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Zusammenfassung

Diese Bachelorarbeit rekapituliert bestehende Ansätze zu verteiltem, large-scale RDF
Reasoning, basierend auf dem MapReduce-Konzept. Im speziellen wird die bestehende
Inferenz-Engine Cichlid genauer untersucht und es werden einige Verbesserungen vorgeschla-
gen. Daraufhin wird ein graphenbasiertes Konzept für RDF Reasoning vorgestellt mit
konkreten Implementierungsbeispielen. Im besonderen beinhaltet die Arbeit auch einen
alternativen Ansatz zur Anwendung von transitiven Inferenzregeln. Mittels eines Pregel-
basierten Algorithmus wird dazu die transitive Hülle des RDF Graphen berechnet. Tests
zeigen schliesslich die grundsätzliche Funktionalität der graphenbasierten Ansätze auf.
Konkrete Werte für anwendungsnahen Einsatz sowie Vergleichswerte zu bestehenden
Methoden sind nur von begrenzter Aussagekraft.





Abstract

This Bachelor thesis recapitulates existing approaches towards distributed, large-scale
RDF reasoning, which are based on the MapReduce model. Specifically, the existing
inference engine Cichlid will be analyzed more closes and some improvements are sug-
gested. Following this, a graph-based approach towards RDF reasoning will be presented,
along with concrete examples for implementation. In particular, this thesis includes an
alternate method for applying transitive inference rules. For this, a Pregel-based algo-
rithm computes the transitive closure of the RDF graph. Tests show the functionality
of the graph-based approaches. Concrete measurements of real-world performance and
comparison to existing approaches are of limited meaningfulness.
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1

Introduction

Along with the increased demand for big data solutions in the business world in recent
years, various new tools and approaches have been developed to cope with the ever-
increasing scale of problems faced. While most technologies are still relatively young,
they are already being applied to a wide range of problem fields.

One very obvious area of research which can benefit of highly scalable approaches is
the World Wide Web, traditionally an area characterized by large amounts of data. It is
thus no big surprise that multiple technologies which are now being used were originally
developed at Google [Dean and Ghemawat, 2004] [Malewicz et al., 2010].

As an extension to the existing World Wide Web, the W3C introduced various tech-
nologies related to the Semantic Web. This is an effort towards enriching the existing
Web of documents with a Web of data.

Of particular interest to this thesis is the area of RDF reasoning within the Semantic
Web stack. The problem of RDF reasoning combines the scales of big data with discovery
of new information by applying logic rules. As such, there already exists research which
approaches the task with the help of recent big data technologies, such as MapReduce
and Spark [Urbani et al., 2012] [Gu et al., 2015].

In addition to analyzing these existing approaches and suggesting some improvements
over the inference engine Cichlid, this thesis also examines an alternate approach towards
RDF reasoning, by employing graph-based techniques.

Thus, the next chapter will cover core concepts and technologies related to the Se-
mantic Web and RDF. Then follows the analysis of existing approaches, together with
suggestions for possible improvements. After that, the graph based paradigm will be
introduced and examined, and some limited tests will be conducted. The thesis will be
concluded by examining the limitations of this work, possible next steps and conclusions,
that can be drawn.
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The Semantic Web

The Semantic Web is a set of standards provided by the W3C intended as an extension
to the existing Web, primarily a Web of documents, to enable a Web of linked data.
Thus, these standards form a common framework which allows data to be shared across
the web and across applications, by defining common formats for creating and describing
data, building vocabularies and rules for handling data. These efforts resulted in various
technologies, such as RDF, RDFS, OWL and SPARQL.1

At its core, the Semantic Web is a Web of data, that is, a large collection of linked
data across the Web. This requires, for one, the data itself as well as relationships which
link data and form a web. The Resource Description Framework, RDF, is the foundation
for presenting data on the web in a common format. It defines an abstract syntax which
serves as language for data on the Web. The following sections will present RDF and
related technologies, as a good grasp of these is vital to understanding the work presented
in this thesis.

2.1 RDF

RDF defines a data model for representing information about data on the Web. It has
been formally specified by a collection of documents from the W3C.2 Its core structure is
an RDF-Graph, formed by a set of triples. These triples consist of subject, predicate and
object, where subject and object are nodes of the graph, and the triple itself a directed
edge, connecting both nodes.

Nodes are either an IRI (Internationalized Resource Identifier), a literal or a blank
node. IRIs and literals denote, or refer to entities, which intuitively can be any thing, such
as objects in the real world, concepts or numbers. These entities are called resources.

A triple then states that there is a relationship between subject and object, indicated
by the predicate. The triple Tolkien - isAuthorOf - The Hobbit, for instance, can be read
as Tolkien is the author of The Hobbit. This is known as an RDF Statement.

An important aspect of RDF is that predicates are IRIs as well and can, as we will
see below, appear in the position of a subject or object within a triple.

1https://www.w3.org/ standards/ semanticweb/
2https://www.w3.org/ standards/ techs/ rdf#w3c all
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There are further intricacies to the RDF Standard, such as differences between IRI,
literal and blank nodes or namespaces and prefixes. They are, however, beyond the
discussion of this thesis.

2.1.1 RDF Serialization Formats

It is worth noting that RDF, as described above, only defines an abstract syntax and
not a specific format of writing RDF data. Consequently, various concrete syntaxes have
been developed to provide common and well-known formats, most of which are specified
by the W3C.

The first standard developed by the W3C is RDF/XML, which as the name implies is
an XML syntax for RDF. This explicit and verbose syntax is however not ideal for human
readability. Luckily, other, more practical and compact serialization formats have been
developed, which simplify writing and reading RDF documents. Of particular relevance
to this thesis is the N-Triples Language.3 Arguably one of the simplest languages, it
defines triples per-line as a sequence of subject, predicate and object, separated by
spaces or tabs and terminated by `.` and newline. Triples could then look as follows:

Tolkien isAuthorOf TheHobbit .

Rowling isAuthorOf HarryPotter .

This sequential format is very suitable for the purposes of Big Data Processing, where
large text files are often read in a streaming manner, line by line. As we will see later,
when RDF data is given in this format, very little preprocessing is required to transform
the lines to triples.

2.2 RDFS

RDF on its own does not specify what IRIs denote. Conversely, there is no rule, which
specifies how an IRI that refers to a particular resource should look like. Thus, a concrete
dataset usually uses a vocabulary, a collection of IRIs to be used in the RDF graph.

