress) {

19 context.getStepContext().getStepExecution()

20 .getExecutionContext().put("extractor.progress", progress);

21 }

22 }

Listing 4.11: ReviewImportTasklet

Once the custom Extractor finishes importing the reviews the Tasklet will return the status
FINISHED, signaling Spring Batch, that his task is over and that the process may continue to the
next step. At this point the database has been populated with reviews from the Google Play Store,
which will be used as input for the review analysis step.

Review Analysis

Central to the efficacy and usability of ChangeAdvisor is the processing step using ARdoc
[PDSG+16]. As we’ve discussed in 2.1.2 running ARdoc over the reviews before clustering them,
would increase the overall precision of ChangeAdvisor. Indeed, the idea behind clustering is to
group together similar items. After processing them, we know to which category each review be-
longs, which means these reviews are already semantically closer to each other. Thus we possibly
reduce the occurrence of false-positives. As an added advantage, it is informative for a developer
and potential user of ChangeAdvisor to know how many reviews are e.g. bug reports vs feature
requests, or whether there are increases in bug reports following a new software release.

Review Enhancement. We enhance the user reviews imported in the previous step by wrap-
ping the original review with the ARdoc category they belong to and the timestamp at the time
of the wrappers creation. This wrapper is called the ArdocResult class, which can be seen in
Figure 4.4. Additionally, we do not wrap the original review. Rather, we make a copy of this and
save the enhanced version in a new table in the database. This redundancy provides the following
advantages:

• The "vanilla" reviews are kept separately from the processed ones. This can be very useful
for experimenting:

– in case a researcher want to try new approaches for categorization.

– we want to integrate a new tool into ChangeAdvisor, which does not rely on ARdoc.

• We might be interested in using ChangeAdvisor to import the reviews and to quickly get
a graphical overview of the feedback, but then want to export the reviews into another tool
and/or format.

Review Classification. In order to assign a category to each review, we run the ARdoc parser
against every review that we want to analyze. We do not want to process reviews that were
already processed once, since ARdoc parsing is a costly operation. Thus we start the process,
by pulling the last ArdocResult that was categorized by sorting the results in the database by
their timestamp, which marks when it was processed. With the last ARdoc result, we then get the
review it holds and its review date. With this information we can, find all reviews in the database
that have a reviewDate greater than the last processed review. Now, we can finally pull the list
of all reviews that have not been processed as of yet, as we have seen in the example listings for
batch processing, in Section 4.2.1, and run the process as defined in the Listings 4.1, 4.2, and 4.3.
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Figure 4.4: Relationship between TransformedFeedback, ARdocResult and a Review. The first half of
the Review Pipeline, enhances the results of the previous step, by wrapping it and adding new information.

Flattening Results. ARdoc processes single reviews in isolation. This means that, for every
sentence processed, it produces a separate result object. In the case, a review is composed of
multiple sentences, it then returns multiple results, one for each sentence of the review. Because
of this, the results must be flattened before writing them to the database. However, Spring Batch
works by taking one item as input and returning one item as output. Because of this, a simple
ArdocResults container was added that wraps all the results for a single review, which can be
seen in Listing 4.12. A list of items of this class is then passed on to the writer, which flattens
them, which can be seen in Listing 4.2, line 10.

1 public class ArdocResults implements Iterable<ArdocResult> {

2
3 private List<ArdocResult> results;

4
5 public ArdocResults(Review review, List<Result> results) {

6 this.results = results.stream()

7 .map(result -> new ArdocResult(review, result))

8 .collect(Collectors.toList());

9 }

10 }

Listing 4.12: ArdocResults. Acts as a wrapper for multiple ArdocResult, each originating from the same
review.

Review and Source Code Preprocessing

This section discusses how reviews and source code are pre-processed before being sent to the
linker, as we have seen in Section 3.1.3 and Section 3.2.2. Since both inputs undergo similar
processing, text goes in as input, and text comes out tokenized, a single text processor, called
CorpusProcessor, was designed for ChangeAdvisor, that could be used by both pipelines.

CorpusProcessor. As mentioned above, the CorpusProcessor handles any significant ma-
nipulation of text for ChangeAdvisor. It was designed to keep the public API as simple as
possible, while allowing extensive configurability during creation. Because of this, as can be seen
in Listing 4.13, the public API offers only two process() methods, with the first being syntactic
sugar for the second. All functionality is, then essentially, delegated to its dependencies and is
determined at the time of creation.
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The processor only returns a very generic Collection<String> instance. This is because,
the concrete implementation of the collection will depend on whether the client chose to maintain
duplicates or not. The duplicate removal is implemented, simply, by using a Set<String>. Thus
in case the client of the CorpusProcessor wishes to maintain duplicates, a List<String> is
returned, so as to maintain both duplicates, as well as order. Otherwise, a Set<String> is
used, which doesn’t make any guarantees regarding the order of its items, but can very efficiently
discard any duplicates.

1 /**
2 * @class: CorpusProcessor

3 */

4 public Collection<String> process(Collection<String> bag) {...}

5
6 public Collection<String> process(String text) {...}

Listing 4.13: Public API of CorpusProcessor.

CorpusProcessor Builder. CorpusProcessor includes an inner class that follows the Builder
pattern [GHJV95] that handles the creation and definition of each processing step, which allows
the client to freely choose how the corpus must be manipulated. Listing 4.14 shows a concrete
example of the creation of such a processor, while Figure 4.5 shows the class diagram of the
CorpusProcessor and its dependencies.

1 CorpusProcessor corpusProcessor = new CorpusProcessor.Builder()

2 .escapeSpecialChars()

3 .withAutoCorrect(new EnglishSpellChecker())

4 .withContractionExpander()

5 .withComposedIdentifierSplit()

6 .lowerCase()

7 .removeDuplicates(true)

8 .singularize()

9 .removeStopWords()

10 .posFilter()

11 .stem()

12 .removeTokensShorterThan(3)

13 .build();

14
15 Collection<String> processed = corpusProcessor.transform(text);

Listing 4.14: CorpusProcessor. Every possible processing option is shown here. Also shown here is the
usage of the created processor.

To provide a concrete example of text processing, we apply processing to the following code
snippet, taken from the CorpusProcessor public interface:

1 /**
2 * Will filter tokens based on their Part-Of-Speech tag.

3 *
4 * @return this builder for chaining.

5 */

6 public Builder posFilter() {}

Listing 4.15: Test code snippet.
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Which results in:

1. After: (i) filtering special characters, (ii) splitting camel case terms, (iii) lowercasing, (iv) and
tokenization.

["chaining", "pos", "based", "tokens", "builder", "filter", "speech", "tag"]

2. After 1) and: (i) stopword removal, (ii) stemming, (iii) and removal of short tokens.
["filter", "chain", "speech", "builder", "tag", "base", "token"]

Figure 4.5: Class Diagram for the Preprocessing package.

Preprocessing. The actual preprocessing, then, is simply iterating through the ArdocResult
or the ClassBean (see Section 4.2.4) instances computed during the previous step and running
a previously configured CorpusProcessor on each item. The Review and Source Code pipelines,
each, have a different version of the processor, depending on the preprocessing steps defined in
Section 3.1.3 and Section 3.2.2. After processing an item, if the resulting bag contains less terms
than a pre-determined threshold, it is discarded, as can be seen in Listing 4.16, line 6-7, and the
process continues with next item. At the end of this step, the database will have been populated
with the processed reviews (TransformedFeedback) or source code elements (CodeElement).
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1 public class FeedbackProcessor implements ItemProcessor<ArdocResult, TransformedFeedback> {

2 ...

