
Department of Informatics, University of Zürich
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Abstract

The Simplex algorithm finds the values for a number of interrelated variables that opti-
mize a linear objective function while considering a set of linear constraints that must be
satisfied. This project implements this algorithm in relational databases by using differ-
ent approaches. An implementation using functions in PLSQL and different versions of
an implementation in C by extending the PostgreSQL kernel are discussed. The focus of
the project lies on the versions in C, where tuplestores are used to materialise the inter-
mediate results. A cost formula is deduced for these versions. To compare the efficiency
of the implementations, different Linear Programs are solved using the implementations
and the consumed times are measured and discussed.



Zusammenfassung

Der Simplex Algorithmus findet die Werte für eine Anzahl zusammenhängender Vari-
ablen, so dass eine lineare Zielfunktion unter Einhaltung eines Sets von linearen Nebenbe-
dingungen optimiert wird. Dieses Projekt implementiert diesen Algorithmus in rela-
tionalen Datenbanken mit verschiedenen Ansätzen. Eine Implementation, welche Funk-
tionen in PLSQL benutzt, sowie verschiedene Versionen einer Implementation in C, bei
welcher der PostgreSQL Kern erweitert wird, werden diskutiert. Der Fokus des Projek-
tes liegt auf den Versionen in C, die

”
tuplestores“ benutzen, um die Zwischenresultate zu

materialisieren. Eine Kostenformel wird für diese Versionen hergeleitet. Um die Effizienz
der Implementationen zu vergleichen, werden verschiedene lineare Probleme gelöst und
die benötigte Zeit gemessen und diskutiert.
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1. Introduction

The goal of optimization is to find an optimal set of variable values that maximizes or
minimizes an objective function while a set of constraints must be satisfied. A linear
optimization problem consists of a linear objective function and a set of linear constraints.
Such linear optimization problems for example appear in the production of animal feed.
The feed mills try to create the perfect food to optimize the efficiency of the livestock.
To do so, they try to determine feed compounds that satisfy various restrictions, which
are specified by domain experts. A restriction indicates the minimum and maximum
containment (g/Kg) of a nutrient in a feed compound. Since different animals have
different nutritional needs there are many restrictions for the same nutrient. Animal
’A’ needs many proteins and hence the food should fulfil the restriction for high protein
food (’high-protein’ ), while animal ’B’ needs less proteins and the food should fulfil the
restriction for low protein food (’low-protein’). Different examples for such restrictions
are shown in Table 1.1.

Table 1.1.: Nutrient Constraints

diet nid min max
low-lysine LYS NULL 4
high-lysine LYS 4 8
low-protein CP NULL 2

medium-protein CP 2 4
high-protein CP 4 6

... ... ... ...

With recommendation of domain experts feed mills can select a subset of these re-
strictions and follow them to create a suitable food compound for a specific animal.
To pick the correct mixture of individual foods, data warehouses like the Swiss Feed
Database provide information about nutrient content of feeds, which can be used to cre-
ate an accordant feed compound. An example of the data in the Swiss Feed Database is
shown in Table 1.2. The nutrient content of each feed is given by attribute g (g/Kg) of
fact_table. An additional table with the energy content of the different feeds is shown
in Table 1.3.
When we combine Table 1.2 with the restrictions in Table 1.1 we can build accordant
linear functions for every nutrient of the feed compound. To do so, we sum up the
values of the fact table, which belong to the nutrient we want to create a restriction and
compare the resulting term with the restriction we want to satisfy. An example for the
restriction of ’low-protein’ is shown below. In every kilogram of barley there are three
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fid nid g
Barley LYS 1
Barley CP 3
Hay LYS 3
Hay CP 1
Soy LYS 1
Soy CP 2
... ... ...

Table 1.2.: Fact Table

fid DEP
Barley 12
Hay 1
Soy 10
... ...

Table 1.3.: Energy Content in Feeds

grams of crude protein (CP), in every kilogram of hay there is one gram of crude protein
and in every kilogram of soy there are two grams of crude protein. In total there need to
be less than two grams of crude protein per kilogram, and hence all these three values
summed up need to be smaller than two.

low-protein: 3xBarley + 1xHay + 2xSoy ≤ 2

It is likely, that different feed compounds satisfy all the chosen restrictions and all of them
could be chosen by a feed mill. Normally, nutrient content is critical for good quality
food and the corresponding restrictions must be satisfied, while other parameters are
just optimal when they are as small or as high as possible. A good example for that is
the price of the feed compound. When there are different possibilities to reach a goal,
we most likely pick the one, which has the lowest costs for us. Or in the other way,
when there are different possibilities with the same cost, we most likely pick the one,
which has the biggest output. Therefore the feed mills pick the feed compound, which
fulfils all the restrictions and optimizes another value, which increases the efficiency of
it. The function to be optimized is the objective function, since we aim to optimize it
while holding the restrictions. For example if we want a feed compound with maximized
energy content, we can sum up every value in Table 1.3 to build the objective function.
The accordant objective function is shown in the following.

Maximize DEP = 12xBarley + 1xHay + 10xSoy

A set of restrictions and an objective function define a full optimization problem. If we
want a feed compound with the restriction ’low-protein’ for crude protein and ’low-lysine’
for lysine, that has maximum energy content, we create the following problem.

Maximize z = 12xBarley + 1xHay + 10xSoy

Subject to 3xBarley + 1xHay + 2xSoy ≤ 2
and 1xBarley + 3xHay + 1xSoy ≤ 4

where xBarley, xHay, xSoy > 0

We have an objective function along with two restrictions. The amount of barley, hay and
soy obviously needs to be at minimum zero, which is defined in the last row. Now that
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we have set up our problem we can try to solve it by inserting values in the variables
and check if the restrictions are fulfilled. At this position Linear Programs need to
be introduced. A Linear Program refers to optimizing a linear objective function under
constraints that are expressed as a set of linear equalities or inequalities. It can be defined
as in the following equation. The variables v and c go through all ids of variables (feeds)
and constraints respectively. xv represents the proportion of each feed that comprises
the result diet compound.

Minimize/Maximize: z =
∑

v(cvxv)
Subject to lc ≤

∑
v(gvcxv) ≤ uc

lv ≤ xv ≤ uv

xv ∈ R,∀v

Obviously our defined problem is a Linear Program, it has an objective function as
well as two constraints each with an upper bound. For Linear Programs, there exists
an algorithm called Simplex Method [LY16], which can find the solution for a Linear
Program with the optimal objective value. Hence we can apply this method for our
problem to find the optimal feed compound.
The main goal of this project is to implement this algorithm in PostgreSQL, that an
optimal solution can be found for a Linear Program. To do so, we first need to know
how this Simplex algorithm works. In Section 2, the Simplex algorithm is introduced
along with solving the initial example step by step for better understanding. Section
3 investigates different schemas, which could be used to store the data of the problem
in relational databases to apply the Simplex algorithm and shows their advantages and
disadvantages. Section 4 presents a PLSQL implementation of the Simplex algorithm,
while in Section 5 the implementation of the algorithm in PostgreSQL is described. Both
implementations store the data in the schema chosen in Section 3. In Section 6 the two
implementations are compared by the running times and the costs for the PostgreSQL
implementation are calculated. At the end a conclusion is given.
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2. Introducing Simplex Method

The Simplex algorithm mentioned in the introduction is discussed in this section along
with solving the example presented in the introduction. After the example from the
introduction is solved, a more complex example is discussed and some additional tech-
niques needed to solve it are presented.

2.1. Preparation for the Simplex algorithm

As mentioned in the introduction, the Simplex algorithm can be applied to solve Linear
Programs. The goal of it is to calculate the optimal value of the objective function
considering the given constraints. Beside of the optimal value it also delivers the values
of the different variables to form this optimal value. The variables represent the amount
of feeds, therefore at the end we should know which feed compound we should take
to reach the optimal value and what the optimal value is. As a preparation step of
the Simplex algorithm the Linear Program needs to be stored in a table, where every
constraint as well as the objective function is represented by a row and every variable
as well as the bounds by a column. Table 2.1 shows the according table of our initial
problem.

Table 2.1.: Initial Problem in Table Format

Constraint ID Barley Hay Soy RHS
CP 3 1 2 2
LYS 1 3 1 4

optimize 12 1 10 0

By storing the problem in the table format, we have lost some important information.
The bounds, which are stored in the column RHS are total numbers and we do not know
if they are lower or upper bounds or even an exact number(equality) for the nutrient.
To prevent this loss of information we need to apply an additional step, before we store
the problem in a table. We make equalities out of the inequalities by inserting a slack
or a surplus variable. If we have an upper bound and need to add a value, we call
it a slack variable. It represents the unused resources of the idle resources and has the
coefficient +1. If we have a lower bound and need to subtract a value, we call it a surplus
variable. It represents the excess amount of resources utilized and has the coefficient
−1, because we need to subtract a value and the values of the variables all need to be
positive. If a constraint has a lower and an upper bound, two similar equalities need to be
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created, which differ only in the right hand side and that one has a slack and the other a
surplus variable added accordant to the bound they belong to. Since we have two upper
bounds we add a slack variable for both the first and the second row in our example.
Beside the type of the bounds we also lost the information if we had a maximization
or minimization problem. To avoid this, we consider only minimization problems and
if we have a maximization problem, we change the problem to an equal minimization
problem. To do so, we multiply the objective function by −1, which changes the type
of the problem as well. After applying these changes we get the new problem shown in
the following:

Minimize z = −12xBarley − 1xHay − 10xSoy

Subject to 3xBarley + 1xHay + 2xSoy + 1xs1 = 4
and 3xBarley + 1xHay + 3xSoy + 1xs2 = 3

where xBarley, xHay, xSoy, xs1, xs2 > 0

Now that we have only equalities left and that we know that it is a minimization problem
we can store the problem in table format without losing any information. The new
problem is presented in Table 2.2.

Table 2.2.: Initial Problem With Slack Variables

Constraint ID Barley Hay Soy s1 s2 RHS
CP 3 1 2 1 0 2

price 1 3 1 0 1 4
optimize -12 -1 -10 0 0 0

The idea of Simplex is to iteratively decrease the objective value by moving from a
feasible solution to another feasible one with a lower objective value. A feasible solution
means that every constraint is satisfied by the current values of the variables. A trivial
feasible solution is given if there are m columns, that form an identity matrix, where
m is the number of constraints. This means that for every constraint row there must
be a column with the coefficient value 1 in it, while for the other rows the coefficient
value in this column is 0. The variables of these columns are called basic variables.
To form the solution each basic variable is assigned to the coefficient value of the RHS

column of the row its coefficient value is 1. The non-basic variables are assigned to 0. By
doing this, every constraint is satisfied and we have a feasible solution. Since the non-
basic variables are zero, only the basic variables are building the value of the objective
function and hence the solution. In Table 2.2, s1 and s2 compose the identity matrix
and hence they are the basic variables. s1 is equal to 2 and s2 equal to 4. Inserted in
the objective function this results in the value 0, since the variables s1 and s2 do not
change the objective value. The additive inverse of this value is stored in the cell of
the optimize row and the RHS column. In problems with only smaller than conditions,
there is always a basic feasible solution, since the real variables can all be 0 and the
slack variables can be used as basic variables, because they always have the coefficient
+1 and are contained in only one constraint. In these cases, the initial feasible solution
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has the objective value 0. However, when equal or bigger than conditions appear in the
constraints no slack variable is added and possibly no basic feasible solution is available.
Techniques to find an initial feasible solution when no trivial solution is given at the
beginning are explained later with a more complex example. For our initial problem
there is a basic feasible solution and we can try to find the next feasible solution with a
lower objective value by executing a so called Simplex step.