As an additional tool in specifying vocabularies, the W3C provides RDF Schema, or
RDFS, as a set of vocabularies.4 The meaning of the IRIs it contains is well defined
and allows for data-modeling, i.e., specifying well known relations between resources in
a given vocabulary. As such, it is a semantic extension of RDF.

More specifically, RDFS introduces the concept of classes, a concept well known from
Object Oriented Programming. This allows the grouping of IRIs of the same kind. In
this context, a class is defined by the set of instances to which it applies. To avoid
confusion one should note the distinction between a class and an instance of that class,
as both are presented as IRIs. The most important IRIs defined by RDFS can be seen
in Table 2.1.

3https://www.w3.org/TR/2014/REC-n-triples-20140225/
4https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

4
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IRI Meaning

Classes

rdfs:Resource The class of everything described by RDF. All IRIs
describe instances of this class, and all classes are sub-
classes of rdfs:Resource.

rdfs:Class The class of classes. Every class in an RDF dataset is
an instance of rdfs:Class.

rdfs:Property The class of properties, those IRIs that appear as pred-
icates in triples.

Properties

rdfs:range A property which states when given the triple p
rdfs:range c that the object of a triple with predicate
p belongs to class c.

rdfs:domain Analogous to rdfs:range, rdfs:domain states that the
subject of a triple with predicate p belongs to c.

rdf:type A property that states when i rdf:type c, that i is an
instance of class c.

rdfs:subClassOf A property that allows to state a subclass relation be-
tween two classes. This is a transitive property.

rdfs:subPropertyOf A property roughly equivalent to rdfs:subClassOf, al-
lows to state this transitive relation between two prop-
erties.

Table 2.1: RDFS Vocabulary Excerpt

The properties defined by RDFS are of special interest to us, as will be seen below
when discussing Reasoning and Inference Rules.

2.3 OWL

The Web Ontology Language OWL5, will mostly be left outside the scope of this thesis.
It nevertheless is a core technology in the Semantic Web stack. As such, it warrants a
brief mentioning. OWL is another ontology language for RDF, much in the same vein
as RDFS. It introduces another set of vocabularies for defining ontologies building upon
the RDFS vocabulary. The difference between vocabularies and ontologies is not clear
cut, but generally, ontologies are considered to be more formal and extensive.

OWL defines further relations between entities, such as equality and inequality (owl:sameAs,
owl:differentFrom), or complex class constructs, built from the intersection, union or
complement of other classes. It also extends properties by defining various property
characteristics, such as symmetric, asymmetric, reflexive or transitive, as well as rela-
tions between properties (owl:inverseOf, owl:propertyDisjointWith). It is evident, that

5https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

5
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Rule # Condition Consequence

rdfs2 s p o & p rdfs:domain c s rdf:type c

rdfs3 s p o & p rdfs:range c o rdf:type c

rdfs5 a rdfs:subPropertyOf b & b rdfs:subPropertyOf c a rdfs:subPropertyOf c

rdfs7 s p o & p rdfs:subPropertyOf q s q o

rdfs9 a rdf:type x & x rdfs:subClassOf y a rdf:type y

rdfs11 a rdfs:subClassOf b & b rdfs:subClassOf c a rdfs:subClassOf c

Table 2.2: RDFS Entailment Patterns with Two Antecedents

OWL allows much more intricate ontologies to be modeled.

2.4 Reasoning

The W3C produced various documents specifying the formal aspects of RDF, RDFS
and OWL Semantics. Approaching these formalities would easily warrant its own the-
sis. Relevant for the task of reasoning, which concerns itself with the discovery of new
relations within existing structures, are RDF inference rules. These allow new triples to
be inferred by combining existing triples with specific patterns.

Given the well defined meaning of the RDF and RDFS vocabulary, certain inference
rules can be formulated. These rules have a condition or antecedents, from which a
potentially new triple can be inferred (See Table 2.2 for the RDFS entailment rules with
two antecedent triples). OWL also introduces further inference rules. Specifically, the
Ter Horst ruleset forms a compromise between computational feasibility and usefulness
[Ter Horst, 2005].

A common task is to exhaustively apply the inference rules on to a given RDF dataset
until no new triples can be derived. This is called closure computation, the main task
this thesis is concerned with. As an illustration of RDF reasoning, consider the following
example: Say, we know that an Audi is a specific kind of, or subclass of, car. We also
know that a car is a specific kind of vehicle. In a concrete RDF dataset, this could be
represented as the two triples

Audi rdfs:subClassOf Car .

Car rdfs:subClassOf Vehicle .

Intuitively, following an everyday understanding of these terms, we are able to infer from
this that Audi is specific kind of vehicle, i.e. the triple

Audi rdfs:subClassOf Vehicle .

And in fact, this is what the rule rdfs11 describes in a more formal way.

6



3

Reasoning With The MapReduce Model

Given the potentially enormous size of RDF datasets, the amount of processing required
for the reasoning task quickly exceeds the capabilities of even very powerful single ma-
chines and makes traditional computation approaches increasingly infeasible. Hence, the
field of Big Data becomes of interest to the task at hand. Especially considering the
possibility of even larger datasets in the future.

Originally a problem which pioneering Web-Startups such as Google and Facebook had
to face, more and more traditional companies encounter the question of how to handle
the ever-increasing amount of data at their disposal; data such as customer records, bills
of material or the whole World Wide Web.

A key idea for processing large datasets is parallelization - dividing the task not only
between multiple cores, but between multiple machines within a distributed system. In
the next section 3.1, we will have a look at the well established MapReduce approach.

There is already some previous work towards a distributed solution to apply inference
rules to RDF datasets. Most notably [Urbani et al., 2012], presenting a MapReduce
framework for RDF inference and [Gu et al., 2015], which develops on the previous paper
and implements the concept with Spark (See 3.1).

This chapter will mainly build on the mentioned contributions, analyzing them and
improving on Cichlid, a inference engine built on the Spark framework.

3.1 MapReduce and Related Technologies

Since its introduction, MapReduce has been widely adopted as an approach to Big Data
processing. While the idea of distributing a task among multiple workers has been around
before, implementations usually were designed for specific tasks. MapReduce thus is an
important contribution towards more generic Big Data processing [Dean and Ghemawat, 2004].

The base concept of MapReduce is quite straightforward to understand, yet it is
applicable to a wide range of problems. The input format of MapReduce is key/value
pairs. The computation itself consists of a map and a reduce phase. These two phases
are implemented by user-supplied map and reduce functions.