3 @Override

4 public TransformedFeedback process(ArdocResult item) throws Exception {

5 Collection<String> bag = this.corpusProcessor.process(item.getSentence());

6 if (bag.size() < this.threshold) {

7 return null;

8 }

9 return new TransformedFeedback(item, bag);

10 }

11 }

Listing 4.16: FeedbackProcessor. Uses the CorpusProcessor to process a review. Notice how, in
case the processed feedback contains less terms than a pre-determined threshold, the ItemProcessor

will returns null, signaling to Spring Batch that we want to discard this item.

Review Clustering

As mentioned in Section 3.1.4, ChangeAdvisor implements, two different clustering techniques,
TFIDF [JON72] and HDP [TJBB05]. These implementations are not complementary but are rather
offered as alternatives. Regardless of the clustering algorithm chosen, however, both take as in-
put, instances of TransformedFeedback, which were computed in the previous preprocessing
step. We shall first discuss about TFIDF, and afterwards about HDP.

HDP. From the operations point of view, the HDP clustering approach [TJBB05] works in much
the same way as the other steps. Clustering is inherently dependent on the entire data set, as such
we, first of all, pull all TransformedFeedback items, representing the processed reviews, from
the database.

The processing step, then, transforms the set of all reviews into a suitable input for the clus-
terer, the Corpus class. Corpus is a data structure, that simplifies random access to any sentence
or Bag-of-Words of the corpus, but does no actual manipulation of the data, it is simply a conve-
nience class. Afterwards, the processor calls the fit() method on an instance of DocumentClusterer,
an interface representing some abstract clustering technique, which can be seen in Listing 4.17.

The actual clustering is delegated to the HierachicalDirichletProcess class, which can
be seen in the UML diagram in Figure 4.6. To simplify the initialization parameters to HDP
and to maximize flexibilty, in case we want to test other clustering algorithms in future, and
because it was designed at a later time, the HierachicalDirichletProcess, does not directly
implement the DocumentClusterer interface, rather it follows the adapter pattern [GHJV95].
The HierarchicalDirichletProcess is a 1:1 port of the python code that was used in the
ChangeAdvisor PoC, that was completely rewritten in Java for this work.

1 public interface DocumentClusterer {

2
3 void fit(Corpus corpus, int maxIterations);

4 List<TopicAssignment> assignments();

5 List<Topic> topics();

6 }

7
8 public class TopicClustering

9 implements ItemProcessor<List<TransformedFeedback>, TopicClusteringResult> {
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10
11 private DocumentClusterer documentClusterer;

12 ...

13
14 @Override

15 public TopicClusteringResult process(List<TransformedFeedback> items) {

16 Corpus corpus = Corpus.of(items);

17
18 documentClusterer.fit(corpus, this.maxIterations);

19
20 List<TopicAssignment> assignments = documentClusterer.assignments();

21 List<Topic> topics = documentClusterer.topics();

22
23 return new TopicClusteringResult(topics, assignments);

24 }

25 }

Listing 4.17: DocumentClusterer interface and TopicClustering.

Once the DocumentClusterer implementation returns, it will hold the results of the topic
modelling. We define, now, a Topic as a cluster, containing a Bag-of-Words to represent said
cluster, and TopicAssignment which represents a review that is assigned to a given cluster.
Only the TopicAssignment is going to be relevant after this step. Indeed, it is going to be one
of the inputs for the ChangeAdvisorLinker we shall see in Section 4.2.5.

At the end of this method, both TopicAssignment list and Topic list, will be wrapped in
an instance of TopicClusteringResult which will be sent to the ItemWriter for this step of
the pipeline, which will simply persist both lists to the database, ready to be used, without the
need for further processing, for the final step of ChangeAdvisor.

Figure 4.6: Class Diagram for the HDP clustering part of the tool.



42 Chapter 4. ChangeAdvisor - the Tool

TFIDF. As we have seen in Section 3.1.4, ChangeAdvisor also implements TFIDF cluster-
ing [JON72]. The goal is to determine the relevancy of a term, defined as an N-gram, inside a
document, defined as the collection of all reviews with the same ARdoc category, in the context of a
corpus, which is the set of all reviews for a given app.

With this definition set in stone, we use the following approach, which can be seen in List-
ing 4.18, to compute the TFIDF score for all terms of our data set.

This step, is the only other step, aside from the Review Import and Source Code Import, which
was implemented as a Tasklet. This is, again, mostly due to time constraints, since this imple-
mentation is a bit more complex and less straightforward than the other steps, and it was added
to the requirements at a much later date, which left us with little time to better integrate it with
the Item{Reader, Processor, Writer} approach. Below we describe the steps which are
executed in order to compute labels based on the TFIDF score. This process can be seen in Fig-
ure 4.7.

First of all, we delete all previous clustering results, since the review set might have changed
since the last run, we need to compute fresh results. Then, we iterate over each ARdoc category in
the data set. For each category, we compute the TFIDF score for multiple N-gram sizes, ranging
from N-grams of size 1, Unigrams, to N-grams of size 3. We run this computation for multiple
N-gram sizes, to allow for increased exploration possibilities of the results. Additionally, we
compute the score for all terms in the document, but only persist the top N N-grams by score,
because, a user of the system will hardly be interested in any label that scored too low, as scoring
low on the TFIDF metric, means that a term has low relevancy. N is defined by the constant
MAX_LABELS_TO_COMPUTE, which is hard-coded at the moment to 100, but can easily be made
configurable at a later time.

Once we have computed the top N terms for a given category, we save the results to the
database, and continue with either the next N-gram size, or the next category in case we have
already computed all other N-gram size for this category.

1 /**
2 * @class: TopLabelTasklet.

3 */

4 public RepeatStatus execute(StepContribution contribution,

5 ChunkContext chunkContext) {

6 this.repository.deleteAllByAppName(appName);

7 ...

8 for (ReviewCategoryReport category : reviewCategories) {

9 for (int i = 1; i < MAX_NGRAM_SIZE; i++) {

10 ReviewsByTopLabelsDto dto =

11 new ReviewsByTopLabelsDto(

12 appName,

13 category.getCategory(),

14 MAX_LABELS_TO_COMPUTE, i);

15
16 List<Label> labels = this.service.topNLabels(dto);

17 this.repository.saveAll(labels);

18 }

19 }

20
21 return RepeatStatus.FINISHED;

22 }

Listing 4.18: TopLabelTasklet. Manages the computation of the top N labels by TFIDF score for
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various N-gram sizes and categories. The actual computation of the labels, is delegated to the
ReviewAggregationService class.

The ReviewAggregationService class then, fetches the reviews, transforms them in a
more suitable format for TFIDF computation, the Corpus and Document classes. This trans-
formation step can be seen in the method getNgramTokensWithScore() at line 28. Both classes
are, again, just convenience classes, simplifying the computation of the TFIDF score, by con-
taining methods such as Document#frequency(), which computes the frequency of a token
inside a document, or Corpus#documentFrequency() which iterates over the list of docu-
ments contained in a corpus, and counts how many document contains a term, through the
Document#contains() method.

1 /**
2 * @class: ReviewAggregationService.

3 /**
4
5 * Retrieves the top N labels for a set of reviews.

6 * A label is an Ngram of tokens that are representative for a group of reviews.