2.2. Simplex Step

Now that we have an initial feasible solution with the slack variables as basic variables
we can start with the Simplex algorithm. Like mentioned the Simplex algorithm tries
to decrease the objective value by moving from a feasible solution to another feasible
solution with a lower objective value. To do so the Simplex algorithm exchanges a basic
variable with a non-basic variable, which means a basic variable is set to 0, while a
non-basic variable is increased and hence it becomes the new basic variable. This step
to exchange a basic variable and to decrease the objective value is called a Simplex step.
To find out which non-basic variable should be increased, so that the objective value is
decreased the most, we look at the optimize row, which stores the objective function.
The objective function contains the relative cost coefficients. This means that in this
row we can see how the objective value changes when we increase a non-basic variable
from 0 to a positive value, while an other basic variable will be set to 0. This can
be explained very well by looking at Table 2.2. We have a feasible solution with the
initial basic variables s1 and s2, consequently the objective value is 0. Considering the
objective function of our example, the value of z decreases by 12 if xBarley is increased
by 1, by 1 if xHay is increased by 1 and by 10 if xSoy is increased by 1. Now the first
step in the Simplex algorithm is to pick the one column with the highest negative value,
since z can be decreased the most when the variable of this column is increased. We call
this column pivot column. If there are two columns, which can be the pivot column, it
can be chosen one of these randomly. We mainly pick the one, which was considered
first. If there is no negative value, z can not be decreased any more and the target of
the Simplex algorithm (optimal value of z) is reached. In our example Barley is the
pivot column, since −12 is the most negative coefficient value.
Now that we know which variable we want to increase in this step, we need to know how
much we can increase it that all constraints still hold. We divide the coefficient value in
the right hand side (RHS column) through the coefficient value in the pivot column and
get the ratio of them for each constraint row. Such a ratio represents the value, which
the variable in the pivot column can be increased without breaking the corresponding
constraint. If the ratio in a row is negative the pivot variable can be increased infinitely
regarding this constraint. Therefore we pick the smallest non-negative ratio, because the
pivot variable can be increased by that value without breaking any constraint. The row,
to which the smallest positive value belongs, is called the pivot row. If there are only
negative ratios, the pivot variable can be increased infinitely regarding each constraint,
which means that the problem is unbounded. Since the coefficients in the right hand
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side are assigned to the basic variables, which are all non-negative, they need to be
non-negative as well. Therefore we can only consider the value in the pivot column to
find out if the ratio is negative. If the value in the pivot column is negative or zero, this
row can not be considered as the pivot row.
In our example there are only two constraint rows, CP has a ratio of 2/3 and LYS a ratio
of 4. 2/3 is the smallest one and hence CP is the pivot row. Similar to the pivot column,
it can be randomly chosen, if two rows have the same ratio. If a pivot row is found, the
element at the position of the pivot column in this row is called the pivot element.
Now we need to transform the initial table into an equivalent one that the coefficient
of the pivot element is 1 and the other coefficients of the pivot column are 0. So that
the pivot column becomes part of the basis identity matrix. To manage that, the pivot
row is first divided through the pivot element, that the new coefficient value of the pivot
element is 1. Since the other rows should have the coefficient value 0 in the pivot column
afterwards, we can apply Gaussian elimination. The new pivot row is subtracted as many
times from the other rows, that the coefficient value in the pivot column is 0 afterwards.
Through that, the basic variable at the pivot row gets replaced by the variable of the
pivot column and is set to 0.
With all these steps a zero variable, the pivot column, is increased and turned to a basic
variable and a positive variable is set to zero. The Simplex table is transformed so that
it represents an equivalent linear problem. But after the transformation the identity
matrix corresponds to the new solution, which is improved. This step is repeated until
no pivot column can be found, which means the optimum is reached, or until no pivot
row can be found, which means the objective function is unbounded and no optimal
solution exists. In both cases the Simplex step is finished and the according result can
be found in the last table.
In our example we already have found out that Barley is the pivot column and CP is the
pivot row, hence the coefficient value of the pivot element is 3. The values in the pivot
row are divided through 3. The other rows need to subtract the pivot row as many times
that their coefficient value in the pivot column is 0. The row LYS needs to subtract the
pivot row once and the row optimize 12 times. Table 2.3 shows the new table after
it is updated like described. We can see that Barley is now a basic variable with the
value 2/3 and the objective value decreased from 0 to −8. (additive inverse of 8) The
reduction of the objective value is exactly 2/3 from −12, which was the relative cost
coefficient of Barley in Table 2.2.

Table 2.3.: Updated Table After one Simplex Step

Constraint ID Barley Hay Soy s1 s2 RHS
CP 1 1/3 2/3 1/3 0 2/3
LYS 0 8/3 1/3 -1/3 1 10/3

optimize 0 3 -2 4 0 8

Now that we finished one Simplex step, we can go back to the start of the loop and
try to decrease the objective value again by applying another Simplex step. We start
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again by looking for a pivot column. In the relative cost coefficients row (optimize) is
only one negative coefficient value left, which is in the column Soy. Hence, increasing
the value of Soy is the only way to decrease the objective value and it is the new pivot
column. The ratios are 1 for CP and 10 for LYS. Therefore CP is the new pivot row and
we should be able to increase Soy by 1 according to this constraint and hence decrease
the objective value by 2. Table 2.4 shows the new table after updating it the same way
as before. We can see that Soy is 1 and the new objective value is indeed -10 (additive
inverse of 10), which confirms our calculations.

Table 2.4.: Updated Table After two Simplex Steps

Constraint ID Barley Hay Soy s1 s2 RHS
CP 3/2 1/2 1 1/2 0 1

price -1/2 5/2 0 -1/2 1 3
optimize -3 -4 0 -5 0 10

Again we finished one Simplex step and we can start at the beginning of the loop. There
is no more negative value in the relative cost coefficients row and therefore we can not
decrease the objective value any more and we have reached the optimum. By assigning
the coefficient value at the right hand side of each row to the corresponding basic variable
we can find out the values of the different variables as we did before to find the feasible
solutions. If a variable is a non-basic variable its value is 0. The additive inverse of the
optimal value is still presented in the objective function row at the right hand side. Hence
the optimal value of this problem is −10. Since we multiplied the objective function by
−1 at the beginning to create a minimization problem, we need to multiply the optimal
value by −1 again to get the correct value. Hence the optimal value is 10 and it can be
reached by setting the values Barley = 0, Hay = 1 and Soy = 0.

2.3. Introducing two-phase method

As already told there exists some more complicated examples, which can not be solved
that easily, since there is no basic feasible solution right at the beginning. When a
lower bound or an equal condition appears, there is no slack variable, which can serve as
basic variable and build the identity matrix. However, to apply the simplex method we
need a feasible solution to start, hence we use a new technique, the so called two-phase
method. Like the name says, this method has two phases. In the first phase the method
searches for a feasible solution and in the second phase, if a feasible solution is found, it
is optimized using the same technique as used for the first problem with a basic feasible
solution. Regarding a new example shown in the following:

Minimize z = 4xBarley + 1xHay + 1xSoy

Subject to 2xBarley + 1xHay + 2xSoy = 4
3xBarley + 3xHay + 1xSoy > 3
where xBarley, xHay, xSoy > 0

16



Again as a first step we need to make equalities out of the inequalities. We need to add
a surplus variable with the coefficient −1 to the second constraint row. Since we already
have a minimization problem we can let the objective function as it is. This leads to
the new problem, which is shown in table format in Table 2.5. We can see that neither
for the first and for the second row there is a basic variable and hence we do not have a
basic feasible solution.

Table 2.5.: Table Format of Second Problem With Surplus Variable

Constraint ID Barley Hay Soy s1 RHS
CP 2 1 2 0 4
LYS 3 3 1 -1 3

optimize 4 1 1 0 0

To find a feasible solution, in the first phase of the two-phase method an artificial problem
is created, whose optimal solution, if there exists one, is a feasible solution of the original
problem. For every row, where no basic variable is available, an artificial variable with
the coefficient +1 is added, which can serve as identity matrix column and hence as initial
basic variable. These artificial variables are fictitious and have no physical meaning. For
example in the first constraint we create the following equality out of the initial equality.

2xBarley + 1xHay + 2xSoy + 1xa1 = 4

Since this term should be equal without considering the artificial variable a1, a1 needs
to be zero at the end. The same counts for a2. To check if the artificial variables are zero
at the end, we build an artificial objective function with the artificial variables inside it
and put the initial objective function at the side for the moment. If the optimal value
of this artificial objective function is zero, the artificial variables are zero as well. The
artificial problem is presented in the following:

Minimize z = xa1 + xa2

Subject to 2xBarley + 1xHay + 2xSoy + 1xa1 = 4
3xBarley + 3xHay + 1xSoy − 1xs1 + 1xa2 = 3

where xBarley, xHay, xSoy, xa1, xa2 > 0

This new artificial problem has a basic feasible solution with the artificial variables as
basic variables. To find a feasible solution for the original problem, a1 and a2 need to
be zero. To do so, we need to minimize the artificial problem. If the optimal value of
the artificial problem is zero, the final table of the artificial problem represents a feasible
solution for our initial problem, if we remove the columns of the artificial variables. So,
after removing the artificial variables we run the second phase of the algorithm, which
searches for the optimal value of the original problem.
To find the minimum solution of the artificial problem we can apply the already known
Simplex algorithm. Before we start running the Simplex algorithm we first need to
compute the relative cost coefficients. Since in the Simplex algorithm, the objective
function row should stand for the relative cost coefficients, the coefficient value of each
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basic variable needs to be zero in this row, because these variables can not be increased
in the next Simplex step. Because of this, we need to transform the artificial objective
function row accordingly. To do this, we need to subtract the other rows from the
artificial objective function row as many times that the coefficient values of the basic
variables are zero in the artificial objective function. Since each row belongs to one basic
variable, we principally need to subtract every row as many times as the coefficient value
of the corresponding basic variable is in the artificial objective function. For example
the first row needs to be subtracted once from the artificial objective function, because
the coefficient value in the column a1, which is the basic variable for this row, is one in
the artificial objective function. In the first phase these values are always one for the
artificial variables, because the artificial objective function pretended that.
The updated relative cost coefficients row for the artificial problem is shown in Table
2.6. In the artObjective row in the RHS column also the additive inverse of the artificial
objective value is presented. The current artificial object value is seven, which is correct
since a1 = 4 and a2 = 3 and a1 + a2 = 7.