Conceptually, first the map function is applied to every input pair individually. Taking
the pair, the function then produces as output a set of key/value pairs - this set can
contain an arbitrary amount of entries: 0, 1 or more.
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Listing 3.1: A simple MapReduce word count example

1 map( i n t key , s t r i n g value ) {
2 array [ s t r i n g ] words := value . s p l i t (” ”)
3 f o r word in words {
4 emi t in t e rmed ia t e ( word , 1)
5 }
6 }
7
8 reduce ( s t r i n g key , i t e r a t o r [ s t r i n g ] va lue s ) {
9 i n t count = 0

10 f o r va lue in va lue s {
11 ++count
12 }
13 emit ( key + ” ” + count )
14 }

The key/value pairs generated in this way are then grouped by key, and passed to the
reduce function. This function is applied to every key, together with the list of values
that have the respective key. From this, the reduce function produces some output.

This high-level view of MapReduce does not make the parallelization explicit. A
programmer could arguably write a valid MapReduce program without having to concern
themselves with the distributed side of the program. Nevertheless, it is advisable to
understand what is going on under the surface of the simple API, especially to understand
what kind of tasks are suitable for MapReduce and which tasks are not.

Parallelization, i.e. workload distribution is achieved by splitting the input - commonly
a large text file available on a (distributed) file system - into so called input splits. These
splits are distributed among worker nodes within a cluster, which individually process
their split(s) according to the provided map function. The reduce step again is assigned
to multiple worker nodes. This step usually incurs some network traffic, as the reduce-
nodes have to collect the values from potentially multiple map-nodes. Commonly, each
reduce-node produces its own final output.

Listing 3.1 shows a canonical example of a MapReduce program to count the number
of occurrences of each word in a text. The input would be a text file, each line is an input
pair of the form (lineNumber, line). In this example, line numbers are not required.
Each line, in the form of a string, is split (naively) into individual words, and every word
is emitted, with the word as key and the number 1 as value.

The reduce function then receives a word as key and an iterator which contains n 1s,
where n is the number of occurrences of the word in the text. The reducer then only
has to sum up the iterator. In our simple case, the iterator only contains 1s, thus the
size of the iterator is the individual word count.

A interesting and useful characteristic of MapReduce is that standard Relational Al-

8



3.1. MAPREDUCE AND RELATED TECHNOLOGIES 9

gebra operations, commonly used in SQL, can be modeled with MapReduce. Namely:
Selection, Projection, Union, Intersection, Difference, Natural Join, Grouping and Ag-
gregation [Leskovec et al., 2014, p. 32ff].

3.1.1 Apache Hadoop

The Apache open-source project Hadoop is a popular platform for Big Data, mainly
using the Java programming language.1 It includes the Hadoop Distributed File Sys-
tem, HDFS, a cluster resource management and job scheduling framework called YARN
and an implementation of MapReduce (Hadoop MapReduce), based on YARN. Hadoop
also spawned various related projects, which build upon the platform and extend it
with further functionality, such as distributed databases (HBase2) or data serialization
(Avro3).

3.1.2 Apache Spark

Apache Spark4 is another project related to Hadoop. In many ways it can be seen as
a development upon MapReduce, retaining its properties such as scalability and fault
tolerance, while also supporting other types of applications which MapReduce tradi-
tionally is not well suited for. Specifically, iterative algorithms which repeatedly run
computations over a dataset and interactive analysis of datasets [Zaharia et al., 2010].

Spark introduces resilient distributed datasets, RDDs, immutable, i.e. read-only col-
lections of objects which are partitioned across a cluster. The RDD API provides an
array of operations on RDDs, which are separated into transformations and actions.
Transformations are generally operations which result in a new RDD. They are also
lazily evaluated, which means they are only computed when their result is needed. This
is triggered by actions, which result in a value.

Listing 3.2 shows a simple usage of the Spark API. The SparkContext object sc,
assumed to have been previously instantiated, provides a method for loading text files
into an RDD[String], where each string object is a line of the input text file. It then filters
out those lines which contain the substring filterword, returning an RDD containing
the remaining lines. Finally, .count() returns the numbers of entries in the RDD.

Note that .count() is an action as described above and triggers the evaluation of
.textFile(...) and .filter(...). Lines 6-8 show the same operations, chained
together as one expression. Lines 3 and 7 contain two different shorthand notations for
lambda functions in Scala; in this case, the functions take a line as parameter and return
false or true, depending on whether the line contains the substring filterword or not,
respectively.

Spark is mainly written in the JVM programming language Scala and provides APIs
for Scala, Java and Python. While working with Spark, using the Scala API proved to be

1http:// hadoop.apache.org/
2http:// hbase.apache.org/
3http:// avro.apache.org/
4http:// spark.apache.org/

9



10 CHAPTER 3. REASONING WITH THE MAPREDUCE MODEL

Listing 3.2: A simple Spark example in Scala

1 val t e x t F i l e : RDD[ St r ing ] = sc . t e x t F i l e ( ” i n p u t f i l e . txt ” )
2 val f i l t e r e d T e x t = t e x t F i l e . f i l t e r (
3 l i n e => ! l i n e . conta in s ( ” f i l t e r w o r d ” ) )
4 val f i l t e r edL i neCo unt = f i l t e r e d T e x t . count ( )
5 // This cou ld a l s o be chained
6 val f l c 2 = t e x t F i l e
7 . f i l t e r ( ! . conta in s ( ” f i l t e r w o r d ” ) )
8 . count ( )

the most productive and pleasant experience when writing Spark applications. However,
this assessment is subjective, and there is not much difference in the capabilities of the
APIs. There are however some modules of Spark which do, as of this writing, not provide
a Java or Python API.

3.2 WebPIE and Cichlid

The WebPIE inference engine is the result of extensive research in the area of web-scale
RDF inference [Urbani et al., 2012] using MapReduce. It addresses many principal issues
faced when conducting large scale reasoning in parallel, such as joining of large datasets,
handling of duplicates and optimized rule execution order (see Subsection 3.3 and Figure
3.1). Especially for RDFS entailment rules a very feasible model has been developed.

The Cichild engine then takes these concepts and implements them in Apache Spark
[Gu et al., 2015]. The model presented for WebPIE requires the iterative execution of
multiple MapReduce jobs. An individual MapReduce job reads data from, and writes
it back to disk storage, which makes sequential or iterative perform a lot of time con-
suming writing and reading. Spark specifically improves upon this by loading the data
into memory and keeping it there as long as required or possible. This improves the
performance of chained MapReduce operations and makes the Spark framework well
suited for the task.

3.3 Rule Application Approaches

The general approach towards inference is taking an inference rule and applying it to
the dataset. When considering only the RDFS entailment rules, as a first step the rules
can be split in two groups: Those with only one condition or antecedent, and those with
two. No RDFS inference rule has more than two antecedents, unlike the OWL rule set.