7 *
8 * @param dto object representing the parameters we use to

9 * compute the top N labels (e.g. how many labels and for which app)

10 * @return list of labels with their tfidf score.

11 */

12 public List<Label> topNLabels(ReviewsByTopLabelsDto dto) {

13 ReviewDistributionReport reviewsByCategory = groupByCategories(dto.getApp());

14 final String category = dto.getCategory();

15
16 List<Label> tokensWithScore = getNgramTokensWithScore(reviewsByCategory, dto);

17
18 Collections.sort(tokensWithScore, Collections.reverseOrder());

19
20 final int limit = dto.getLimit();

21 if (limit >= tokensWithScore.size()) {

22 return tokensWithScore;

23 }

24 return tokensWithScore.subList(0, limit);

25 }

26
27 private List<Label> getNgramTokensWithScore(

28 ReviewDistributionReport reviewsByCategory,

29 ReviewsByTopLabelsDto dto) {

30 Map<String, Document> categoryDocumentMap =

31 mapReviewsToDocuments(reviewsByCategory, dto.getNgrams());

32
33 Corpus corpus = new Corpus(categoryDocumentMap.values());

34 Document document = categoryDocumentMap.get(dto.getCategory());

35 List<AbstractNGram> uniqueTokens = document.uniqueTokens();

36
37 return tfidfService

38 .computeTfidfScoreForTokens(dto.getApp(),
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39 dto.getCategory(),

40 uniqueTokens,

41 document,

42 corpus);

43 }

Listing 4.19: Computation of the top N labels via the ReviewAggregationService class.

Now that we have the reviews separated in documents and have constructed the corpus, we
send them to the TfidfService class, which iterates over each unique token in the document,
and computes its score using the TFiDF class.

1 public class TfidfService {

2
3 private TFiDF tFiDF = new TFiDF();

4
5 public List<Label> computeTfidfScoreForTokens(String appName,

6 String category,

7 List<AbstractNGram> tokens,

8 Document document,

9 Corpus corpus) {

10 return tokens

11 .stream()

12 .map(token -> {

13 double score = tFiDF.compute(token, document, corpus);

14 return new Label(appName, category, token, score);

15 })

16 .collect(Collectors.toList());

17 }

18 }

19
20 public class TFiDF {

21
22 public double compute(AbstractNGram token, Document document, Corpus documents) {

23 return tf(token, document) * idf(token, documents);

24 }

25
26 double tf(AbstractNGram token, Document document) {

27 return document.frequency(token);

28 }

29
30 double idf(AbstractNGram token, Corpus documents) {

31 int documentFrequency = documents.documentFrequency(token);

32 if (documentFrequency == 0) {

33 return 0.0;

34 }

35 return Math.log10(documents.size() / (double) documentFrequency);

36 }

37 }

Listing 4.20: Actual computation of the tfidf score for a term.
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Each score is then saved using the Label class, which contains, the token, the size of the
N-gram, its score, and the category and app it belongs to.

The Label class is the TFIDF equivalent of the Topic class for HDP, it represents a set of terms
representative of a discussed topic in a group of reviews and is used to group different reviews
together. The difference here is that with HDP the topic and assignments are computed at the
same time over the course of many iterations, while with TFIDF, we first compute the labels, and
at a later time we simply fetch the related reviews from the database, based on whether the review
contains said labels or not. Thus, the fetching of reviews is not done directly after computing the
labels offline, but simply when they are needed, since now it only involves a simple database
query.

The Label class can be seen in Figure 4.8, while the entire process can be seen in the sequence
diagram in Figure 4.7. This process might seem complicated, since we keep delegating opera-
tions further down the call stack. However, it creates a clear separation of concerns, since every
layer of the operation actually handles single aspects of the process: the tasklet manages the
computations for the various categories and N-gram sizes, the ReviewAggregationService
fetches and transforms the reviews for the chosen category and N-gram size into Document and
Corpus instances, the TfidfService iterates over the tokens of a document, and finally, TFiDF
computes the actual TFIDF score for a given token in a document.

Figure 4.7: Sequence diagram representing the computation of labels.
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Figure 4.8: Class Diagram for the TFIDF clustering part of the tool. Only includes the part that actually does
the computation.

Clustering Step Result. The end result of the Review Clustering step depends on the clustering
algorithm used. In the case of HDP, the end result is a set of Topic and a set of TopicAssignment
instances which represents, respectively, a set of terms representative of a group of reviews, and
its associated reviews, which can then be simply fetched from the database for the
ChangeAdvisorLinker. In the case of TFIDF, the end result of this step is a set of Label in-
stances, where analogously to HDP, each instance contains a term, defined as an N-gram, that is
representative for a set of reviews, persisted in the database. When the time comes to start the
ChangeAdvisorLinker, we shall retrieve the TransformedFeedback instances that contain
said term and that belong to the same ARdoc category, through a simple database query.
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4.2.4 Source Code Pipeline
Having seen how the Review Pipeline works, we, finally, look at the Source Code Pipeline. This
pipeline is much shorter and simpler than the Review Pipeline, since it only consists of two steps,
(i) source code import and (ii) source code preprocessing. Source code preprocessing, however, is nearly
identical to review processing and as such was already discussed in the previous section (4.2.3).
Thus, in this section, we only discuss the source code import step.

Source Code Import

One of the steps forward, in term of usability, is the possibility to import source code directly
from within ChangeAdvisor. Indeed, a user can, now, choose to import source code from either
the file system, as it was previously in the PoC, in case the code is already present on the local
system, or using the url of the git repository, in which case the code will be cloned into the local
file system. Using git, or any type of version control systems (VCS), opens up new possibilities
in future. Future works, might want to look into the option of correlating review ratings, source
code, and commit messages, even more precisely, pinpoint the exact moment in time when a bug
was introduced. Additionally, when using VCS, we can use hooks to automatically trigger code
imports when new code is commited to the master branch, for example.

As mentioned previously, at the moment, code import must be triggered by the user. So the
process only starts, when the users enters a path to the source code and manually triggers it
through the API or client.

Depending on the path that was given, the SourceCodeImporterFactory (Figure 4.9) will
generate an instance of an implementation of SourceCodeImporter, which is an interface con-
taining a single importSource() method that returns a SourceCodeDirectory object, that con-
tains the name of the app, the path in the file system where the code was saved, and a link to the
remote url in case the project was cloned from a VCS.

There exist, at the moment, only two implementations of the SourceCodeImporter inter-
face: (i) FSSourceImporter, which uses the file system, and (ii) GitSourceCodeImporter
which clones the code to the file system from git. In future, new ways of importing code can be
added, by implementing the interface and adding them to the factory. All parameters necessary
for the import of code, are provided to the implementations through the factory: we pass the ar-
guments to the factory, which uses them to decide the concrete implementation to use, and then
passes them on to the constructor of each implementation.

The FSSourceImporter isn’t very interesting, simply checking whether the path that was
given from the user actually exists in the local file system, and, in case it found the root directory
of the project, it creates the SourceCodeDirectory bean. Thus, we shall concentrate on the
GitSourceCodeImporter implementation.

Git importer. In order to clone code from a remote git repository, we utilize JGit [Ecl17], which
is a Java library from the Eclipse Foundation, that implements the git VCS, allowing us to clone
the repository to the local file system, in particular, it clones it as a sub-directory inside a directory
relative to the project called simply, imported_code, with the name of the app as the sub-directory’s
name. In case such a sub-directory already exists, i.e. the project has been imported at least once
before, the existing directory is deleted and a new one is created.