Table 2.6.: Transformed Artificial Objective Function to the Relative Cost Coefficients

Constraint ID Barley Hay Soy s1 a1 a2 RHS
CP 2 1 2 0 1 0 4
LYS 3 3 1 1 0 1 3

optimize 4 1 1 0 0 0 0
artObjective -5 -4 -3 1 0 0 -7

Now that the relative cost coefficients of the basic columns are 0, the objective function
shows the correct relative cost coefficients and the artificial problem can be optimized
using the Simplex algorithm, which is the same algorithm used to optimize the first
example, where a basic feasible solution was directly available through slack variables.
First we search the pivot column, then the pivot row and finally update the table ac-
cordingly that the pivot variable will be part of the basic variables. One additional rule
needs to be applied when searching for the pivot row when there are more than one
row with the same ratio. If one of these rows has an artificial variable as current basic
variable, then this row is preferred before the others without an artificial variable as ba-
sic variable, because we want to remove the artificial variables from the basic variables.
In our example we can execute two Simplex steps until there is no negative coefficient
value in the relative cost coefficients row any more and hence no pivot column. The 2
intermediate tables each after one Simplex step are shown in Table 2.7. In the first step
the pivot element is (LYS/Barley) in Table 2.6 and in the first table in Table 2.7 the
pivot element is (CP/Soy).
Now the artificial problem is optimized and we can check if the optimal value of the
artificial problem is zero. If it is not zero, the initial problem has no feasible solution,
which fulfils all the restrictions. In this case the algorithm is finished. As we can see in
the second table in Table 2.7, the optimized value of the artificial objective function is
zero and we have found a feasible solution for the initial problem. At this position it is
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Table 2.7.: Intermediate Optimize Steps

Constraint ID Barley Hay Soy s1 a1 a2 RHS
CP 0 -1 4/3 2/3 1 -2/3 2
LYS 1 1 1/3 -1/3 0 1/3 1

optimize 4 1 1 0 0 0 0
artObjective 0 1 -4/3 -2/3 0 5/3 -2

Constraint ID Barley Hay Soy s1 a1 a2 RHS
CP 0 -3/4 1 1/2 3/4 -1/2 3/2
LYS 1 5/4 0 -1/2 -1/4 1/2 1/2

optimize 4 1 1 0 0 0 0
artObjective 0 0 0 0 1 1 0

possible that the basic variables still contain artificial variables with the coefficient value
zero at the right hand side. In such a case we can just replace the artificial variable as
basic variable with another non-artificial variable, since the value of this basic variable is
any way zero and hence the solution does not change. To do so, we can execute another
Simplex step, but instead of first looking for a pivot column, the row, where the artificial
variable is the basic variable, is chosen as the pivot row and a corresponding pivot column
is searched afterwards. In the pivot row we can pick any non-artificial variable with a
positive coefficient value in the pivot row as pivot column and if no variable with a
positive coefficient value is available also variables with negative coefficient values in the
pivot row can be picked. When we have a pivot column and a pivot row the updating
of the table is done as in a normal Simplex step. Like this the pivot column will replace
the artificial variable as the basic variable. By doing this both variables stay zero. If
only zero coefficient values are contained in the non-artificial variables of the pivot row
and hence no variable to serve as pivot column can be found, the row does not contain
any information for the real problem any more, since the artificial variables do not affect
the real objective function and the row can be deleted out.
Back to our problem, now that we have found a feasible solution, the first phase is finished
and we can start with the second phase of the algorithm and search the optimum of the
real problem. Since the artificial objective function and the artificial variables have no
real meaning, they do not need to be considered any more and we take back our original
objective function. Table 2.8 shows the original problem with the detected feasible
solution.

Table 2.8.: Feasible Solution for the Original Problem

Constraint ID Barley Hay Soy RHS
CP 0 -3/4 1 3/2
LYS 1 5/4 0 1/2

artObjective 4 1 1 0
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At this state we have our initial problem with the updated values and with the current
basic variables Barley and Soy. Since we have new basic variables, we need to transform
the objective function that it stores the relative cost coefficients and that the coefficients
of the basic variables are zero, similar to the first phase. We again subtract the according
rows as many times from the objective function that the coefficients of the basic variables
are zero. The new table with the updated cost coefficients is shown in Table 2.9. Now
it has a feasible solution and it does not contain artificial variables any more.

Table 2.9.: Feasible Solution With Correct Cost Coefficients

Constraint ID Barley Hay Soy RHS
CP 0 -3/4 1 3/2
LYS 1 5/4 0 1/2

optimize 0 -13/4 0 -7/2

At this point that we have a feasible solution, we can apply the Simplex algorithm to
optimize the real problem. At the current stage the objective value is 3.5 (additive
inverse of −3.5), but there are still negative coefficients in the relative cost coefficients
row and we can run another Simplex step. The pivot element is (LYS/Hay) and thereby
the table gets updated by considering Hay as new basic variable. The result of this
Simplex step in Table 2.10 is also the final result and we have an optimal solution, since
there is no negative value left in the relative cost coefficients row. Again here exists the
possibility that the solution is unbounded, when no pivot row can be found.

Table 2.10.: Final Result of the Problem

Constraint ID Barley Hay Soy s1 RHS
CP 3/5 0 1 1/5 9/5
LYS 4/5 1 0 -2/5 2/5

optimize 13/5 0 0 1/5 -11/5

The minimum of 11/5 can be reached by setting the values Barley = 0, Hay = 2/5 and
Soy = 9/5. At this point we know how to apply the Simplex method and how to optimize
Linear Programs. Now we want to implement exactly this algorithm using PLSQL and
PostgreSQL and compare the different implementations.
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3. Different Schemas during the
algorithm

In the previous section we have learnt how the Simplex algorithm works and how the
problem table is accessed and modified during the algorithm. Before we can start with
any implementation we need to decide how we will store the problem table in a relation,
that we can work with it as efficient as possible. There are many possibilities how the
table could be stored. In this section, different schemas are reviewed and advantages
and disadvantages of them are discussed. The table, which we have chosen to use for
the implementations, is shown at the end of this section.
As a first possibility we can have a relation, where one row of the table is stored in one
tuple of the relation. The coefficient values of the variables are stored in an array in one
column of the relation, while the coefficient value at the right hand side and the name
of the constraint are stored in a separate column. In Table 3.1 the problem from the
introduction is presented using this approach. This schema is quite intuitive and easy to
understand, which can be mentioned as a positive point. Regarding the implementations
in relational databases, in this schema it is very easy to find the pivot column, because
we need to only consider the tuple, which stores the objective function row and look
for the most negative value inside the array with these values. However, to find the
pivot row always a tuple with the whole row need to be loaded into the memory, which
can grow by size when there are many variables, although we need only two values of
each row. In this way, values which are not needed at the moment are read and loaded
into the memory. This leads to the point that comparing values from different rows is
inefficient, because always the whole row need to be loaded. Another point, which should
be mentioned, is that an additional table need to be added, where the information of
the column names is stored. This is neither a real advantage nor a disadvantage.

Table 3.1.: Tuple per Row Schema

Constraint ID Values RHS
CP 3, 1, 2, 1, 0 2

price 1, 3, 1 , 0, 1 4
optimize -12, -1, -10, 0, 0 0

Instead of storing every row in a tuple it is also possible to store every column in a tuple.
In Table 3.2, the problem table from the introduction is presented again, but this time
the tuple per column schema is used. Using this schema has similar advantages and
disadvantages like the tuple per row schema. Instead of the pivot column it is easy to
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find the pivot row in this schema, since only the RHS-tuple and the pivot column-tuple
need to be considered. Another similarity to the per row schema is that we need to
load unnecessary information into the memory to compare two values. In this schema
this problem appears when two values of different columns are compared, for example
to find the pivot column. In this case all values of the columns need to be loaded in
memory, although we only need the values from the objective function. This is a huge
disadvantage for these schemas. Another table with the information of the row names
need to be added as done in the tuple per row schema for the column names. Since the
values inside the arrays are sorted, a special advantage for this schema appears regarding
the two-phase method. The first and the second phase have the main difference, that the
first phase considers the artObjective row and the second phase the optimize row as
objective function. In this schema it is possible to put the current objective function at
the end of the array and always looking for the last element, which describes the current
objective function. Like this it is very easy to access the correct objective function and
to differ between the two phases. Since a column is stored in one tuple, it is also very
easy to add artificial variables by just adding a new tuple.

Table 3.2.: Tuple per Column Schema

Variable Values
Barley 3, 1, -12
Hay 1, 3, -1
Soy 2, 1, -10
s1 1, 0, 0
s2 0, 1, 0

RHS 2, 4, 0

In the tuple per row schema it is easy to get the pivot column, while in the tuple per
column schema it is easy to get the pivot row. In a hybrid schema these advantages can
be combined. A possibility for such a hybrid schema is shown in Table 3.3. This schema
is mainly built like the tuple per column schema, but the objective function is separated
from the columns. Through that the pivot column can be found by reading the tuple,
which stores only the objective function and still the pivot row can be found by only
considering the tuples, which store the pivot column and the RHS column. However, to
compare two values of two different columns the problem stays that we need to load the
whole columns into the memory. Additionally, this schema is probably not that intuitive
at the first view, and it can be confusing some times. The information of the rows and
the columns both are stored in 2 separate tables.
At this point we want to introduce the schema we have chosen for the implementations.
Instead of storing a whole row or column in a tuple we can just store one value of the
table in one tuple to avoid the problem of loading unnecessary data into the memory. A
part of the problem table from the introduction is shown in Table 3.4 using this approach.
To individualize and identify a value, we store it along with the restriction (row) and the
variable (column) it belongs to. The main advantage of this schema is that the schema
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Table 3.3.: Hybrid Schema

ID Values
Barley 3, 1
Hay 1, 3
Soy 2, 1
s1 1, 0
s2 0, 1

RHS 2, 4
optimize -12, -1, -10, 0, 0, 0

is really flexible, because every value can be accessed individually in a tuple. Thereby it
is very easy to extend the table by new values or just delete some of them. If one value
needs to be read or changed, the tuple with the corresponding value can be handled
individually. However, there can exists a huge amount of tuples, because every value is
stored individually. This can make it expensive to read a single row, because every tuple
needs to be found in the relation and checked individually. This can be prohibited with
an index scan by jumping directly to the necessary tuples. The ordering of the tuples
can help to do that, more on that will be discussed in Section 5. Summarized, in this
schema values can be added or updated easily, but size may be increased.

Table 3.4.: Per Value Schema

row col val
CP Barley 3
CP Hay 1
CP Soy 2
CP s1 1
CP s2 0
CP RHS 2
... ... ...

As a final conclusion it is hard to say, which schema is the best one, since all of them have
their advantage and disadvantages. We have chosen the tuple per value schema, because
it is the most flexible one and we never need to store a whole row or column inside the
memory. Beside this, the main reason we picked the per value schema is because the
input data in the Swiss feed database (Table 1.2) is stored in the same way and by using
the same schema we can directly use this data without changing the schema of it, which
takes a lot of time and can be an error-prone process.
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4. Implement Simplex using PLSQL

Now that we have decided which schema we will use to store the problem table as relation
we can start with the implementations. The Simplex algorithm along with the two-phase
method introduced in Section 2 is implemented in this Section using PLSQL. Again we
start with implementing the Simplex algorithm itself and present the additional steps
for the two-phase method afterwards. At the end, the user should be able to run the
query in Listing 4.1 and get the result of the linear optimization problem as a table at
the end.