Application of a one-antecedent rule is trivial and can be done within a single iteration
over the data. As such, the task is easily parallelized. In fact, all the single-antecedent
rules can be applied within one traversal. Listing 3.3 shows an example implementation,

10



3.3. RULE APPLICATION APPROACHES 11

applying the rules 4a, 4b, 6 and 10. Furthermore, it is debatable whether the new triples
inferred from these rules are of any practical value. They nevertheless may serve as a
good starting point for analyzing the problems that arise with this approach to RDFS
reasoning.

Duplicate Output Triples

This direct approach may however yield a lot of duplicates. Consider the two triples
(s,p1,o1) and (s,p2,o2). The triple (s, rdfs:type, rdfs:Resource) would be in-
ferred twice. This is even more apparent if we took n triples, that only differed in their
predicate. Of 2n inferred triples, all but two would be duplicates. Each input triple
yields either two or three output triples (notice that rule 6 and 10 exclude each other).
Thus, the number of output triples s for n input triples is 2n ≤ s ≤ 3n.

A more space efficient approach for rules 4a and 4b would thus be to collect all distinct
subjects and objects in the dataset and then map all resources to the resulting rule (See
Listing 3.4).

Iterative Application

Notice furthermore, that the previously discussed rules only need to be applied once to
the dataset, to infer all possible triples. Rules 4a and 4b apply to an arbitrary triple
(x,p,o) or (s,p,x), and return a triple of the form (x, rdfs:type, rdfs:Resource).
For any such output triple, rule 4a would yield the identical triple, and rule 4b would
yield the triple (rdfs:Resource, rdf:type, rdfs:Resource), which for completeness
sake can be added manually.

There are in fact RDFS entailment rules, that yield new triples on which the same rule
can be applied again and may yield again new triples. These rules have to be applied
iteratively until no new triples can be inferred. This leads us to the second group of
RDFS rules according to the distinction made at the beginning of this section.

RDFS Rules with Two Antecedents

Rules 5 and 11 both need to be applied iteratively. Intuitively, this makes sense: If we
know that A is a subclass of B, and B is a subclass of C, we can infer that A is a subclass
of C. Now, if we also know that C is a subclass of D, we can infer that A is a subclass
of D, but only in the next iteration.

These two rules can be classified as transitive rules. In fact, exhaustively applying rules
5 and 11 is equivalent to calculating the transitive closure of the RDF graph contain-
ing only the nodes that are connected via the rdfs:subPropertyOf and rdfs:subClassOf
predicate respectively [Gu et al., 2015].

By filtering the input dataset to only contain the triples with the subProperty and
subClass predicate respectively, and then remove the now-redundant predicate, the re-
sulting presentation of the data is suitable for the application of smart transitive closure
as presented in [Leskovec et al., 2014].

11



12 CHAPTER 3. REASONING WITH THE MAPREDUCE MODEL

Figure 3.1: A cycle-free sequence graph for RDFS rules with two antecedents.

The question of whether a rule has to be applied multiple times not only occurs on the
level of a single rule. It must also be considered, whether the output of one rule may serve
as input to another rule and produce new triples. Figure 3.1 shows the dependencies
between the RDFS entailment rules in a graph, ignoring rare edge cases. This directly
translates to the sequence in which rules have to be applied in order to avoid multiple
iterations [Urbani et al., 2012].

Another issue for rules with two antecedents is that two datasets have to be joined
to apply the rule. A naive approach would be to self-join the data. However, for large
datasets this may be a very expensive operation. Luckily, this can be circumvented.
The input RDF set can be split into instance triples and schema triples. The schema
set contains all triples with an rdfs:* predicate and the instance set all the other triples.
Furthermore, the schema set is very small compared to the instance set. Another obser-
vation is that for all rules in question, one or both antecedents are from the schema set.
Hence, the relevant schema information can be broadcast across the cluster, i.e. made
available locally on each node. This prevents having to join two large datasets across
the cluster [Urbani et al., 2012] [Gu et al., 2015].

3.4 Improvements to Cichlid

As the first part of the practical work done, the Cichlid Engine introduced in 3.2 will
be reviewed and modified in places. With a lot of theoretical groundwork already laid
down in [Urbani et al., 2012], a Spark implementation can adopt these optimizations.
As such, building a Spark version is mainly the task of porting existing concepts and

12
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Listing 3.3: Single-antecedent Rule Application

1 val t r i p l e s : RDD[ ( Str ing , Str ing , S t r ing ) ] = . . .
2 val newTriples = t r i p l e s . f latMap{
3 case ( s , p , o ) => {
4 var l s t = L i s t (
5 ( s , ” r d f s : type ” , ” r d f s : Resource ” ) ,
6 ( o , ” r d f s : type ” , ” r d f s : Resource ” )
7 )
8 i f (p . equa l s ( ” rd f : type ” ) ) {
9 i f ( o . equa l s ( ” rd f : Property ” ) )

10 l s t = l s t + ( s , ” r d f s : subPropertyOf ” , s )
11 else i f ( o . equa l s ( ” r d f s : Class ” ) )
12 l s t = l s t + ( s , ” r d f s : subClassOf ” , s )
13 }
14 l s t
15 }
16 . d i s t i n c t ( )
17 }

Listing 3.4: Modified Rule 4a and 4b

1 val t r i p l e s : RDD[ ( Str ing , Str ing , S t r ing ) ] = . . .
2 val r e s o u r c e s = t r i p l e s . f latMap{
3 case ( s , p , o ) => {
4 i f ( s . equa l s ( o ) )
5 L i s t ( s )
6 else
7 L i s t ( s , o )
8 }
9 . d i s t i n c t ( )

10 val ru le4ab = r e s o u r c e s . map(
11 ( , ” rd f : type ” , ” r d f s : Resource ” ) )
12 }

13
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the main challenges lies in optimally employing Scala and the Spark framework.
Looking at the openly available source code for Cichlid5, the following issues were

identified and addressed.

3.4.1 Discarded SubClass and SubProperty Schema Triples

The RDFS reasoning program contains a logical error. It does not cause any error,
however schema triples could be silently discarded an hence certain possible triples may
not be inferred as a consequence.