Concretely, Listing 4.21 shows how this works, the cloneRepo() method, does the actualy cloning
of the repository. In case the repository is private, it is possible to provide credentials to the im-
porter, which are going to be saved in the credentialsProvider instance variable.
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Figure 4.9: Class diagram of SourceCodeImporterFactory. This step only includes the download of
the data into the local file system.

1 public class GitSourceCodeImporter implements SourceCodeImporter {

2 @Override

3 public SourceCodeDirectory importSource() {

4 final String REMOTE_URL = getURLFromPath();

5 final String projectName = StringUtils.isEmpty(this.projectName) ?

6 getProjectNameFromPath() : this.projectName;

7 final File projectPath = new File(this.projectDirectoryPath);

8
9 if (projectPath.exists()) {

10 clearDirectory(projectPath);

11 }

12
13 try (Git result = cloneRepo(REMOTE_URL, projectPath)) {

14 return new SourceCodeDirectory(projectName,

15 projectPath.getAbsolutePath(),

16 REMOTE_URL);

17 } catch (TransportException e) {

18 throw new GitCloneException(String.format(NO_CREDENTIALS_OR_NOT_FOUND,

19 REMOTE_URL), e);

20 } catch (GitAPIException e) {

21 throw new GitCloneException(String.format(FAILED_TO_CLONE, REMOTE_URL), e);

22 }

23 }

24
25 private Git cloneRepo(final String REMOTE_URL, File projectPath) throws GitAPIException {

26 return Git.cloneRepository()

27 .setURI(REMOTE_URL)

28 .setDirectory(projectPath)

29 .setCredentialsProvider(this.credentialsProvider)

30 .call();
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31 }

32 ...

33 }

Listing 4.21: GitSourceCodeImporter.

Figure 4.10: Class diagram for the source code parsing part of the tool. This step parses the public API of
the source code imported in the previous step, which will be later persisted in the database.

Result of Source Code Import. Regardless, of how the code was imported, the end-goal of this
step is the SourceCodeDirectory bean, which contains the path to the source code in the local
file system. This will be used as an input for the following code parsing step.

Source Code Parsing. After the previous step, we have downloaded the code to the local file
system, but it is not yet ready for processing. As mentioned in Section 3.2.1, we parse the source
code for its public corpus. This will import the source code into a suitable form, to be then pre-
processed in the following step, and at the end, linked by the ChangeAdvisorLinker. The class
diagram for this step can be seen in Figure 4.10.
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The starting point is the parse() method of the FSProjectParser class. This method uses
the DirectoryCrawler#explore() method to get the path to each Java source code file in the
file system, starting from the root folder, found in the previous step. It does so recursively: each
time it finds a file, it adds it to the results list, if it finds a directory, it calls the explore() method to
visit the directory. Once the crawler has crawled its way to all leaf directories, it returns the list of
paths to all Java source code files.

With this list of paths, we can parse each file to recreate an in-memory model of the entire
project. The classes involved in this are the PackageBean class, which represents a package of
the project, the CompilationUnitBean class, which represents a Java file inside a package, and
finally the ClassBean class, which represents a single class (normal, nested, static nested, or
enum). The ClassBean class is the only one that actually contains any data from the files, all
other classes, being there just to recreate the relationships in our model.

The actual parsing of files, is done using the JavaParser library [Jav17]. The library builds
an Abstract Syntax Tree (AST), allowing us to easily parse the methods contained inside a class. To
do this, it provides an API based on the visitor pattern [GHJV95]. The user of the class only needs
to implement the logic inside the visitors, i.e. what the visitor should do when visiting a node,
while the library handles most of the complexity of iterating through the AST, making parsing
Java code an almost trivial task. Listing 4.22 shows the implementation of the MethodVisitor
class, which given the JavaParser equivalent of our ClassBean, parses each public method,
including documentation. The entry point is the static getCorpus() method, which handles the
creation of the visitor and the execution of the visitor pattern. While visiting the nodes, i.e. meth-
ods, we accumulate the text found inside a StringBuilder. When the visitor finally returns
into the getCorpus() method, it means, it is done visiting all nodes, and we can fetch the parsed
text from the StringBuilder. The ClassVisitor class works analogously but builds a list of
ClassBean instead.

1 public class MethodVisitor extends VoidVisitorAdapter<Void> {

2
3 private StringBuilder sb = new StringBuilder();

4
5 public static String getCorpus(ClassOrInterfaceDeclaration node) {

6 MethodVisitor visitor = new MethodVisitor();

7 visitor.visit(node, null);

8 return visitor.getPublicCorpus();

9 }

10
11 @Override

12 public void visit(MethodDeclaration n, Void arg) {

13 if (n.isPublic()) {

14 String methodText = n.toString();

15 sb.append(String.format("%s%n------%n", methodText));

16 }

17 super.visit(n, arg);

18 }

19
20 private String getPublicCorpus() {

21 return sb.toString();

22 }

23 }

Listing 4.22: Implementation of the visitor pattern, allowing us to parse the public interface of a class.
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Result of Source Code Parsing. The end result of this parsing is, then, a list of ClassBean
instances, each representing a class of the project, containing, among other things, the corpus
representing the public interface, including comments, of the class. These instances are then per-
sisted in the database and will be processed in the Source Code Preprocessing step of the pipeline
(3.2.2, 4.2.3).

4.2.5 ChangeAdvisor Linking
Finally, our long journey through the pipelines has brought us to the linking. This step is where
the two pipelines join and ChangeAdvisor can, finally, compute the links between reviews
and source code. The ChangeAdvisorLinker requires two inputs, in order to compute links:
(i) reviews and (ii) source code. For the source code, we fetch the code processed in the pre-
vious step. Regarding reviews, both TransformedFeedback, in case TFIDF was used, or
TopicAssignment, in case HDP was used, can be utilized here. This is by design, because,
the linker takes as input a list of items extending LinkableReview, an interface, presented in
Listing 4.23, that both TransformedFeedback and TopicAssignment implement. Indeed, the
ChangeAdvisorLinker itself, implements the Linker interface, seen in Listing 4.24.

1 public interface LinkableReview {

2
3 Set<String> getBag();

4
5 String getOriginalSentence();

6 }

Listing 4.23: LinkableReview. The return types of both clustering algorithms implement this interface,
allowing the linker to use any of the two.

1 public interface Linker {

2 ...

3 List<LinkingResult> link(String topicId,

4 Collection<? extends LinkableReview> reviews,

5 Collection<CodeElement> codeElements);

6 }

Listing 4.24: Linker. Interface for a linking algorithm.

Thus, the process looks as follows: the processor utilizes an implementation of the Linker
interface, calling the link() method, which implements the steps described in Section 3.3.2. The
ChangeAdvisorLinker, which is the only concrete implementation of the above-mentioned
interface, is a refactored port of the original linking algorithm of the Proof-of-Concept. This port
is, functionally, unaltered from the original and can be seen in Listing 4.25. The biggest difference
being, that the linker doesn’t operate on all clusters inside the same method call. The iteration of
clusters is handled by the reader for this step. This way, we leverage the practicality of Spring
Batch and the linker’s interface become simpler, needing only the reviews of a single cluster,
instead of all clusters and related reviews.
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1 /**
2 * @class: ChangeAdvisorLinker.