Listing 4.1: Final Query

SELECT optimizeLinearProblem(’problemTable’);

4.1. Input Table

As presented in Listing 4.1 the PLSQL function optimizeLinearProblem takes as pa-
rameter a name of a table. This table is given to the function by the user and on this table
the Simplex algorithm will be executed. This input table should have similar content like
the problems in the introduction of the Simplex algorithm with different restrictions and
one objective function. In Section 3 we have chosen to use the per value schema, which
means that for every value in the table one tuple is generated. The input table needs
to be given in this schema. Slack and surplus variables need to be already contained
in the input table that we do not need to consider whether a constraint has an upper
or a lower bound. Since we can not fully control the ordering of the tuples in PLSQL,
because the table is shuffled after every update statement, it can not be expected that
the ordering stays the same while working with the table, unless we explicitly specify it
in every query we execute. Therefore the initial ordering of the values can be randomly.
However, the tuples of the objective function need to be stored either with the keyword
’optimize’ or with the number ’0’ in the ’row’-column of the table, that we know which
tuples belong to the objective function. Similarly the tuples of the right hand side need
to be stored either with the keyword ’RHS’ or with the number ’0’ in the ’col’-column,
so that we can differ these tuples from the normal variables.
Since we need to know the basic variable of every row during the Simplex algorithm
that we know which variable is assigned to which coefficient value of the RHS column, we
create a new table at the beginning and store the initial basic variables inside it. In this
table we store the name of the rows along with the corresponding basic variable. At the
beginning the basic variables are always the slack variables if only lower than conditions
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are existent, hence we can store the rows with the corresponding slack variable in this
new table. To do so we insert all columns into the basic variables table, where only
one value of the column is not equal to 0 and this non-zero value is exactly 1. These
columns represent slack variables. Along with a column we insert the row, in which the
non-zero value appears and hence to which the slack variable belongs. Listing 4.2 shows
the corresponding code.

Listing 4.2: Getting the initial basic variables

INSERT INTO basicVariables

SELECT row, col FROM problem_table

WHERE val = 1

AND (SELECT COUNT(*) FROM problem_table AS a1

WHERE a1.val <> 0 AND a1.col = problem_table.col

AND col <> ’RHS’) = 1;

To the cases, where no slack variables are present, we will come back later. The compo-
sition of the table with the basic variables is shown in Table 4.1. The basic variable in
the row CP is s1 and the basic variable in the row LYS is s2.

Table 4.1.: Basic Variables Table

row col
CP s1
LYS s2

In extreme cases it is possible that more than one column could be the slack variable for
the same row. In such a case one of these columns is redundant and can be deleted out,
since it has any way no influence on the solution.

4.2. Simplex Step in PLSQL

Now that we have discussed the input table more deeply and detected the initial basic
variables, we can start to implement the Simplex algorithm and search for the optimal
value of the objective function regarding the constraints. At first the code of the Simplex
algorithm is presented in Listing 4.3, each function used there will be discussed after-
wards. This function is called by the main function optimizeLinearProblem, where
everything is initialized and finally the correct values are returned. Since the main func-
tion does just initialize the basic variables, call the Simplex algorithm and return the
results, it is not presented here for simple problems. However, for more complex prob-
lems, where the two-phase method needs to be applied, it does some other tasks and
hence it is shown in Listing 4.8 in the part about implementing the two-phase method
in Section 4.3. Also this code from the Simplex algorithm is only a first version of the
final code and it will be improved later with some parts according to the two-phase
method. However, the concept of this function will stay exactly the same, just some
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small changes need to be added later. As a first thing we want to discuss the return
value of the function. It is of the type SimplexState. This type is an enumerated type
and can have the value optimal, unbounded and not_feasible. It stores the type of
the result of the linear problem, if the problem has an optimal solution, if the solution
is unbounded, or if the problem has no solution. With this information we can later on
return the correct values in the main function. The third possibility can not appear for
simple problems with only smaller than conditions, since in this case there is always a
possible solution.

Listing 4.3: Optimize Function

CREATE OR REPLACE FUNCTION optimize()

RETURNS SimplexState AS

$$

DECLARE

pc VARCHAR;

pr VARCHAR;

BEGIN

WHILE TRUE LOOP

-- getting the pivot column or null if no value

-- is negative in the objective function

pc = getPivotColumn();

-- if no negative values,

-- the optimum value is found

IF pc IS NULL THEN

RETURN ’optimal’;

END IF;

-- getting the pivot row or null

-- if there is no non-negative ratio

pr = getPivotRow(pc);

-- if no non-negative ratio,

-- the solution is unbounded

IF pr IS NULL THEN

RETURN ’unbounded’;

END IF;

-- update the rows according to the pivot element

Perform updateRows(pc, pr);

-- add the pivot column to the basic variables

-- with the pivot row as row

Perform updateBasicVariables(pc, pr);

END LOOP;

END;

$$ LANGUAGE PLPGSQL;

The first step in the Simplex algorithm is to find the pivot column. In the PLSQL
implementation we call the function, which does this getPivotColumn, it is shown in
Listing 4.5. It declares a cursor over every negative value in the objective function row,
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which represents the relative cost coefficients. It only takes the negative values, because
if the value is positive, z is increased when the corresponding column variable is increased
and a current basic variable is set to 0. To check if the value is smaller than 0, we use
the function isSmallerThan, instead of using a simple lower-than-operator. We use this
function, because computers can make small calculation errors and hence we want to set
a tolerance, in which area two values are handled as the same. Therefore, the function
call isSmallerThan(val, 0) returns true, if val is more than the tolerance smaller
than 0. Similar functions are used to check for equality and if a value is bigger than
another. The value of the tolerance needs to be set by the user before the main function
is called by executing the code in Listing 4.4.

Listing 4.4: Setting the tollerance

SET simplex_conf.tollerance TO 1e-6;

Over the resulting values of the cursor the function is applying a general find minimum
algorithm, where always the smallest number until now is stored and then compared
with the new values. To compare two values, we again use the function isSmallerThan.
Finally the stored value is returned, because it is the smallest value of all. If there
is no negative value, z can not be decreased any more and the target of the Simplex
algorithm is reached. The function optimize in Listing 4.3 returns the value optimal

as SimplexState.

Listing 4.5: Getting the pivot column

CREATE OR REPLACE FUNCTION getpivotcolumn()

RETURNS character varying AS

$$

DECLARE

pc VARCHAR;

-- cursor over the negative values in the objective function

cur CURSOR FOR

(SELECT col, val FROM problem_table

WHERE row = ’optimize’

AND isSmallerThan(val, 0)

AND col <> ’RHS’);

r RECORD;

pcRecord RECORD;

firstRecord BOOLEAN;

BEGIN

firstValue = TRUE;

-- find the minimum value stored in the cursor

FOR r IN cur LOOP

IF firstRecord THEN

pcRecord = r;

firstRecord = FALSE;

ELSE
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IF isSmallerThan(r.val, pcRecord.val) THEN

pcRecord = r;

END IF;

END IF;

END LOOP;

IF firstRecord THEN

-- no negative value found

RETURN NULL;

ELSE

pc = pcRecord.col;

RETURN pc;

END IF;

END;

$$ LANGUAGE PLPGSQL;

Now that we have found the pivot column, we need to find the according pivot row.
To find it in our PLSQL implementation, we first calculate the ratios of the right hand
side and the pivot column. Listing 4.6 shows the corresponding SELECT statement to
get these ratios. The first inner query selects all tuples in the problem_table, which
are belonging to the right hand side (RHS) and of which the row is a constraint row
(all but the objective function row). This query is joined with a similar table by the
name of the row. Instead of the right hand side column the other query selects the
tuples, which are belonging to the pivot column. The values in the pivot column need
to be positive. If all values in the pivot column are negative, no pivot row can be found
and the problem is unbounded. In this case the function optimize returns the value
unbounded as SimplexState. Otherwise, the main SELECT statement returns the two
values from the inner queries divided through each other, which results in the ratios,
along with the name of the according row. This whole query can be put into a cursor,
which goes through the returned tuples and pick the one with the smallest ratio. The
according row is the pivot row.

Listing 4.6: Calculating the Ratios

SELECT a1.row, a1.val / a2.val AS ratio

FROM (

-- all tuples from the right hand side

SELECT *

FROM problem_table

WHERE col = ’RHS’

AND row <> ’optimize’

) AS a1

INNER JOIN (

-- all tuples from the pivot column with a positive value

SELECT *

FROM problem_table
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WHERE col = pc

AND isBiggerThan(val, 0)

AND row <> ’optimize’

) AS a2

ON a1.row = a2.row;

At this point we have our pivot element and we can start to update the rows. Both the
updating of the pivot row and the updating of the other rows is done in the function
updateRows. Simple UPDATE statements can accomplish the task, they are presented in
Listing 4.7. To update the pivot row, we just divide the current value through the pivot
element. To update the other rows, we store the new pivot row and the pivot column in
a separate table, because we need to access them many times and like this we have lower
costs to access them. By using a cursor over every row but the pivot row, we update the
rows one by one individually. For every row we first get the value in the pivot column
of the current row and store it in the variable valueInPivotColumn. If this value is
not zero we update the tuples of the row by subtracting the product of the variable
valueInPivotColumn and the value in the pivot row of the column of the current tuple.
We only need to update the rows, where the variable valueInPivotColumn is not equal
to zero and in these rows only the tuples, where the according value in the pivot row is
not equal to zero as well, because otherwise the value does not change. By not updating
the values, which does not change, we can save a lot of time.