Listing 3.5: Cichlid implementation silently discards triples with map-conversion

1 val subprop , subc la s s , domain , range : Array [ ( Str ing , S t r ing ) ]
2
3 val spClosure = t r a n s i t i v e C l o s u r e ( subprop . toSet )
4 val s cC losure = t r a n s i t i v e C l o s u r e ( s u b c l a s s . toSet )
5
6 val sp = sc . broadcast ( spClosure . toMap) // ISSUE
7 val c l = sc . broadcast ( s cC losure . toMap) // ISSUE
8 val dm = sc . broadcast ( domain . toMap) // ISSUE
9 val rg = sc . broadcast ( range . toMap) // ISSUE

Listing 3.5 shows an excerpt from the original implementation in Cichlid, where the
transitive RDFS rules 5 and 11 are applied and all schema-maps are broadcast to the
nodes in the cluster. It has been formatted for easier understanding. The objects
subprop, subclass, domain and range from the first line contain all existing schema
triples with the according predicate. In addition, the predicate has been removed from
the triples, leaving only subject-object tuples.

The transitive closure is applied on lines 3 & 4, returning a set containing all inferable
triples. The concrete implementation of the function transitiveClosure(...) is not
important here and works as intended. The issue arises in lines 6 & 9. By transforming
a set of tuples into a map, entries may be lost. Consider the tuples (a,b) and (a,c) in a
set. Converting this set using the .toMap() method provided by Scala, one of the tuples
is lost as a becomes the key, and keys must be unique. In fact, for n tuples with the
same subject, n− 1 are lost.

Luckily, this problem is simple to solve. Two solutions are possible: either the closures
are kept as sets of tuples, or a custom toMap function is implemented, that maps the
subjects to a set of all objects a given subject maps to. The first approach has the
drawback that a set does not directly provide key lookup. Later rule applications would
have to iterate over the whole set of tuples, collecting entries where the first element is the
key in question. Thus, the second approach was chosen by providing the implementation
shown in Listing 3.6.

When tested with an example dataset of approximately 1.3 million triples this error
made almost no difference. Only a single additional triple was inferred with the corrected

5https:// github.com/PasaLab/ cichlid

14
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Listing 3.6: Alternative toMap-implementation that avoids dropping tuples

1 def setToGroupedMap [A, B] ( s : Set [ (A, B ) ] ) : Map[A, Set [B ] ] =
2 s . groupBy ( t => t . 1 )
3 . map {
4 case (k , v se t ) => (k , v se t .map( t => t . 2 ) )
5 }

implementation. Other rules may also compensate for the error, by producing triples that
were lost by the error. At any rate, the impact of this error depends on the completeness
of the existing schema and constellation of the instance triples.

Additionally, changing the broadcast objects from Map[String, String] to Map[String,
Set[String]] naturally requires some adjustment in the operations utilizing these val-
ues. Specifically, this applies to rules 2, 3, 7 and 9. Listing 3.7 shows how this may look
for rule 7. The change is done on lines 3 - 5. Instead of a simple map, yielding always
a single triple, a flatMap is applied which maps to a sequence of one or more elements
(triples with a predicate that is not present in the subProperty-map are filtered out on
line 2, so no empty sequences will be yielded).

Listing 3.7: Adapted application of RDFS rule 7

1 val r7 out = t r i p l e s
2 . f i l t e r ( t => sp . va lue . conta in s ( t . 2 ) )
3 . f latMap ( t => {
4 for (p <− sp . va lue ( t . 2 ) ) yield ( t . 1 , p , t . 3 )
5 })
6 . union ( t r i p l e s )
7 . d i s t i n c t ( )

3.4.2 Improving Elimination of Duplicates

Applying the rules to every triple in the dataset yield a large amount of output triples,
many of which are duplicates. Without addressing the duplicates at all, the output size
quickly grows far too large to handle, even in distributed clusters. However, by prepro-
cessing the input set accordingly, the amount of duplicates generated can be reduced and
it can be ensured that the remaining duplicates are generated on the same node. Thus,
they can be easily eliminated without the need for further shuffles [Urbani et al., 2012].

However, Cichlid does not fully implement this preprocessing. Instead it filters the
input set to only contain those triples, where the predicate is also in the according schema
map and then removes all duplicates at the end. Therefore, an alternate implementation
has been devised which handles duplicates according to the approach described above,
an example of which can be seen in Listing 3.8.

15
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The modification is twofold; The first change happens on lines 2 & 3. Recall RDFS
rule 3, which states:

p range c & x p i ⇒ i type c

Notice how the subject x in the input triple is irrelevant to the output. For a given
schema triple, all instance triples that only differ in their subject produce the same
output when rule 3 is applied. Thus, the triples are mapped to tuples containing only
predicate and object (line 3), and duplicate tuples are removed from this RDD (line 4).

Next, the tuples are grouped by their object (line 5). With this, all tuples with the
same object can be processed together. Between lines 6 to 9, all grouped tuples are
joined with their entries in the broadcast schema map. Because the tuples were grouped
by their object, all output tuples (with the implicit predicate rdf:type) containing that
object (now as subject), are ensured to be on the same node. Duplicates can thus easily
be removed by converting the resulting collection to a set.

The same concept can be applied analogously to rule 2. Rules 7 and 9 also allow for
grouping, but as they require both subject and object of the input triples, no initial
duplicate removal can be done.

Listing 3.8: Modified application of RDFS rule 3 that locally handles duplicates

1 val r 3 l o c a l = t r i p l e s
2 . f i l t e r ( t => rg . va lue . conta in s ( t . 2 ) )
3 . map( t => ( t . 2 , t . 3 ) )
4 . d i s t i n c t ( )
5 . groupBy ( t => t . 2 )
6 . f latMap ( grp => {
7 ( for ( ( p , o ) <− grp . 2 ; c <− rg . va lue (p ) )
8 yield ( o , c )
9 ) . toSet

10 })

Tests show that this implementation performs slower than the original approach. This
makes sense, considering that the removal of duplicate input tuples on line 4 requires a
shuffle. In the same way, the grouping operation is also costly. However, as described
above, this implementation minimizes the amount of duplicates and allows the remaining
duplicates to be removed locally.

16



4

Graph-Based Approach to Reasoning

As seen in 2.1, the abstract syntax of RDF describes a directed graph, so RDF data lends
itself to also be modeled as a graph in memory. Various graph databases, introduced as
early as the eighties since have been pushed aside by other database models. With the
increase of problems that are suited for network and graph modeling, such databases
have become relevant again [Angles and Gutierrez, 2008].

Previous research considering RDF and graph databases has focused on RDF querying
[Angles and Gutierrez, 2005]. This part of the thesis will examine whether there are
useful approaches towards RDF reasoning based on the graph representation.

To this end, first the Spark graph processing module GraphX will be introduced.
Then we examine how we can concretely model the RDF data as a graph to suit our
requirements. Finally, two approaches are introduced to compute the application of
specific rules.