3 */

4 @Override

5 public List<LinkingResult> link(String topicId,

6 Collection<? extends LinkableReview> reviews,

7 Collection<CodeElement> codeElements) {

8 List<LinkingResult> results = new ArrayList<>(assignments.size());

9 Collection<CodeElement> candidates = new HashSet<>();

10 Set<String> clusterBag = new HashSet<>();

11 Set<String> originalReviews = new HashSet<>();

12
13 this.findCandidates(assignments, codeElements, candidates,

14 clusterBag, originalReviews);

15
16 final Collection<String> clusterCleanedBag =

17 corpusProcessor.process(clusterBag);

18
19 List<LinkingResult> similarityResults =

20 checkSimilarity(topicId, candidates, clusterCleanedBag, originalReviews);

21 results.addAll(similarityResults);

22
23 return results;

24 }

Listing 4.25: ChangeAdvisorLinker link method. The linker is mostly a cosmetic refactoring of the PoC
version, and for the greater part, functionally equivalent.

The findCadidates() method, allows us to restrict our search for links. We iterate over both data
sets and retain in the candidates collection (line 9), only those code elements that have at least one
term in common between code and reviews, by computing the intersection, in the mathematical
sense of the word. As we find possible candidates, we build a Bag-of-Words, the clusterBag set,
containing only those words found in reviews, that had a possible code element candidate. Ad-
ditionally, we also set aside the original sentence of the review, in order to present this to the user
at the end of the process, together with the results.

We then pass our candidate code elements, together with the new clusterBag to the checkSim-
ilarity() method, which can be seen in Listing 4.26, which will compute the similarity, using a
SimilarityMetric, which will compute the vicinity of a code element and the cluster of re-
views. In case the similarity scores a value over a certain threshold, the candidate is promoted to
link and will be returned to the user as a result of the process.

The SimilarityMetric is, yet another interface, that acts as an abstraction layer for a con-
crete metric, allowing maximum flexibility, in future, for new ways of computing similarity.

At the end, the checkSimilarity() method will return a list of results for this cluster, which will
be passed on to the ClusterWriter, which is the ItemWriter implementation for the linking
step. Before writing the items to the database, however, it will first do one last pass over all items,
setting the id of the application and the type of clustering that was executed on each result. This
final step can be seen in Listing 4.27, while a class diagram of the main part of the linking step can
be seen in Figure 4.11.
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1 /** @class: ChangeAdvisorLinker. */

2 private List<LinkingResult> checkSimilarity(

3 String topicId, Collection<CodeElement> candidates,

4 Collection<String> clusterBag, Collection<String> reviews) {

5 List<LinkingResult> results = new ArrayList<>();

6 for (CodeElement candidate : candidates) {

7 checkSimilarity(topicId, candidate, clusterBag, reviews)

8 .ifPresent(results::add);

9 }

10 return results;

11 }

12
13 private Optional<LinkingResult> checkSimilarity(

14 String topicId, CodeElement candidate,

15 Collection<String> clusterBag, Collection<String> reviews) {

16 final Collection<String> codeElementBag =

17 corpusProcessor.process(candidate.getBag());

18 if (!clusterBag.isEmpty() && !codeElementBag.isEmpty()) {

19 double similarity =

20 similarityMetric.similarity(clusterBag, codeElementBag);

21 if (similarity >= THRESHOLD) {

22 LinkingResult result = new LinkingResult(

23 topicId, reviews, clusterBag, codeElementBag,

24 candidate.getFullyQualifiedClassName(), similarity,

25 null);

26 return Optional.of(result);

27 }

28 }

29 return Optional.empty();

30 }

Listing 4.26: ChangeAdvisorLinker link method. The linker is mostly a cosmetic refactoring of the PoC
version, and for the greater part, functionally equivalent.

1 /** @class: ClusterWriter.*/

2 @Override

3 public void write(List<? extends List<LinkingResult>> items) {

4 setClusterTypeAndAppNameOnResults(items);

5 items.forEach(repository::saveAll);

6 }

7
8 private void setClusterTypeAndAppNameOnResults(

9 List<? extends List<LinkingResult>> items) {

10 items.forEach(results -> results.forEach(result -> {

11 result.setClusterType(this.clusterType);

12 result.setAppName(this.appName);

13 }));

14 }

Listing 4.27: The ClusterWriter sets metadata on each result, before saving.
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Linking Results. Finally, we are at the end of the entire ChangeAdvisor process, at this point,
the database has been populated with LinkingResult items, each item representing a link be-
tween a cluster of reviews, and a code element. The set of original reviews belonging to the
cluster, is also included in the results, so that we can better present the results to the end-user of
ChangeAdvisor, together with the cluster’s terms, and the achieved similarity score.

Figure 4.11: Class diagram for the linking part of the tool.
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4.2.6 Persistence
During this long chapter, we have often used the term database, without ever explicitly saying
what kind of database is in use for ChangeAdvisor. Thus in this chapter, we shall briefly discuss
the persistence layer.

The original PoC used flat files to save user reviews. The reviews’ format did not contain any
metadata, rather it contained only the feedbacks’ text. In the newest iteration, ChangeAdvisor,
persists user reviews together with ratings and date of review, thus enabling the possibility, in
future, for historical analysis. It would be interesting, for example, to be able to run the tools link-
ing algorithm over a specific period in time, e.g. between the previous and latest big releases of
an app, correlating not only the reviews to the code, but taking into account also rating statistics.
Adding VCS into the mix, would then further expand the possibilities, by examining, a snapshot
of the code at a specific point in time, and its commit messages.

MongoDB. This work uses MongoDB [Mon17] as the database for ChangeAdvisor, due to
the following reasons:

• Ease and speed of development, due to the schema-less nature of NoSQL, allowing for faster
iterations, without the need for database schema migrations.

• Compatibility with the Review Crawler Tool [Gra] (4.2.3), since the review crawler offers to
import reviews in either MongoDB or in a flat file in CSV format.

• And in part, also due to personal preference, and desire to experiment with tools and tech-
nologies new to me.

The choice of the database, however, is not of particular importance to this work, which is
why, the discussion regarding data storage appears so late in the thesis. Indeed, any kind of
persistence layer which allows for key-value retrieval, alongside basic field search functionality,
would have sufficed. This work does not attempt any fancy, real-time processing or viewing of
data streams, and neither does it implement complex relationships at the database level. Indeed
the data model, is rather simplistic, with much of the complexity being in the processes, rather
than the relationships between data. Thus, the only functionality, needed out of a persistence
layer for this work are:, (i) the capability to search by field, and (ii) basic aggregation functions,
such as grouping by field.

Because of this, the choice of the database, falls into the background, when considering the
overall scope of this project.

Spring Data. In order to interface ChangeAdvisor with the database, Spring Data [Piv17b]
was used. Spring Data is a project that aims to enable developers to access various persistence
stores over very different technologies (SQL, NoSQL, Graph, etc.), by defining a common ab-
straction layer based on the repository pattern [Fow02], and in doing so, allowing developers to
significantly reduce the amount of boiler plate code needed.