Listing 4.7: Update rows

-- get pivot Element

SELECT val INTO pivotElement

FROM problem_table

WHERE row = pr AND col = pc;

-- update pivot row

UPDATE problem_table

SET val = val / pivotElement

WHERE row = pr AND val <> 0;

-- create table with the updated pivot row

CREATE TABLE pivot_row(col VARCHAR, val FLOAT);

INSERT INTO pivot_row

SELECT a1.col, a1.val

FROM problem_table AS a1

WHERE a1.row = pr;

-- create table with the pivot col

CREATE TABLE pivot_col(row VARCHAR, val FLOAT);

INSERT INTO pivot_col

SELECT a1.row, a1.val

FROM problem_table AS a1
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WHERE a1.col = pc;

-- update the other rows (all but the pivot row)

OPEN allRows FOR

SELECT DISTINCT a1.row FROM problem_table AS a1

WHERE a1.row <> pr;

FETCH allRows INTO r;

WHILE r IS NOT NULL LOOP

SELECT val FROM pivot_col

WHERE row = r.row INTO valueInPivotColumn;

IF valueInPivotColumn <> 0 THEN

UPDATE problem_table SET val = val -

(SELECT a1.val FROM pivot_row AS a1

WHERE a1.col = problem_table.col) * valueInPivotColumn

WHERE problem_table.row = r.row

AND NOT isEqualTo((SELECT a1.val FROM pivot_row AS a1

WHERE a1.col = problem_table.col), 0);

END IF;

FETCH allRows INTO r;

END LOOP;

CLOSE allRows;

DROP TABLE pivot_row;

DROP TABLE pivot_col;

At the end of a Simplex step also the table of the basic variables is updated. The basic
variable at the pivot row gets replaced by the variable of the pivot column. In the
function optimize all these functions are inside a while loop, which is running until no
pivot column or no pivot row can be found, which means the current problem is optimal
or unbounded.
In our initial example, the loop is executed twice until no pivot column could be found
any more and optimal can be returned as SimplexState. In the main function we than
know that we have an optimal solution. We can return the optimal value along with
the values of the different columns. The returned table is shown in Table 4.2. Instead
of creating a really complex query, this return table can be created with the help of the
basic variables. The basic variables table, which is created at the beginning and updated
during every Simplex step stored every basic variable with the accordant row. Hence we
can just read the right hand side of the table and assign the read value to the variable,
which belongs to this value accordingly to the basic variables table. The resulting table
can be returned.
At the end, the used tables are dropped and the result is shown.
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Table 4.2.: Returned Table in PLSQL Implementation

col val
hay 1

barley 0
hay 0

optimum value 10

4.3. Two-phase method in PLSQL

As already seen in Section 2 there exists some more complicated examples, which can
not be solved that easily, since there is no basic feasible solution right at the beginning.
At this point it seems meaningful to look at the main function optimizeLinearProblem

in Listing 4.8. The function getBasicVariables, which is called at the beginning, was
already used in the simple example to detect the slack variables and insert them as
basic variables in the table basicVariables. Additionally to this task, in the two-phase
method we need to add an artificial variable for every row, where no initial basic variable
is available. To do so, we can use the table basicVariables, where the slack variables
were inserted, to find the rows, where we need to add an artificial variable. For every row,
where no basic variable is available yet, an artificial variable is added. When the first
artificial variable is inserted in the relation, we know that the current problem does not
have a basic feasible solution and it needs to execute the two-phase method. Therefore
the tuples for an artificial objective function are inserted in the relation. In this case the
function getBasicVariables returns true, which means that the two-phase method is
needed and that the first phase inside the if-loop in the main function in Listing 4.8 is
executed.

Listing 4.8: Main Function

CREATE OR REPLACE FUNCTION optimizelinearproblem

(IN problemtable character varying)

RETURNS TABLE(col character varying, val double precision) AS

$$

DECLARE

needFirstPhase BOOLEAN;

state SimplexState;

BEGIN

-- creating the table, which is returned at the end

CREATE TABLE returnTable(col VARCHAR, val FLOAT);

-- store the basic variables in the table basicVariables

-- and add the necessary artificial variables to the problem,

-- if one or more artificial variables are added,

-- the two-phase method is executed

SELECT getBasicVariables() INTO needFirstPhase;
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-- first phase of two-phase method

IF needFirstPhase THEN

-- compute relative cost coefficients

-- in the artificial objective function row

PERFORM transformObjectiveFunctionRow(1);

-- apply Simplex method on the expanded problem,

-- if optimal value is zero, state is ’optimal’,

-- otherwise the problem has no feasible solution

state = optimize(1);

IF state = ’optimal’ THEN

-- if basic variables still contain artificial variables,

-- exchange them with non artificial variables

PERFORM removeArtificialVariablesFromBasicVariables();

-- remove the artifical variables and the

-- artificial objective function row from the relation

DELETE FROM problem_table AS a1

WHERE a1.row = ’artObjective’

OR a1.col LIKE ’artificial%’;

-- again compute relative cost coefficients,

-- but this time in the objective function row

PERFORM transformObjectiveFunctionRow(2);

END IF;

END IF;

-- if we have a feasible solution, apply the Simplex method

IF NOT needFirstPhase OR state = ’optimal’ THEN

state = optimize(2);

END IF;

-- fill the return table with the correct values

fillReturnTable();

-- return the results

RETURN QUERY

SELECT * FROM returnTable;

DROP TABLE returnTable;

END;

$$ LANGUAGE PLPGSQL;

In the first phase, we need to minimize the artificial problem. Before we can do that,
we need to transform the artificial objective function accordingly, so that it stores the
relative cost coefficient. In the PLSQL implementation this transformation is done by
calling the function transformObjectiveFunctionRow. In Listing 4.9 the main part of
this function is presented. For each column we compute the value, which need to be
subtracted from the objective function row and store these values in the table value-

ToSubtract. To calculate these values, we first need to get the values in the objective
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function, which are belonging to a basic variable. Every row is subtracted as many times
from the objective function that the value of its basic variable is zero in the objective
function. So we multiply every value in the relation with the value in the objective
function in the column, which belongs to the basic variable of the row of the current
value. We then group the products of these terms by the column they belong to and
sum these values up. The results of these additions are finally subtracted from the value
in the objective function of the column they belong to.

Listing 4.9: Transform the objective function row

CREATE TABLE valueToSubtract(col VARCHAR, val FLOAT);

-- compute the value, which need to be subtracted

-- from the objective function for each column

INSERT INTO valueToSubtract

SELECT a4.col, SUM(a3.val * a4.val)

FROM

(SELECT a1.row, a2.val FROM basicVariables AS a1

INNER JOIN

SELECT col, val FROM problem_table

WHERE row = ’artObjective’ AS a2

ON a1.col = a2.col

) AS a3

INNER JOIN

problem_table AS a4

ON a3.row = a4.row GROUP BY a4.col;

-- update the objective function accordant

-- to the previously computed values

UPDATE problem_table SET val = problem_table.val -

(SELECT a1.val FROM valueToSubtract AS a1

WHERE a1.col = problem_table.col)

WHERE problem_table.row = ’artObjective’;

DROP TABLE valueToSubtract;

Now that the artificial objective function is representing the relative cost coefficients,
the artificial problem can be optimized. Like mentioned before, the function optimize

is more or less the same, which is used for the initial example without the two-phase
method, but has some small changes. The difference is that the optimizing step in the
first phase refers to the artificial objective function, while the previous one referred to
the real objective function. To know which objective function row should be considered,
we add an Integer variable called phase. When phase is 1, we are in the first phase and
the artificial objective function is considered and when it is 2, we are in the second phase
and the real one is considered. The updated code is shown in Listing 4.10. Since for a
feasible problem the optimal value of the artificial objective function need to be zero,
another small difference to the old code is added. When we are in the first phase and no
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pivot column is found, we need to check the optimal value if it is zero. If it is not, the
problem has no feasible solution and we can return the SimplexState not_feasible.
If it is zero, we return the SimplexState optimal, which in this case just means that
we found a feasible solution and can continue with the second phase.

Listing 4.10: Optimize Function With Phases

CREATE OR REPLACE FUNCTION optimize(phase integer)

RETURNS SimplexState AS

$$

DECLARE

pr VARCHAR;

pc VARCHAR;

optimalValue FLOAT;

BEGIN

WHILE TRUE LOOP

-- getting the pivot column or null if no value

-- is negative in the objective function

pc = getPivotColumn(phase);

-- if no negative values,

-- the optimum value is found

IF pc IS NULL THEN

IF phase = 1 THEN

-- in first phase -> check if optimal value is zero

SELECT val INTO optimalValue

FROM temp_table

WHERE row = ’temp’ AND col = ’RHS’;

IF isEqualTo(optimalValue, 0) THEN

RETURN ’optimal’;

ELSE

RETURN ’not_feasible’;

END IF;

ELSE

RETURN ’optimal’;

END IF;

END IF;

-- getting the pivot row or null

-- if there is no non-negative ratio

pr = getPivotRow(pc);

-- if no non-negative ratio

-- the solution is unbounded

IF pr IS NULL THEN

RETURN ’unbounded’;

END IF;

-- update the rows according to the pivot element

Perform updateRows(phase, pc, pr);

-- add the pivot column to the basic variables

34



-- with the pivot row as row

Perform updateBasicVariables(pc, pr);

END LOOP;

END;

$$ LANGUAGE PLPGSQL;

Now the artificial problem is optimized and the first phase is finished. At this point
we need to check if artificial variables are still contained in the basic variables. If there
are, we need to call another Simplex step with the row, which contains the artificial
variable as basic variable, as pivot row and a positive or negative value in this row as
pivot column. Afterwards the artificial objective function row and the artificial variables
can be deleted out, since they have no real meaning. This is done with a simple DELETE

statement in Listing 4.8. At this state we have our initial problem with the updated
values and with the current basic variables Barley and Soy. Similar to the first phase
we need to compute the relative cost coefficients in the objective function. We again
apply the same function transformObjectiveFunctionRow like before in Listing 4.9,
but we replace the row name artObjective with optimize that now the real objective
function row is transformed. To do so, we just give the phase as parameter and define
the row to consider at the beginning of the function transformObjectiveFunctionRow.
At this point that we have a feasible solution, we can execute the optimize function
again to optimize the real problem. After doing this we can return the results. These
values are returned the same way as in the first example, along with the optimum value.
The returned table for the problem discussed in Section 2.3 is shown in Table 4.3. At
the end, the used table are dropped and the result is shown.

Table 4.3.: Returned Table in PLSQL of the Second Example

col val
soy 1.8
hay 0.4

barley 0
optimum value -2.2
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5. Implement Simplex by extending
the PostgreSQL kernel

Now that we have seen how the algorithm can be implemented in PLSQL, we want to
start with the main part of the project, to implement the Simplex algorithm into the
PostgreSQL kernel, so that the algorithm is executed by calling the correct query. A
challenging part of this is that the table that represents a Linear Program needs to be
updated after every iteration. Since PostgreSQL works in a pipeline manner, where an
input relation is read and an output relation is created and given to the next plan node,
the PostgreSQL kernel does not support iterations over a plan node, where the current
iteration works with the output of the iteration before. Because of this, we need to find
a method to run iterations over a relation. Before we tackle this problem, we go step
by step through the process of extending the kernel. We need to edit the parser, the
optimizer and the executor.

5.1. Parser

The parser checks if a given query has correct syntax by checking its rules. Hence we
need to create appropriate rules for our Simplex algorithm. Before we create these rules
we need to decide how the final query should look like and which information is needed
by the executor. The only information we need to execute the Simplex algorithm, is to
know which row is the objective function and which column is the right hand side.
In the PLSQL implementation the ordering of the input table does not matter, because
SQL queries take over reordering the table when needed. However, in the C implemen-
tation inside the PostgreSQL kernel the ordering of the input table matters, because
this implementation is low level and it controls the physical ordering of the tuples and
reads the relation like it is ordered. We can control the ordering of the tuples during
the execution, through that we can make sure that it stays always the same. Regarding
this, we can use the ordering as a benefit. We decided to have our input table ordered
by column and then by row. The ordering is done alphabetically, but the right hand
side is the first column and the objective function the first row. Like this the first tuple
of the relation belongs to the objective function and the right hand side and we can get
the name of them by reading this tuple. The reason why we have decided to order the
table by column and then by row will be discussed later in Section 5.3.1. The described
ordering of the table is not done in the implementation and it is excepted, that the input
table is already ordered like this.
Regarding such an input table the Simplex algorithm can be executed on that table
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without any additional information. We just need to indicate in the query that we want
to execute the Simplex algorithm on the input table. We add the keyword SIMPLEX at
the end of the table name, on which we want to run the Simplex algorithm and we get
the query shown in Listing 5.1.