4.1 Pregel and Spark GraphX

Pregel is a computational model designed for processing large-scale graphs with millions
to billions of vertices [Malewicz et al., 2010]. It views every vertex as a computational
unit that can send messages along its edges to neighboring vertices, and compute new
values and messages based on the messages it receives.

The execution is structured into supersteps. In each step, every vertex receives zero
or more messages, computes a new value based on its existing value and the messages
received and finally, optionally computes and sends a new message along its edges. A
vertex can chose to become inactive and is woken up when it receives a messages. When
all vertices are inactive, the process ends.

Apache Spark offers a module for big data graph processing called GraphX. This
module contains a Graph structure built on Spark RDDs. More specifically a GraphX
Graph consists of a VertexRDD and a EdgeRDD. Vertices have a unique Long-id and an
attribute, which can be of an arbitrary type. Edges also have a generic attribute, as
well as the id of the two vertices it connects. As edges are directed in GraphX, one id is
the source and one is the destination. Additionally, multiple edges from a vertex A to
vertex B are allowed. This makes the GraphX graph a directed multi-graph with edge
attributes.
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GraphX provides various methods on the Graph-structure to allow filtering, mapping
or message aggregation, as well as easy access to vertex- and edge-RDD. Additionally,
it exposes a variant of the Pregel API.

4.2 RDF Datasets as a Graph

The RDF data model is already a graph, thus no work is required to translate it to that
format. However, to avoid confusion, some terminology and characteristics of the RDF
graph should be made explicit.

Consider the RDF triple (s p o). s and o map to vertices, connected by an edge.
Notice however, that p alone does not comprise this edge, as it lacks the information on
which two nodes it connects. The edge is formed by the whole triple. Thus, p alone can
be interpreted as the attribute of that edge. In short, we have:

vertex subject, object

edge triple

edge attribute predicate

However, another complicating factor arises from the fact that subjects and objects, as
well as predicates are resources. In other words, p from the above example could appear
in a second triple (p rdfs:range c), where it is the subject and would be translated to a
node in the graph. This means, that properties can map to nodes or edge attributes,
depending on their function, i.e. position in the triple.

To clarify, property should not be confused with predicate. Predicate describes the
function and position of a resource in the triple. Property, more precisely rdfs:Property,
is the class of all resources, that appear as predicates. So every predicate is a property,
but not every occurrence of a property in a triple is necessarily as a predicate.

Ultimately, a consistent graph can be built by adhering to the mapping mentioned
above which only considers the position of resources. This also means that information
on individual properties is connected to a singular node representing that property,
however the connecting function of a given property as predicate is distributed across
the graph as edge properties. Subsection 4.2.3 will show how this is not ideal.

4.2.1 Loading an RDF Graph

While providing useful methods in terms of graph processing once the graph is loaded,
GraphX does, as of this writing, not offer any helpful utilities to build a graph from our
input data. With vertices and edges present in the appropriate format a graph can be
created, but transforming the input data to the required format has to be done manually
and presents a challenge in itself.N-Triples is used as input format.

The difficulty is that GraphX vertices are identified by a VertexId, which is an alias
for Long. The edges then are defined by the VertexIds of the vertices it connects, as well

18
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as an edge attribute. Thus, we need all distinct vertices and assign a unique id to them.
Furthermore we must read the triples, replace subject and object by their respective
unique id and set the predicate as the attribute of that edge.

This is not too challenging when done locally, sequentially reading the input file. Each
line can be split into subject, object and predicate. For the former two, i.e. the nodes,
a map can be used to keep track of nodes already seen before. If a node has not been
seen before, it is assigned a unique id by incrementing a local counter variable and then
stored in the aforementioned map. This way, the edges can be built at the same time,
by either using the id stored in the map if the node has been encountered before, or
assigning it a new id (and storing it in the map).

However, this approach requires the complete lookup map for node ids to be available
locally while also relying on a single local counter to assign the ids. Seeing as this thesis
specifically examines RDF reasoning at the scale of big data, it cannot be assumed that
the input data fits into the local memory of a single machine.

Thus, a distributed approach of loading the data is required. Two implementations
have been devised which utilize the Spark framework. Listing 4.1 shows the initial
implementation. The RDD nodes holds the tuples of all distinct nodes and their assigned
unique id. Note that .zipWithUniqueId()(line 6) does not guarantee continuous ids,
this is however not required.

Between lines 8 and 15, the triples RDD is joined with nodes by subject. This allows
the name of the subject (its IRI) to be replaced by its assigned id. The resulting RDD
is then joined with nodes analogously, this time by object. This way, subject and object
in all triples can be replaced by their id.

This approach, while functioning, is very slow. It requires multiple grouping operations
and joins over the whole triple set, which is very costly. The core problem is that
arbitrary ids are assigned to nodes, which have to be looked up. This is done by the
expensive joins.

However, utilizing a hash function, IRI strings can be mapped to distinct ids. Given
such a function, it will always return the same id for the same string. This eliminates
the need to keep a mapping from node name to its id and looking it up, making data
loading almost trivial, as seen in Listing 4.2.

Java supplies a .hashCode() function which returns a 32-bit int.1 Note however, that
non-perfect hash functions do not guarantee mapping to unique ids. With the chosen
Java hash function for strings, collisions can occur as well. While unlikely up to certain
input sizes - more specifically in this case: number of unique nodes in the dataset -
increasing amounts of data also increase the probability for collisions. Therefore, the
use of perfect, or at least safer hash functions might be considered.

1http:// docs.oracle.com/ javase/ 1.5.0/ docs/ api/ java/ lang/String.html#hashCode( )

19
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Listing 4.1: Generic RDF-Graph Loading Implementation

1 val t r i p l e s : RDD[ ( Str ing , Str ing , S t r ing ) ] = . . .
2
3 val nodes : RDD[ ( Str ing , Long ) ] = t r i p l e s
4 . f latMap ( t => Seq ( t . 1 , t . 3 ) )
5 . d i s t i n c t ( )
6 . zipWithUniqueId ( )
7
8 val subjectKeyedEdges : RDD[ ( Long , Str ing , S t r ing ) ] = t r i p l e s
9 . groupBy ( . 1 )