The center point of the Spring Data abstraction is the Repository interface, in particular
the CrudRepository interface, provides all of the basic Create-Read-Update-Delete functionality,
which can be seen in Listing 4.28. From the listing: the parameter T is the class we want to persist,
and ID is the type of the identifier of T. Through this simple interface, Spring Data completely
hides, all technology, and vendor -specific details, greatly simplifying the interaction with the
database. Indeed, to anyone, who has ever implemented a Data Access Object (DAO), in plain
JDBC (Java Database Connector) or JPA (Java Persistence API), it should become evident the
difference, in the amount of plumbing code needed.
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An additional advantage of Spring Data, comes in the form of query derivation. Spring Data
uses, what it calls, query derivation to create implementations of DAOs from interface method
names. In Listing 4.29, we show an example of query derivation, extracted from the ChangeAdvisor
source code. When we shall start the application, Spring Data parses the method declarations in
the interfaces marked with @Repository. If it finds a method, that begins with findBy, it
parses the rest of the method, in search for properties of the Java Bean defined in the interface
declaration.

1 public interface CrudRepository<T, ID extends Serializable>

2 extends Repository<T, ID> {

3
4 <S extends T> S save(S entity);

5
6 Optional<T> findById(ID primaryKey);

7
8 Iterable<T> findAll();

9
10 void delete(T entity);

11
12 boolean existsById(ID primaryKey);

13 }

Listing 4.28: The CrudRepository interface, offers all the basic CRUD operations.

1 @Repository

2 public interface ReviewRepository extends CrudRepository<Review, String> {

3 ...

4 List<Review> findByAppNameOrderByReviewDateDesc(String appName);

5 }

Listing 4.29: The ReviewRepository interface, review query derivation.

In this concrete example, Spring Data shall search for us in the database, all reviews which
have a given appName. Before returning, it shall order the results by the reviewDate field, in de-
scending order. This way we can interface with the database, without ever writing a concrete
implementation: the process is, in fact, entirely declarative.

More complex queries can also be implemented in other ways. Indeed, Spring Data does
not restrict access to the persistence store in any way. One could: define native queries through
the @Query annotation, manually implement the DAOs logic, or utilize one of the numerous
abstractions implemented by Spring Data.

Finally, one of the last, but certainly not least advantages, is the possibility to easily switch
persistence store, with little to no attrition.

4.3 ChangeAdvisor Client
As we have mentioned at the beginning of this long chapter, the client part of ChangeAdvisor
is a thin client, meaning it contains almost no logic. The responsibilities of the client are, thus,
limited to:

• presentation of results

• editing of app data, e.g. git repository url, review import schedule, etc.
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• manual triggering of certain operations

Thus, we start our discussion with what the client has to offer.

4.3.1 Functionality
The UI offers, at the moment, most of the CRUD operations that the REST API 4.2.2 offers, albeit,
not always in the most ergonomic way. For example, in order to define a schedule a user has to
enter a cron expression, representing the schedule, instead of having, easy-to-use options, such
as daily, weekly, etc. Additionally, not all options and functionalities, which are present in the
back-end, are represented in the client-side. As an example, the clustering algorithm, defaults to
TFIDF, without the possibility to change it from the UI, due to time constraints. It will have to be
added at a later time in future. More details, regarding future works in Section 6.

Managing Applications. After firing up both the back-end server and front-end server, the
user is presented a list of applications, that ChangeAdvisor is currently managing. Figure 4.12
shows this list of applications. From here he has the possibility to create a new project. A Project
is an entity, that we have not really discussed up until now. It represents, the entity, containing
all metadata for an application. In DDD parlance (Domain Driven Design), it is the aggregate
root, for the metadata of an application, containing data such as the Google Play Id, app name,
information regarding the last source code and review imports, schedules, etc. Through this entity
and its value objects, we configure most parameters for ChangeAdvisor. Directly after creating
a project, he can manually trigger the code and review import. By selecting one of the apps from
the list, the user is brought to the dashboard, which is the main view of the front-end.

Figure 4.12: List of applications, that ChangeAdvisor is analyzing.
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Dashboard. The dashboard aggregates the data that has been analyzed by ChangeAdvisor and
presents it to the user. From here we shall also start the linking of reviews and code, which at
the moment must be triggered manually. This is done this way, because the user will have the
possibility to choose which clusters he wishes to see by selecting one of the labels and a category,
as we can see in Figure 4.14.

First of all, we have an overview of the feedback the app has received, in the form of a time
series of reviews versus average ratings. We can interact with the diagram, by changing the
interval shown.

Directly below it, we can see the distribution of reviews by category with a pie-chart, and the
labels that have been computed via TFIDF clustering 3.1.4. We can select to view up to 100 labels,
and change the size of the N-grams. By selecting any label, we see how the category distribution
of the reviews linked to this label, and a table with all reviews belonging to the cluster.

Figure 4.13: Time series of number of reviews vs. average ratings.

Results. Once a user has selected a label from the menu on the left, and selected a category
from the table in the middle, the computation of the links begins, and the user is brought to the
results page, which can be seen in Figure 4.15. On the left side of the results screen, is the list of all
reviews, belonging to the cluster. Ideally, these reviews, represent the same change requests. On
the right side, we have the code that was linked to said cluster, representing the code, that should
be changed, in order to fulfill the change requests.
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Figure 4.14: Main panel of the client-side. By clicking on go to classes we can view the classes linked to the
cluster of reviews.

4.3.2 Tools.
The client was implemented using React [Fac17] a client-side web framework from Facebook,
although, here any web framework would have sufficed, as well as Vanilla JS. Indeed, the only
real requirement for a client framework was the possibility to consume a RESTful API, which is
nowadays, possible with any client-side framework, either natively, or by importing a library. So
in order to consume the API, we used the Axios library [Axi17], a simple promise-based, HTTP
client for node.js.

Charts were implemented using two different libraries, the popular HighCharts [Hig17] li-
brary and react-svg-piechart [Rea17], a simple to use library to draw pie-charts, for node.js.

4.4 Installation and usage of ChangeAdvisor
In this section, I shall, briefly, show how the set up ChangeAdvisor and how to use the GUI.
ChangeAdvisor is still in active development. Thus far, it has been tested on Windows 10 (1709),
and on macOS High Sierra (10.13.1), both running Java 1.8.0_73

4.4.1 Getting Started
Installation. First of all, in order to get started we need to have the necessary software installed.
The server side needs the following, in order to function:

• MongoDB 3.4

A mongodb instance is required. For compatibility with Spring Data, version 3.4 of mon-
godb is necessary. In order to install, simply follow the instructions for the host operating
system from: https://www.mongodb.com.

https://www.mongodb.com
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Figure 4.15: Results screen. Here we can see the reviews belonging to a cluster on the left side, and the
list of linked classes on the right, sorted by similarity score.

• Java

A Java Runtime Environment (JRE) is required in order to run the ChangeAdvisor. It
needs to support at least Java 8.

• Python

In the following, we show how to start the client static web server using Python, as it is the
simplest and fastest way. But, any other web server can be used, e.g. Apache, Nginx, etc.

Once the dependencies are installed, we can download the most recent version of the build
from VCS1.

Running. Under the release folder we find the ChangeAdvisor jar file, a dump folder con-
taining data for demonstrative purpose and the client-side files, which can be deployed to any
static web server. For the next following steps, we shall need three terminal windows 2, cmd/Pow-
ershell, in windows, or Terminal in macOS.

First, start mongodb, by running the following command from the CLI:

mongod

1https://bitbucket.org/alexander_hofmann/changeadvisor
The link can also be found in one of the cover pages.