Listing 5.1: Input query

SELECT * FROM input_table SIMPLEX;

Regarding this query the Simplex algorithm is executed over the table input_table.
However, we want to extend this query with two optional parts of information. In
Section 5.3 we create different versions of the C implementation and hence we want to
let the user choose, which version he wants to execute. Besides choosing the version of
the implementation, we want the user to be able to set the tolerance, which was already
used in the PLSQL implementation as well. The tolerance is used to steer against small
calculations error. Two values are handled as equal if their difference is smaller than the
tolerance. Regarding these two extensions, the final query is shown in Listing 5.2.

Listing 5.2: Input query with version and tolerance

SELECT * FROM input_table SIMPLEX

simplex_version 1 simplex_tolerance ’0.000001’;

Considering this query, the first version of the Simplex implementation is executed over
the table input_table with the tolerance set equal to 0.000001. Since the choosing of
the version and the setting of the tolerance is optional, default values are set if one part
of them is missing. The default values for both optional parts are the values used above
in the query. We create a struct called SimplexMethodInfo to store the information,
it is shown in Listing 5.3. Since we want to run an algorithm over a single table we
can add a simplexMethodInfo attribute to the struct RangeTblEntry to transport the
information to the executor. A RangeTblEntry is a node of the query parse tree that
represents a relation and its attributes defined in the query. If the SimplexMethodInfo

attribute in the RangeTblEntry is not NULL the Simplex algorithm will be executed.

Listing 5.3: SimplexMethodInfo

typedef struct SimplexMethodInfo

{

NodeTag type;

char *tolerance;

int simplexVersion;

} SimplexMethodInfo;

Now that we have decided how the final query should look like and we know how we
want to store the information we can create according rules. Considering the query in
Listing 5.2 our new rule will match the part after the FROM keyword and the input table.
Listing 5.4 shows the parser rules that are invoked to parse this part of the query.
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Listing 5.4: Invoked Rules of the Simplex Query

query: select_clause from_clause

from_clause: FROM table_ref

table_ref: relation_expr opt_simplex_method opt_alias_clause

First the query is split into the SELECT and the FROM clause. The FROM clause consists of
the keyword FROM and the rule table_ref. The rule table_ref represents everything,
where an alias clause can be attached, hence in our example the results of the Simplex
algorithm. So we just add a new rule called opt_simplex_method as an opportunity
in the rule table_ref along with a relation_expr, which represents the input table.
The added part in the rule table_ref is shown in Listing 5.5. The rule relation_expr

returns a RangeTblEntry and the SimplexMethodInfo, which is returned from the rule
opt_simplex_method, is assigned to it as an attribute.

Listing 5.5: inserted part in the rule table ref

table_ref: relation_expr opt_simplex_method opt_alias_clause

{

$$->simplex_info = (SimplexMethodInfo *) $2;

$1-> alias = $3;

$$ = (Node *) $1;

}

| ...

Listing 5.6 shows the added rule opt_simplex_method. It is either empty or consists
of the word SIMPLEX along with additional optional information (simplexVersion and
tolerance) in the rule opt_simplex_information. If it is empty, SimplexMethodInfo
is NULL and the Simplex algorithm is not executed. Otherwise the values of the rule
opt_simplex_information are assigned to SimplexMethodInfo or the default values if
opt_simplex_information is empty. The Simplex algorithm will be executed in this
case.

Listing 5.6: Main Parser Rule

opt_simplex_method:

SIMPLEX opt_simplex_information

{

SimplexMethodInfo *n = $2;

$$ = n;

}

| /* EMPTY */ { $$ = NULL; }

;

Now that we know how to write a query and how it will be parsed we can continue with
the optimizer.
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5.2. Optimizer

The main task of the optimizer is to find the cheapest way to execute the given query.
Since there is only one possibility to execute the Simplex algorithm, namely our plan
node, the optimizer has only one choice and needs to take the Simplex method path.
However, we have mentioned in Section 5.1 that we want to create different versions
of this algorithm and that the user decide, which one he want to pick to execute the
algorithm. This decision should actually be part of the optimizer and it should pick the
cheapest one for the current example. We need to make a cost analysis and calculate
the I/O costs for both versions, to see if the costs are different. Since we need to know
how the algorithm is processed in the executor, we skip the cost calculations here and
come back to them after having discussed how the executor works. Section 6 considers
the cost calculations and analyse them by executing different examples.

5.3. Executor

Now that we have discussed about the Parser and the Optimizer, we come to the main
part of the implementation, the Executor. Before we can start with the real implemen-
tation of the Simplex algorithm we need to find a solution for the mentioned problem
to loop over some updating commands. In the project the following 4 methods were
investigated to do the mentioned task.

• Having one plan node, which iteratively updates the input relation and returns the
final relation at the end.

• Having two plan nodes, where one executes one step of the Simplex algorithm and
the other iteratively calls this node.

• Using a C array in the memory to store the relation and its intermediate results.

• Using so called tuplestores, which are relations we can build and modify by ourself
in the C implementation.

To anticipate a bit, only the third and the forth method worked, but for completion the
other methods are shortly described and explained why they did not work. For the third
and the forth method a detailed explanation is given afterwards.
Probably the best method would be if we could just update the initial relation many
times and then finally return the resulting relation. This was investigated in the first
approach. The PostgreSQL kernel provides a method to update a tuple of a relation
inside a plan node. More precisely, this function actually does not update a tuple inside
a relation, it replaces an old tuple with a new one. The function takes as input three
parameters. The first parameter is the relation, in which a tuple should be replaced.
The second one is the pointer on the tuple, which should be replaced and the last one is
the new tuple, which should be inserted at the position of the old tuple. This method
works, if we want to update the table once during the execution of a plan node. However,
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PostgreSQL does not allow to change the same tuple of a relation in a plan node twice,
because the idea of PostgreSQL is that one plan node reads a relation and outputs a
new one without changing its content many times. Additionally, the updated tuples are
materialized and stored only at the end of the plan node execution when the relation is
returned. So, if a tuple is updated using the function above and read again afterwards,
the read tuple is the same, which it was before the update. The values in the relation
are just updated when we call a new query, which is obviously too late. Out of these
reasons this approach does not work to create a loop over updating commands.
The second method tried to work with two plan nodes, where one plan node executes
one Simplex step and the other plan node iteratively calls this node with the relation
returned by the previous Simplex step as input for the next step. Like this the plan node,
which executes a Simplex step gets one input relation and can return the updated output
relation, which fits with the idea of PostgreSQL. However, since the output relation of
the Simplex step plan node is just returned by the plan node and hence it is never
materialised, the next Simplex step can just read this output once when it is returned.
Unluckily we need to read some values more than one time during a Simplex step and
hence we can not apply this method to implement the Simplex algorithm. We see that
we somehow need to materialise the intermediate results to be able to read them many
times and hence we come to our last two methods.

5.3.1. Tuplestores

The third investigated method tries to materialise the relation and its intermediate re-
sults by storing every tuple in a C array in the memory. Like this we can access the
tuples easily and also change them without a problem. However, when the relation is
getting bigger and consisting of thousands of rows and columns, the amount of needed
memory space grows extremely, possibly so far, that the needed space is too big to han-
dle for a single computer.
To avoid increasing memory space regarding the size of the problems, we investigated a
forth method, where we try to store as few things as possible in the memory. In the forth
method we materialise the relation and its intermediate results using tuplestores. This
means that we store the input table inside a tuplestore and afterwards execute every
operation on the tuplestore and never touch the initial input relation again. Tuplestores
are a generalized module for temporary tuple storage. At first a tuplestore actually does
the same thing that we did in our third method right before, it just stores the tuples in
an in-memory array. This approach leads to the same problem, that for big examples,
the memory possibly would not have enough space for all the tuples. However, unlike the
normal memory the tuplestores solves this problem by writing the tuples on a temporary
file in the disk when the given amount of memory is not enough. Shortly explained, the
tuplestore stores the tuples in an in-memory array until the given space limit is exceeded,
then the tuples are written into a temporary file, from which the data can be read again
when needed. To simplify the comparison of different tested examples later in Section 6,
we only consider the case, where the tuplestore is written into the temporary file on the
disk. To secure that this case happens nearly all the time, we pick the smallest possible
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memory space limit (1 MB) for the tuplestore in memory, which means that the space
limit is exceeded for nearly all examples. Therefore, in the following we assume that the
tuplestore is written to the disk.
To scan through the relation a tuplestore uses an array of pointers. Initially the tu-
plestore has one read pointer, which points to the start of the table and which is the
current active pointer. We can scan through the table by always getting the tuple the
active pointer points to. When a tuple is gotten the active pointer increases its posi-
tion and points to the next tuple. Therefore the active pointer always changes its state
and points to the currently read tuple. To avoid expensive full scans, we can also add
multiple pointers in the pointers array. When a new pointer is created, it points to the
current position of the active pointer. Therefore many pointers to important positions of
the tuplestore can be created during reading the table, which can be reused later. To get
the tuples from the disk into the memory, a tuplestore provides a buffer storage inside
the memory. This buffer storage has a space of 8 kilobytes. Regarding measurements,
where we divided the total size of different linear optimization problem tables through
the number of tuples, one tuple needs 40 bytes, hence the buffer can store around 200
tuples.
Algorithm 1 shows the process a tuplestore applies, when we want to get the tuple the
active pointer points to. The tuplestore needs to store the tuple to get inside the buffer.
The tuplestore first checks if this is already the case. This is not possible if the buffer is
empty, which happens only when we have not read any tuple before, at the beginning of
executing a Simplex step. So when the buffer is empty or just does not contain the tuple
the active pointer points at, the tuplestore needs to get it from the disk. It computes
the offset of the tuple to get and checks if it is contained in the next 200 tuples in the
disk. In this case, the whole block of 200 tuples is copied into the buffer. Otherwise
using the offset the tuplestore needs to compute in which block of tuples the tuple to
get is contained, restore the file pointer on this block position and copy the whole block
into the buffer. At this point the tuple to get is stored in the buffer and the tuplestore
can get it and increase the active pointer. If the tuple is already in the buffer right from
the beginning, this is directly done.