10 . l e f t O u t e r J o i n ( nodes )
11 . f latMap{
12 case ( , ( i t e r , uid ) ) => {
13 i t e r . map( t => ( uid . getOrElse (0L) , t . 2 , t . 3 ) )
14 }
15 }
16
17 val indexEdges : RDD[ ( Long , Long , S t r ing ) ] = subjectKeyedEdges
18 . groupBy ( . 3 )
19 . l e f t O u t e r J o i n ( nodes )
20 . f latMap{
21 case ( , ( i t e r , uid ) ) => {
22 i t e r . map( t => ( t . 1 , uid . getOrElse (0L) , t . 2 ) )
23 }
24 }

4.2.2 Transitive Rules

As it turns out, transitive inference rules can be applied in a graph-parallel manner by
employing the Pregel model. Consider the pattern of transitive rules:

a p b & b p c ⇒ a p c

where p is either rdfs:subClassOf or rdfs:subPropertyOf. Actually, when OWL is also
considered, p is not restricted to these two concrete RDFS properties but can be any
transitive property as defined in OWL [Ter Horst, 2005]. That is, any p in an RDF
dataset which also contains the triple:

p rdf:type owl:TransitiveProperty

The implementation is fairly straightforward to understand. Take any node in the
graph which has one or more incoming edges with the attribute rdfs:subClassOf. This
node can send its name along those edges (in reverse direction) to its neighboring nodes.
Let this be the first superstep.

20
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Listing 4.2: RDF-Graph Loading Implementation using Java hashCode

1 val t r i p l e s : RDD[ ( Str ing , Str ing , S t r ing ) ] = . . .
2
3 val nodes : RDD[ ( Long , S t r ing ) ] = t r i p l e s
4 . f latMap ( t => Seq ( t . 1 , t . 3 ) )
5 . d i s t i n c t ( )
6 . map( node => ( node . hashCode ( ) . toLong , node ) )
7
8 val edges : RDD[ ( Long , Long , S t r ing ) ] = t r i p l e s
9 . map( t =>

10 ( t . 1 . hashCode ( ) . toLong , t . 3 . hashCode ( ) . toLong , t . 2 ) )

In the next step, nodes may receive zero, one or more messages, containing the names
of its superclasses. Removing the duplicates, a concrete node N stores those names as
the set of its superclasses. N is a subclass of all nodes in that set. Furthermore, any
node that is a subclass of N, is also a subclass of all superclasses of N.

Thus, node N sends its superclasses along its incoming rdfs:subClassOf edges, dis-
tributing subclass information across the graph. To prevent ever-growing messages and
ensuring termination of the program, the nodes only send along newly received super-
classes by calculating the difference of its existing set and the newly arrived nodes. If
it receives no new superclasses, no message is sent. This way, only new information is
passed along. See Listing 4.3 for an implementation with Spark.

This example specifically used the subClassOf-property, but it applies to all transitive
properties. However, it is also restricted to one transitive property at a time. Further-
more, by taking only the subgraph of the RDF graph, which is connected by a single
transitive property, for instance subClassOf, the edge attribute need not be checked,
because every edge has the same attribute. Notice that this is basically the task of
calculating the transitive closure of the graph, which, as mentioned before (see 3.3), is
equivalent to the application of transitive rules. It is advisable to separately look at the
three functions provided to the GraphX pregel method. They are the vertex program
(lines 5 to 21), the function for sending messages (lines 23 to 29) and the function for
merging received messages (line 31).

4.2.3 Adapted Lookup Approach

The remaining non-trivial RDFS rules can also utilize the graph structure but they do not
lend themselves to fully-fledged Pregel-like solutions. Instead they can be implemented
with neighbor-collecting and schema lookup. This is best explained schematically for
the case of rule 2:

1. Every node collects all neighbors connected via an outgoing rdfs:domain edge.

21
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2. Every node collects all its outgoing edge attributes (connected nodes are not re-
quired).

3. For every node n:

a) For each edge attribute e collected, look up the node with that name e and
get the nodes it collected in step 1.

b) Remove duplicates

c) For every node m collected this way it can be inferred: n rdf:type m

This works exactly analogous for rule 3, replacing rdfs:domain with rdfs:range in step
1 and collecting all incoming edges in step 2. Similarly, rules 7 and 9 can follow the same
approach with slight adjustments. For instance, they need to also look up connected
nodes in step 2, not only the edge attribute.

Step 3a also assumes, that arbitrary nodes can be directly looked up by their name.
This is necessary because there exists no link between the edge attribute e and the node
e (see 4.2). Unfortunately, GraphX does not provide a way to do this and a workaround
has to be found.

Similarly to the MapReduce approach, the relevant schema triples (for example do-
main) can be collected in a local lookup map and broadcast across the cluster. This
map can then be used for lookup in step 3a. Additionally, step 1 would not be required
anymore. Alternatively, to avoid the lookup map and achieve a solution purely based
on a graph representation, the schema information can also be stored as additional edge
attributes.

4.2.4 Drawbacks of Graphs and GraphX

One core advantage of MapReduce approaches is that especially the N-Triples format is
well suited as input format. In Spark, the individual lines of the input file directly map
to triple entries in an RDD. This collection can be filtered as well as easily joined with
new triples: The result of a rule application can readily be appended to the existing
triple set with no or only minor processing required.

This is not as straightforward when working with GraphX. As discussed before, the
input first has to be transformed to a graph format. The point of rule application is to
infer new triples, these translate to new edges in the graph. However, GraphX offers
no way to dynamically add new edges to the graph during processing. Hence, the data
inferred is gathered on the vertices. After a rule has been applied, this data needs to be
collected from the vertices and inserted to the graph as edges, which obviously incurs
additional performance overhead. This has to be done after every rule.

Additionally, GraphX offers no efficient way of querying nodes, and no option at all
during processing. The workaround to this problem has been discussed in the previous
subsection 4.2.3.
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Implementation: Original Cichild Node-local Cichild Graph Implementation

Avg. Duration: 5s 13s 15s

% 1 2.6 3

Table 4.1: Domain and Range Inference, rdfs2 & rdfs3

4.3 Test Results

Various tests were conducted, unfortunately however not on a distributed cluster. As
such, these results are of very limited significance in terms of actual performance in a
distributed environment. As such, these values are analyzed as comparative indicator.
The input RDF data for the tests in tables 4.1 and 4.2 is a generated dataset with
approximately 13 million triples2. Testing of transitive closure was conducted differently
and will be explained in the respective paragraph.

4.3.1 RDFS Rules 2 and 3 in Comparison

Table 4.1 shows the average duration for the application of RDFS rules 2 and 3 (domain
and range) with the different implementations discussed in the previous sections. It can
be seen that the original implementation in Cichild performs significantly better than
both approaches suggested in this paper. The node-local approach, discussed in 3.4.2 is
expected to be slower but as a trade-off it significantly reduces the number of duplicates.