2An alternative to multiple CLI windows would be to use a multiplexer, or running the applications in background.

https://bitbucket.org/alexander_hofmann/changeadvisor
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In order to import the database, run the following command from the release directory.
This is needed only the first time, and the mongodb instance needs to be running in order for this
to work.

mongorestore dump

Afterwards, we can run the server code by executing changeadvisor.jar as an executable:

./changeadvisor.jar

If Python is installed on the host machine, we can start a static web server by running the
following command from the root of the release/client folder, in a new CLI session:

python -m SimpleHTTPServer 8000

This is all that is needed, in order to start the server. By browsing to localhost:8000 with
a browser, we are greeted by the ChangeAdvisor project selection screen (Figure 4.12). By se-
lecting com.frostwire.android, we are brought to the main dashboard, where we can see the time
series of reviews (Figure 4.13), and directly below it, the table with the main labels, computed
using TFIDF (Figure 4.14). Let us select the first label: wish. The table should have populated
itself with the reviews associated with the selected token. By clicking on the GOTO Classes link
directly inside the Feature Request panel, we are brought to the results screen. After a few seconds,
the table should look as it does in Figure 4.15, containing all results found by linking the reviews
related to the label wish, with the source code of the application.





Chapter 5

Evaluation

This work set out with the goal of rewriting the original Proof-of-Concept, going beyond the PoC
stage, as a full-fledged application, with the specific goal to improve aspects such as performance,
maintainability, extensibility, and usability.

This work, however, is not a research thesis. As such a quantitative review of the results, is
not possible. There are no experimental values, and no hypothesis to be confirmed or confuted.
Rather, we do a qualitative evaluation, by reviewing the aspect mentioned above, the goals set out,
and by comparison with the PoC.

It is important to remember however, that the difference between ChangeAdvisor and the
PoC is considerable. The previous iteration of ChangeAdvisor was developed as a tech demo
and as a throwaway PoC and because of this, aspects such as maintainability and extensibility
were, at the time, a non-issue.

We review ChangeAdvisor, under the following aspects:

• Maintainability: ease, for a developer, to apply fixes in a timely manner; brittleness of the
system.

• Extensibility: openness to extensions, with or without code changes.

• Performance: speed of execution and memory consumption.

• Usability: ease of use for the end-user, flexibility for future research.

5.1 Maintainability
Refactoring and bug fixing is a natural process of each software project. Even with good require-
ments and top developers, code has to be flexible enough to be modified: bugs will always find
a way to slither in, code has to be changed to reflect the product owner’s vision and preference,
new tools, libraries, or techniques might be introduced for many different reasons. Over the
course of this project, bugs were, naturally, introduced, and requirements slightly changed and
thus a certain deal of refactoring and bug fixing was needed.

As we have seen in Section 4, the core of the business logic is implemented through the use of
Spring Batch. Spring Batch makes it easier to implement processes, defined as a list of steps, pro-
moting single responsibility principle and loose coupling. As such, many of the main components in
the pipelines, work completely independently from one another, and can also be tested in complete
isolation. This, simple, fact greatly helps, when modifying code.

A concrete example of this, was when TFIDF was added to ChangeAdvisor, the entities
used as input for the linker were different, depending on the clustering algorithm used. Through a
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simple generalization in the linker interface (LinkableReview, see 4.2.5), the processor only had
to modify its input parameter to that of the generalization. Then, we added a new ItemReader
for the new input type, which could, thanks to Spring Batch, simply be plugged in the definition
of the job.

A small test to the maintainability, will be the fine-tuning process that ChangeAdvisor will
undergo in future. While all processes were implemented, mostly as per the PoC, it became ap-
parent during development, that some processes could be streamlined. Some steps in the prepro-
cessing stage for example might be omitted. The linker step also does some string manipulation,
which might not be needed, considering prior preprocessing.

Over the course of this project, we strived to always apply software engineering principles
and best practices, in order to improve the maintainability of the system. This is reflected in the
following examples:

• Interfaces and composition, when possible, following the strategy pattern.

• Inversion of Control (IOC), through Spring’s dependency injection

• Separation of concerns, e.g. Item{Reader, Processor, Writer}, decoupled client
and server.

• Code re-use, e.g. review and source code preprocessing, use of well-established libraries
and frameworks.

Thus, under the maintainability aspect, the current version of ChangeAdvisor, is more ad-
vanced than the original PoC.

5.2 Extensibility
Extensibility refers to the openness of a system to extension, both with code changes and without.
It is the degree to which a system can be changed, while also considering the amount of effort
required for such change to happen. Examples of this are: the addition of a new feature, or the
introduction of a new UI in the form of a mobile app.

The PoC was non-extensible, as it did not need to be. This work now exists to apply the origi-
nal approach in a new framework, allowing it to become extensible, as we have seen above. Thus,
we identify the two main assets providing extensibility to ChangeAdvisor, at the macroscopic
level:

• Batch approach

• Decoupled front- and back-end

Extensibility through Batch Approach Under this aspect, ChangeAdvisor should be primed
for success, indeed the designed batch approach, makes the existing jobs (pipelines) flexible enough
to swap out components. It allows for the design of entirely new jobs, while leaving the existing
pipelines unaltered, since they are independent of one another. Considering, also, the classic
layered architecture of the back-end server, implemented in ChangeAdvisor, it makes it partic-
ularly easy to define new processes, and connect these processes to the API for triggering and
then consumption of the results.
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Decoupled front- and back-end The provided REST API layer, allows for unlimited extensi-
bility in terms of clients. Indeed, the ubiquity of HTTP clients, means that it is possible to extend
ChangeAdvisor with new UIs and clients, for virtually any kind of system. Possibilities for the
future include, new web clients, mobile apps, and plug-ins for IDEs. It would be interesting, to
integrate ChangeAdvisor into existing CI/CD pipelines. For example, with every new commit
to the master branch that triggers a redeploy of the application, the source code is also analyzed,
and the new results are integrated with the reviews imported between this analysis and the pre-
vious one. This way, we could run the process against the version of the code that is actually in
use by end-users.

5.3 Performance
Performance comparisons between the PoC and the current iteration of ChangeAdvisor is an
interesting aspect, as it is not as clear-cut as with the other facets. It rather is much more of
a trade-off between memory consumption and speed of execution. By having a back-end and
front-end server running, we consume overall considerably more memory than the PoC, since
once the PoC is done, it can exit, freeing all of its memory. In the case of servers, we constantly
have a set of threads hogging the memory, since it has certain availability requirements, that a
command line interface (CLI) process does not have. On the other hand, overall speed of execu-
tion is dramatically increased. Often during development of the core ChangeAdvisor process,
we compared the results and execution times of the PoC versus those of the newer implemen-
tation and found that each step of the process, is quicker. An exception is made for the source
code and reviews import. With the PoC these are responsibility of the user. So it is not possible to
compare the performance of these steps with the new version.

String manipulation. The biggest difference, in terms of execution speed, is in those steps,
which are particularly heavy in string manipulation. This includes the preprocessing steps, and
the ChangeAdvisorLinker. Especially, the performance of the preprocessing stage, is orders
of magnitude better. One of the main reasons we have identified is that the PoC heavily relied
on string concatenation using the "+" operator. Duplicate removal, as an example, works as fol-
lows: (i) input to the method is passed as a single string, (ii) which is then split using the split()
method, (iii) to create the result, we join the tokens back together using the "+" operator, but first
we check, using the contains() method, whether the token is already contained in the result string.
The performance overhead caused by this approach is significant. The are two problems with this
approach:

• string concatenation using the "+" operator, means that, for each concatenation, we must
first create a character buffer large enough to contain both tokens, in to which, we then
copy each character. Doing this operation for every token of every document in a corpus,
becomes costly, when the size of the corpus is in the order of thousands. In fact, a simple
computation shows, that its complexity is O(n2), in other words, it has a quadratic running
time 1. In some cases the compiler can optimize this process by using a StringBuilder
instance. However, in the case of dynamic data, i.e. data not know at compile-time, it cannot
do this optimization. Explicitly using a StringBuilder brings the running time down to
O(1) amortized.