Algorithm 1 Process of get Tuple
if buffer is empty or !tuple is already in buffer then
if !next block contains tuple to get then

restore position of block that contains tuple to get();
end if
read block into buffer();

end if
get tuple and increase active pointer();

Regarding that we sequentially scan a relation, in most cases the tuple to get next is
already in the buffer and we do not need to access the disk. After 200 read tuples, we
need to access the disk once, but we can just read the next block into the buffer, since
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the tuple we want is the first one of this block. In a sequential scan we never need to
search for the correct block in the disk. However, when we restore a pointer at a different
position, the next tuple is maybe not in the current block in the buffer or in the next
one on the disk and we need to search for the correct block in the disk and restore the
file pointer. When we have a big table with thousands of tuples, the probability that a
randomly restored position is in the current or the next block is very small and we can
assume that we need to search for the correct position nearly every time.
Regarding restoring a pointers position, tuplestores provide two possibilities. The re-
quired position can be restored by copying the value of the required pointer into the
current active pointer or by choosing the pointer with the required position as the new
active pointer. With the method, where the position just gets copied, the copied pointer
stays constant and can be reused again later. If the required pointer is chosen as the
new active pointer, its pointing position changes when new tuples are read, hence with
this method, the pointer is only temporary pointing at a position.
On the contrary to the PLSQL implementation, where no ordering could be expected
inside a relation as long as we did not specify it, the ordering in the tuplestore is really
critical, because we read one tuple after another as mentioned in Section 5.1. Point-
ers on important positions are just efficient, if we have a strict ordering and we know
which tuple will be read next. To have a good access on different columns, we decided
to have an input table ordered by columns and then by rows. We create pointers on
the start of each column, so that we can jump to every column we want to without
reading unnecessary tuples. Since the relative cost coefficient row is really critical in the
Simplex algorithm and need to be accessed many times, we want pointers on this row
as well. Instead of creating new pointers, we can use the same pointers by ordering the
columns, so that the first tuple of every column belongs to the relative cost coefficients
row. By doing this, the pointers, which are pointing on the first tuple of each column,
are pointing on the relative cost coefficients row at the same time. They can be used to
find the pivot column much more efficient. We will come to that in more detail later.
In Section 5.1 we also expected the right hand side column to be the first column, so
that we can differ it from the other columns. Table 5.1 shows a part of the initial tu-
plestore, the first column in the table indicates the pointers, which are pointing on the
corresponding column. Since pointer 0 is the active pointer, the tuple (optimize, RHS,
0) is the tuple, which will be read next. Table 5.2 shows the same table after this tuple
is read. Pointer 0 is now pointing at the tuple (CP, RHS, 2). If we want to jump to the
nth column, we can just copy the data of the pointer at position n to the active pointer
at position 0.
Besides just getting the tuple into the memory we need to apply an additional step to
read the information of a tuple of the tuplestore, because the tuples are stored as binary
values. Hence to get the information of a tuple we need to deserialize the binary value
first. In the other way, if we want to put a new value on the tuplestore, we need to first
serialize the data of the new tuple that it is a binary value again and can be put on the
tuplestore. It is possible that we do not really care about the information of a tuple
and never need to deserialize it, because we only want to move the active pointer one
position forward or to put the current tuple on another tuplestore. We use the following
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Table 5.1.: Table With Pointers

pointer row col val
0, 1 optimize RHS 0

CP RHS 2
LYS RHS 4

2 optimize Barley 12
CP Barley 3
LYS Barley 1

3 optimize Hay 1
CP Hay 1
LYS Hay 3

4 ... ... ...

Table 5.2.: Table With Pointers After a Tuple is Read

pointer row col val
1 optimize RHS 0
0 CP RHS 2

price RHS 4
2 optimize Barley 12

CP Barley 3
price Barley 1

3 optimize Hay 1
CP Hay 1

price Hay 3
4 ... ... ...

5 basic operations in connection with the tuplestore:

• get the next tuple (sequential get)

• get a random tuple (random get)

• deserialize a tuple

• serialize a tuple

• put a tuple on a tuplestore

Since deserializing a tuple only makes sense when a new tuple is gotten from the tuple-
store before, we combine some of the basic operations for better understanding of the
code and the cost calculations. The actual operations, which are used in the implemen-
tation are the following:

43



• sequential read (sequential get and deserialize a tuple)

• random read (random get and deserialize a tuple)

• write (serialize and put a tuple)

• sequential get

• put

The last two operations are still the basic operations, because they can appear individ-
ually as well. Regarding these basic operations, we will use the following functions in
the code examples.

• void skip tuples(Tuplestore tupstore, int tuplesToSkip);

– Gets tuplesToSkip tuples in tupstore, to move the pointer forward.

• TupleSlot get tuple(Tuplestore tuplestore);

– Gets the next tuple from tupstore. Returns the tuple as binary value
(TupleSlot).

• SimplexMatrixElement read tuple(Tuplestore tupstore);

– Gets the next tuple from tupstore and deserializes its content. Returns the
deserialized tuple (SimplexMatrixElement).

• void put tuple(Tuplestore tupstore, TupleSlot tupleSlot);

– Puts (appends) a TupleSlot on to tupstore.

• void write tuple(Tuplestore tuplestore, SimplexMatrixElement matrixElement);

– Serialises and puts a SimplexMatrixElement on to tupstore.

• void create pointer(Tuplestore tupstore);

– Creates a constant pointer on the current position of pointer 0 in tupstore.

• void copy column pointer in active(Tuplestore tupstore, int columnToCopy);

– Copies the pointer on the column columnToCopy in the active pointer in
tupstore. Through that the column columnToCopy is restored.

• void create temp pointer(Tuplestore tupstore, int columnToRead);

– Creates a temporary pointer on the column columnToRead and picks it as
active pointer in tupstore.
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• void select active pointer(Tuplestore tupstore, int pointerPosition);

– Selects the pointer at position pointerPosition as active pointer in tup-

store. Is only used for the temporary pointers and the pointer 0. For exam-
ple if the variable pointerPosition is one, the first temporary pointer is the
new active pointer. If a temporary pointer is the current active pointer and
it is not needed any more, we need to select pointer 0 as active pointer again
by executing this function with pointerPosition = 0.

Unluckily it is not possible to update tuples inside a tuplestore, it is only possible to
insert tuples at the end (append). This makes updating the intermediate relations more
complicated. However, it is possible to create as many tuplestores as wanted, therefore
it is possible to create a new tuplestore every time we want to change something inside
it. We can just put every tuple from the old one to the new one along with the wanted
changes. This is quite bad, because in some cases we only need to update a part of
the table and like this we always need to get and put the non updated tuples that we
have these tuples on the new tuplestore as well. We will come to this again later in
the explanation of the implementation. Additionally we always need to create a new
tuplestore and new pointers on the wanted positions, which are expensive operations.
We create one tuplestore for every iteration in the Simplex algorithm.

5.3.2. Two versions of the Simplex algorithm

Before we come to the implementation of the Simplex algorithm we want to consider
another example of a problem table, which is presented in Table 5.3.

Table 5.3.: Problem Table With Many Zeros

Constraint ID RHS var1 var2 var3 var4 s1 s2 s3
optimize 0 -3 -5 -2 -2 0 0 0

CP 1 0 0 4 0 1 0 0
DEP 2 2 0 1 0 0 1 0
LYS 6 0 3 0 2 0 0 1

We can see that there are many zero values inside this problem table and probably it is
not really efficient to store them all in the tuplestore. Out of this reason we create two
versions of the PostgreSQL implementation, one which stores all the zero values inside
the tuplestore and another one which stores only the non-zero values. Because of not
storing the zero values we do not know the exact position of every tuple, because some
rows could possibly be skipped out. To reduce this loose of control, we still store every
tuple, even the zero value tuples, of the first column (the right hand side), to be able to
read all existing rows once and store their position, as well as every tuple of the relative
cost coefficient rows, to keep the pointers on these tuples. Table 5.4 shows a part of
the new problem table with the according pointers for both versions, once with all zero
values and once without.
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Table 5.4.: Table With Pointers for Version With and Without Zero Values

pointer row col val
0, 1 optimize RHS 0

CP RHS 1
DEP RHS 2
LYS RHS 6

2 optimize var1 -3
CP var1 0

DEP var1 2
LYS var1 0

3 optimize var2 -5
CP var2 0

DEP var2 0
LYS var2 3

4 ... ... ...

pointer row col val
0, 1 optimize RHS 0

CP RHS 1
DEP RHS 2
LYS RHS 6

2 optimize var1 -3
DEP var1 2

3 optimize var2 -5
LYS var2 3

4 ... ... ...

Regarding the efficiency of these two versions, we will run different examples in Section
6 and compare the running times of them for both versions. To confirm these experi-
ments we will compare the amount of sequential read, random read, write, get and put
operations, which are executed during the Simplex method. In the following we call the
version with zero values the dense version and the one without zero values the sparse
version. To calculate the amount of operations executed we use the parameters m as the
number of rows, n as the number of columns, nz as the percentage of non-zero values
in total and pr as the percentage of non-zero values in the pivot row. Beside these
two versions also a version using a C array in memory to materialise the intermediate
results, which was our third approach to solve the updating problem mentioned earlier
in this section, will be studied. However, because this implementation is really simple it
will not be described in the following. It will be used just in Section 6 to compare the
different implementations regarding their efficiency.

5.3.3. Simplex algorithm in PostgreSQL

Now that we have found a solution for updating the problem table and discussed about
different versions of the implementation, we can start to implement the algorithm in the
PostgreSQL kernel. We again start with an example with only the second phase and
add the additional steps for the first phase afterwards. Regarding the two versions of the
implementation using tuplestores to materialise the intermediate results, we will mainly
explain and visualize the dense version and then mention the differences between the
two methods afterwards. We work with the state node, which is presented in Listing 5.7.
The first field ss is of the type ScanState and stores everything regarding the input
table. With the help of this field we can scan the input table and store it inside the
tuplestore. Since the Simplex algorithm first needs to be executed before any tuple can
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be returned and afterwards the tuples can just be returned without doing something
more, it can be splitted into two states. The first is the execution of the Simplex
algorithm and the second is the returning of the result tuples. To know the stage at
which the execution is, we have the variable currentStatus. It stores the result type of
the algorithm similar to the SimplexState in the PLSQL implementation. It can have
the value RUNNING, OPTIMAL, NOT_FEASIBLE or UNBOUNDED. When the status is RUNNING,
we need to execute at least one more Simplex step and the solution can still be further
improved. OPTIMAL means that the optimal solution is found, while NOT_FEASIBLE

and UNBOUNDED are standing for a problem without a solution and a problem with an
unbounded solution respectively. At the beginning of the executor the SimplexState

obviously is RUNNING. In the fields pc and pr, the position of the pivot column and
of the pivot row is stored. The attribute pe stores the value of the pivot element. In
the integers numberOfColumns and numberOfRows the number of columns and rows are
stored. In the two-phase method we also store the number of the column, where the
first artificial variable appears in the attribute startOfArtificials. By knowing this,
we can make for loops over all columns but the artificial variables. Since this is the
only attribute, which is added for the two-phase method, it is already mentioned here,
that it is not necessary to repeat the whole state later, when we consider the two-
phase method. The next variable numberOfReturnedTuples is for the returning part
of the code. It stores the number of tuples, which have already been returned, that we
know which tuple needs to be returned next. The variable tolerance is similar to the
tolerance already seen in the PLSQL implementation. Two values are considered to be
the same, if their difference is smaller than the variable tolerance. In the following code
examples, for simplicity comparisons of two values are done with the usual >,< and ==
signs, while in the real code the tolerance is used. The boolean variables useCArray and
withZeroCells contain the information, which implementation needs to be executed.
In the next two variables the tuplestores are stored included their pointers. tupstore1

stores the initial table and the updated values from it are stored in tupstore2. After
every Simplex step tupstore1 is freed and tupstore2 is copied in tupstore1. Like
this we can start with tupstore1 as initial table again like before. The next attribute
basicVariables stores the current basic variables of the table. For every row but the
objective function row there is a basic variable. For example basicVariables[0] stores
the position of the basic variable in the first row, along with the value of it in the right
hand side. The attribute namesOfRows stores the name of the rows. It is only needed
for the sparse version, because there we need to be able to recognize tuples according
to their row names, while in the dense version we can recognize a tuple only with its
position in the table. The last attribute matrix represents the C array, which is used to
materialise the intermediate relations. It is an array of SimplexMatrixElement nodes.
A SimplexMatrixElement stores the information of one tuple. It has the attributes row,
col and val. Of course the array is only used in the implementation, which materialise
the relation like this.
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Listing 5.7: SimplexMethodState

typedef struct SimplexMethodState

{

ScanState ss; /* its first field is NodeTag */

SimplexStatus currentStatus;

int pc;

char *pr;

int prNumber;

double pe;

int numberOfColumns;

int numberOfRows;

int startOfArtificials;

int numberOfReturnedTuples;

double tolerance;

bool useCArray;

bool withZeroCells;