As duplicate removal is performed locally, no further joins have to be performed for this
part of the rule application. On the other hand, the input data has to be preprocessed
(removal of duplicates, grouping). The test results thus suggest that preprocessing of
the data is potentially costlier than simply removing duplicates at the end.

The graph approach also handles duplicates locally. Output is collected on vertices; a
vertex v contains all derived tripels with the pattern v p o, where v is constant and p
and o vary. Thus, similarly to the node-local approach above, it is guaranteed that all
triples that begin with v as a subject are on the vertex, which then can perform removal
of duplicates individually.

4.3.2 RDF Data Loading and Graph Building

Table 4.2 illustrates the significant performance gain when loading a graph by hashing
the IRI to an identifier instead of assigning arbitrary unique identifiers and self-joining
the dataset multiple times. The input dataset contains approximately 315,000 unique
nodes that are hashed to an identifier. For the given input, no hash collision did occur.
The poor performance of the initial approach would have posed a major obstacle to a
full, graph-based solution in GraphX. Because GraphX does not offer a direct way to
add edges and nodes to an existing graph, a new one would have had to be built after
every rule application which would have been very costly and slow.

2Generated with http:// swat.cse.lehigh.edu/ projects/ lubm/
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Implementation: Self-Join Hashing

Avg. Duration: 22s 3s

% 7.33 1

Table 4.2: Graph Loading Joining vs. Hashing

Input Nodes Input Edges/Triples Dur. MapReduce Dur. Graph

100 180 3s 2s

200 1,100 26s 2s

400 1,800 DNF 3s

1,000 3,800 DNF 3s

10,000 43,000 DNF 13s

20,000 83,000 DNF 24s

Table 4.3: Transitive Closure

4.3.3 Transitive Closure Comparison

The transitive closure tests, the results of which can be seen in Table 4.3 were conduced
with randomly generated graphs, as provided by the GraphX API. The table of results
shows concrete test results with a given input graph. The number of edges directly
translates to the number of triples, which served as input for the MapReduce approach.

Interestingly, the graph approach performs significantly better for the input values
used. In fact, the execution time of the original Spark implementation,, utilizing smart
transitive closure, quickly increased, and starting from approximately 1,500 input triples,
the program did not finish within five minutes. The graph-based approach on the other
hand, could handle up to 20,000 vertices and 83,000 edges on a single working node.

Again, as testing was limited to a single node. Table 4.3 could however hint at a
possibly better performance of a graph based closure approach towards transitive rules,
compared to the MapReduce implementation.
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Listing 4.3: Transitive Closure on a Graph

1 val graph : Graph [ ( Str ing , Set [ S t r ing ] , S t r ing ) , S t r ing ]
2 val c l o s u r e = graph
3 . p r e g e l ( ”INIT” , Int . MaxValue , EdgeDirect ion . In ) (
4 // VERTEX PROGRAM
5 ( id , currValue , newMesg) => ( currValue . 1 ,
6 // c a l c u l a t e new Set o f r e a c h a b l e nodes
7 i f (newMesg == ”INIT” )
8 Set [ S t r ing ] ( currValue . 1 )
9 else i f (newMesg . conta in s ( ” , ” ) ) {

10 val s p l i t = newMesg . s p l i t ( ” , ” ) . toSet
11 currValue . 2 ++ s p l i t
12 } else currValue . 2 + newMesg ,
13 // c a l c u l a t e d i f f e r e n c e newNodes − e x i s t i n g N o d e s
14 i f (newMesg . equa l s ( ”INIT” ) ) {
15 currValue . 1
16 } else i f (newMesg . conta in s ( ” , ” ) ) {
17 (newMesg . s p l i t ( ” , ” ) . toSet [ S t r ing ] −− currValue . 2 )
18 . mkString ( ” , ” )
19 } else {
20 i f ( currValue . 2 . conta in s (newMesg ) ) ”” else newMesg
21 } ) ,
22 // SEND MESSAGE
23 t r i p l e t => {
24 i f ( t r i p l e t . dstAttr . 3 == ”” ) {
25 I t e r a t o r . empty
26 } else {
27 I t e r a t o r ( ( t r i p l e t . s rc Id , t r i p l e t . dstAttr . 3 ) )
28 }
29 } ,
30 // MERGE MESSAGE
31 ( a , b) => ( a + ” , ” + b ) )
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Limitations

The scope of this paper is limited to RDFS entailment rules. A practical solution should
however also be able to handle the Ter Horst-Ruleset [Ter Horst, 2005]. Furthermore,
testing of concrete graph implementations was mostly focused on functionality and fea-
sibility. For more meaningful results in terms of performance, comparing the graph
implementations with the original MapReduce approaches, further testing should be
conducted.

In principle, GraphX provides all the operations required to implement the graph so-
lutions. However, it mainly focuses on processing graphs as a whole or subgraphs. As
such, it is well suited for aggregating values across a graph and implementing graph par-
allel algorithms. On the other hand, it is not optimized for directly accessing individual
nodes or edges. Furthermore, building on Spark RDDs, GraphX graphs are immutable,
hence there is no efficient way to add individual nodes or edges.
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Future Work

Some potential next steps are evident from the limitations given in 5. Towards a more
comprehensive graph-based solution, OWL and the Ter Horst rule set should also be con-
sidered. They introduce further challenges, such as rules with three antecedent triples.

Furthermore, an efficient approach to collecting data from the nodes after applying a
rule, and then merging it into the existing data is another important aspect to go from
individual rule application to a complete inference engine.

Finally, further tests in a distributed cluster and with larger RDF datasets could yield
data that is more conclusive, in relation to real-world applications.
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Conclusions

It could be shown, that a graph-based approach towards distributed RDF reasoning
is, in principle, possible. This is supported by several concrete implementations based
on GraphX. Furthermore, limited test data indicates that these implementations run
within reasonable time. In the case of the transitive RDFS rules, the graph-based solu-
tion to computing the transitive closure performed significantly better than the existing
implementation of Cichlid.

Analyzing the Cichlid implementation, a logical error was discovered and fixed. A
potential issue regarding high amounts of duplicates and their elimination was also iden-
tified and an alternative was suggested. During tests, the alternative implementation
of duplicate-handling performed slightly worse, but it reduces the number of duplicates
and allows them to be eliminated locally.

What remains unclear is how a graph-based implementation performs under real-
world conditions, on distributed clusters with very large datasets and how it compares
to existing approaches. Furthermore, it remains to be seen, how well the programs for
individual rules integrate into a reasoning engine that iteratively applies several rules.
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