• use of the contains() method on a string, means we need to iterate over each character of
the increasing result string, to match the token we are searching for. This results in O(n)

1http://www.pellegrino.link/2015/08/22/string-concatenation-with-java-8.html

http://www.pellegrino.link/2015/08/22/string-concatenation-with-java-8.html
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complexity. By using a Set for the removal of duplicates, we get O(1) running time, since
the contains() is optimized for this operation. In fact, it computes a hash of the value we
are searching for, and uses that as the index of the backing collection, in order to find the
searched token.

Some manual testing showed, that for the linking step, which also does extensive string ma-
nipulation, the run-time of the PoC was around 60 minutes, while in the new version, it was
about 1 minute, while achieving similar results (small differences in how the tokens are manipu-
lated lead to a variation in the results).

Clustering. The PoC implemented the HDP [TJBB05] in Python. For this work, we ported the
Python code in Java. Thus, the only difference in terms of speed is given by the speed of the
Python interpreter present on the system, versus that of the Java compiler and JVM running on
the same system. On the machines tested, the execution time of the Java version was about 10
times quicker. However, no actual benchmarking was done, and performance, especially for
Python, greatly depends on the interpreter used, thus these values are to be taken with a grain
of salt. In any case, compiled languages, do tend to have an advantage, in terms of speed, over
interpreted languages. It is important to note, that these values come from observations made
while developing the newer iteration, the goal then was never to measure speed of execution, but
rather to check whether the results were comparable.

5.4 Usability
Usability refers to the ease of use of a tool, i.e. how easy it is to use and to learn. Usability is a
make-it or break-it criterion: no one wants to be stuck with a tool that is annoying to use, and
is one of the main reasons for the complete rewrite of ChangeAdvisor. The previous iteration
of the tool, was a CLI software. Considering the target audience of ChangeAdvisor, it is not a
matter of learning, but rather continuous use: indeed, even though, most developers should be
comfortable enough with a shell, it does not mean that they might want to spend any more time
than necessary in it. Additionally, a CLI precludes the possibility for the visual exploration of
results. The field of data visualization has already shown the importance of visually analyzing
data, in order to make even extremely large data sets digestible, which in turn leads to better
decision making. Another disadvantage of the PoC, in terms of usability, is the way the reviews
are fed to it. In order to start the process, we must create a flat file containing all user feedback.
Which means that the developer needs to, by some other means, export their reviews and then
create this file. This process has to be done periodically, as new reviews come in. This, greatly,
hurts the usability of the PoC, since this process, ends up involving multiple tools, just to start
ChangeAdvisor.

The new version of ChangeAdvisor should represent a major step forward. Indeed, the
possibility to automatically import the reviews from the Google Play Store on a schedule and the
source code from VCS, significantly lowers the effort needed to use the tool.

Additionally, this newer version, thanks to its graphical interface, allows for the possibility to
better analyze the results of ChangeAdvisor. This is not only an advancements, in terms of ease
of use, but also of overall pleasure of using the tool.

Future works, might implement historical analysis of feedback, thanks to the database backing
ChangeAdvisor, which would enable for even more interactivity and functionality with the
system, increasing the usability of the tool.



Chapter 6

Conclusions and Future Work

This thesis had the following main goal: to implement the ChangeAdvisor approach [PSC+18], as
a newly redesigned application, which could then be the basis for future work. Thus, two of the main
non-functional requirements for this tool are maintainability and extensibility. For this purpose, the
application was designed to work with two parallel data pipelines. One for user feedback, and
one for source code. These two pipelines, which are described in Chapter 3, would join at the
end to provide the user with insight into the change requests, contained in the review data set,
and which code components would need to be changed, in order to fulfill the requests. On the
maintainability side of things, each pipeline is designed as a list of step (Chapter 4), where each
step is largely independent of each other, only needing to know the output of the previous step in
order to process it. This makes fixes and refactoring easier, thanks to the separation of concerns,
and the possibility to test these components in isolation. Regarding extensibility, the approach
only defines the interface, with which the two pipelines merge, making it simple to replace, add
or remove steps, or even add new pipelines. This, together with the REST API, leaves the system
open for future extension.

During development, we often drew comparison between the version under development
and the PoC. Both in terms of performance (memory consumption and execution times) and of
similarity of results. As well as, in terms of usability, maintainability, and extensibility (Chapter 5).

We strongly believe, that this work achieves its goal of setting the ground work for future
research scenarios, as well as,increasing the usability of the system for the end-user through the
addition of the web UI.

6.1 Future Work
A significant amount of work still remains, and new possibilities have opened up. Parts of
the pipeline need fine-tuning, and some bugs unfortunately still persist in the latest version of
ChangeAdvisor, as is normal for a project of this size. The most interesting part starts after-
wards. Indeed, considering that the goal was to set the basis for future development, from here
on out, we have many new possibilities, both on the research side of things, as well as features
for end-users. The ChangeAdvisor approach is implemented considering Java code, since it is
the de facto standard language for Android. However, in the last few years, new languages have
come out for the platform, e.g. Kotlin, React Native, C# (Xamarin), etc. These languages are not
supported in ChangeAdvisor at the moment. Adding support for them would, however, be
trivial. Indeed, the approach described in Chapter 3 is language agnostic. The only necessary
addition would be to add parsers for the targeted languages, while the rest of the pipeline could
remain unaltered. It might be interesting to add support for iOS and Apple’s App Store. Indeed a
huge slice of the market is mostly neglected from researchers in favor of Android. This is due to



68 Chapter 6. Conclusions and Future Work

the fact that there is a much larger concentration of open source app for Android than iOS. How-
ever, if ChangeAdvisor starts seeing use from developers, a collaboration between academia
and industry might be possible, allowing research also inside of Apple’s walled garden.

Regarding the source code import functionality, other version control systems (VCS) could be
added, and VCS hooks functionality would be beneficial for usability purposes. Regarding the
existing VCS functions, new research paths are open: it would be interesting to study the rela-
tion between commits, commit messages, and changes in rating. Trivially, we would assume that
commits referring to code fixes would cause an increase of the average rating. However, changes
in code might also have side-effects, such as breaking other functions, which might push the rat-
ings in the other direction. Thus, ChangeAdvisor might benefit from the additional information
contained within commit messages, to increase the precision of its approach.

Furthermore, the introduction of the database opens up an entire new dimension to explo-
ration: time. Indeed, in contrast with the PoC, we now also have access to the reviews dates and
the commit history through VCS. This combination allows for new approaches, not only based on
code metrics and similarity with reviews, but also considering review metadata, release sched-
ules, and as mentioned before, commit messages.

Finally, testing new clustering algorithms for topic modeling and new metrics for computing
similarity, might bring increases in precision.

Considering all these aspects, we feel excited at the prospects for ChangeAdvisor and in
general for the field of App Store Mining. I, personally, hope to be able to extend this tool in the
near future, maybe in the form of a follow-up project.
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