Tuplestorestate *tupstore1;

Tuplestorestate *tupstore2;

BasicVariableElement **basicVariables;

// only needed for the sparse version

char **namesOfRows;

// only needed for the version using a C array in memory

SimplexMatrixElement **matrix;

} SimplexMethodState;

Now that we have defined the state node we can start with the implementation of
the Simplex algorithm. The SimplexMethodState is initialized in the ExecInitSim-

plexMethod method. In Listing 5.8 the most important parts of this method are pre-
sented. The tolerance can be copied from the plan node SimplexMethod. As mentioned
before, the value of the attribute currentState needs to be RUNNING at the beginning,
because we still need to execute the Simplex algorithm. The columns and rows counters
(numberOfColumns and numberOfRows) are initialized here with zero. Since we did not
return a tuple yet, numberOfReturnedTuples is zero as well. The booleans useCArray

and withZeroCell can be deduced from the variable simplexVersion in our plannode.
If the variable simplexVersion is bigger than 2, the implementation using a C array in
the memory is used. If it is smaller than 2 the implementation using a tuplestore with
zero value cells and if it is equal to 2 the implementation using a tuplestore without
zero value cells is used. At the end the first tuplestore is initialized and assigned to
tupstore1.
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Listing 5.8: ExecInitSimplexMethod

SimplexMethodState *

ExecInitSimplexMethod(SimplexMethod *node,

EState *estate, int eflags)

{

SimplexMethodState *simplexstate;

simplexstate = makeNode(SimplexMethodState);

simplexstate->tolerance = node->simplex_info->tolerance;

simplexstate->currentStatus = RUNNING;

simplexstate->numberOfColumns = 0;

simplexstate->numberOfRows = 0;

simplexstate->numberOfReturnedTuples = 0;

if(node->simplex_info->simplexVersion > 2){

simplexstate->useCArray = true;

}else{

simplexstate->useCArray = false;

if(node->simplex_info->simplexVersion < 2){

simplexstate->withZeroCells = true;

}else{ // simplexVersion == 2

simplexstate->withZeroCells = false;

}

}

simplexstate->tupstore1 = begin_tuplesstore();

...

return simplexstate;

}

After we initialized our state node we can start with the actual algorithm in the function
ExecSimplexMethod. The code of it is shown in Listing 5.9. This function only works
for simple problems that have an initial feasible solution and an extended version will
be shown in Section 5.3.4, where the two-phase method is handled. Like mentioned,
the Simplex method needs to be processed only in the first invocation of the ExecSim-

plexMethod. To secure that, the according code is inside an if-clause, which checks if the
currentStatus is RUNNING. This is only true at the first invocation. Inside the if-clause
the method storeInTupleStore is called at the beginning. This method copies the
tuples from the input relation node->ss.ss_currentRelation on the state node to the
tuplestore node->tupstore1, which is also on the state node. To do so, it reads every
tuple in the relation and stores it in the tuplestore. While doing this, it also counts the
number of rows and of columns and stores the number in the state node. For the sparse
version it additionally fills the array namesOfRows with the name of the rows by reading
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the first column. Since this method also adds artificial variables if needed, it is discussed
more deeply in Section 5.3.4, where we discuss about the two-phase method.

Listing 5.9: ExecSimplexMethod

TupleTableSlot *

ExecSimplexMethod(SimplexMethodState *node)

{

if(node->currentStatus == RUNNING){

// storing the input table in a tuplestore

storeInTupleStore(node);

// apply Simplex method

while(node->currentStatus == RUNNING){

node->currentStatus = simplexStep(node);

}

getOutput(node);

}

// return the correct values

return returnATuple(node);

}

After the input table is copied on to the tuplestore we can start searching for the op-
timal solution and iteratively execute Simplex steps. Hence the function simplexStep

is called inside a while-loop as long as currentStatus is equal to RUNNING. To know
when the value of currentStatus changes, we need to look at the code of the function
simplexStep, it is shown in Listing 5.10. Every step of it is described in the following.

Listing 5.10: Code of the function simplexStep

SimplexStatus simplexStep(SimplexMethodState *node){

initializePointers(node);

getPivotColumn(node);

if(node->pc == -1){

return OPTIMAL;

}

getPivotRow(node);

if(node->pr == -1){

return UNBOUNDED;

}

node->tupstore2 = begin_tuplestore();

for(i = 0; i < node->numberOfColumns; i++){

if(i == node->pc){

getAndUpdatePivotCol(node);

}else{

updateCol(node, i);
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}

}

updateBasicVariables(node);

resetTupleStores(node);

return RUNNING;

}

At the start of this function we come to the first usage of the pointers of the tuplestore. As
mentioned as a disadvantage, we need to create the pointers on the important positions in
every new tuplestore again. We decided to create a pointer on the start of each column,
which are the tuples belonging to the relative cost coefficients row at the same time.
These pointers are created once per execution of the function simplexStep, because
each time the table is updated, a new tuplestore is created, which needs new pointers.
The function initializePointers, which creates the pointers for the dense version, is
shown in Listing 5.11. When a new pointer is created, it always copies the value of the
pointer at position zero. Therefore we scan through the table using the pointer 0 and
create the new pointers on the corresponding positions. The pointer 0 is created along
with the tuplestore and it is the active pointer at the beginning. Since our first pointer
should point on the first column and hence at the start of the table, the first pointer
needs to be created right at the beginning of the table. To create the pointers on the
other columns, we always skip as many tuples as the variable numberOfRows, because
one column has one tuple per row, and then create a new pointer. We do that until we
have created one pointer for each column. By knowing the exact ordering of the table
and the exact position of the beginning of each column, we never need to deserialize a
tuple and we can save a lot of time. The only cost we get, is the cost of skipping tuples
to find the correct positions. Skipping tuples actually just means that we get every
tuple we skip once, to move the active pointer forward in the relation. We need to skip n

columns, which have m tuples each, which makes a total of m ·n tuples. Hence we need to
get every tuple of the table once. Unluckily, in the sparse version this exact positioning
does not exist, because some tuples are missing. Therefore we need to deserialize every
tuple we get and check if it belongs to a new column. In the sparse version, we need to
read (get and deserialize) every tuple of the table once. Since the sparse table consists
of m · n · nz tuples, we need to process this number of tuples. In both versions we can
sequentially get the tuples.

Listing 5.11: Initializing of the pointers

void initializePointers(SimplexMethodState *node){

// constant pointer

// -> numberOfPointers should be 1 after first allocation

numberOfPointers = create_pointer(node->tupstore1);

while(numberOfPointers < node->numberOfColumns){

skip_tuples(node->tupstore1, node->numberOfRows);

// constant pointer

numberOfPointers = create_pointer(node->tupstore1);

}

51



}

Now that we have initialized the pointers, we can start with the Simplex algorithm
and look for a pivot column. Listing 5.12 shows the code that finds the pivot column.
Considering that the sparse version stores the whole relative cost coefficients row, this
method is the same for both versions. Since we need to find the column with the most
negative value in the relative cost coefficients row, we store the current minimum in the
variable min and the position of the column with the current minimum in the variable
pc. For the case that no value is negative and no column can serve as pivot column,
we assign −1 to pc and 0 to min at the beginning. For every column we restore the
position by copying the pointer of the column into the active pointer at position 0. We
check if the relative cost coefficient in the current column is smaller than the current
minimum min, if it is, we replace the value in min with the new value and pc with the
current column. Since the tuple, which belongs to the relative cost coefficient, is the
first tuple in every column we just read one tuple per column. Hence we need to read
n tuples to get the pivot column. Since we need to restore the position before every
reading of a tuple, we first need to search for the position of the tuple in the tuplestore
and hence we need to process random reads. Since we never change the active pointer,
the pointers on the starts of the columns stay constant. If there is no negative value in
the relative cost coefficients row, node->pc is assigned to -1 and the current solution is
optimal. The function optimizeStep can return OPTIMAL as SimplexStatus and the
function ExecSimplexMethod can start to return the final values.

Listing 5.12: Get Pivot Column

void getPivotColumn(SimplexMethodState *node)

{

double min = 0;

int pc = -1;

// for each column but the RHS

for(i = 1; i<node->numberOfColumns; i++){

copy_column_pointer_in_active(node->tupstore1, currentCol);

matrixElement = read_tuple(node->tupstore1);

if(matrixElement.val < min){

min = matrixElement->val;

pc = i;

}

}

node->pc = pc;

}

If a pivot column could be found, we need to look for the pivot row. Listing 5.13 shows
the corresponding code. We need variables for the current minimum ratio minRatio,
the position of the row with the current minimum ratio pr, as well as the current pivot
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element pe. We assign -1 to pr for the case that no pivot row can be found. At this
point we need to use temporary pointers for the first time, because we need to read
two columns in parallel, the pivot column as well as the right hand side column. We
create one temporary pointer for both columns and skip the first tuple for each pointer,
because this tuple belongs to the cost coefficients row and this row can not be chosen
as the pivot row. The temporary pointers are chosen as the active pointer during this,
hence their position changed and we now have a pointer on the second tuple of the pivot
column as well as one on the second tuple of the right hand side column. For each row,
we read one tuple in the pivot column and one tuple in the right hand side column. Like
this we scan both columns exactly once.

Listing 5.13: Get Pivot Row

void getPivotRow(SimplexMethodState *node){

int pr = -1;

// creates a temporary pointer on the pivot column

// and selects it as active pointer

create_temp_pointer(node->tupstore1, node->pc);

skip_tuples(node->tupstore1, 1);

// creates a temporary pointer on the RHS column

// and selects it as active pointer

create_temp_pointer(node->tupstore1, 1);

skip_tuples(node->tupstore1, 1);

// for each row, but the objective function

for(i = 0; i<numberOfRows - 1; i++){

// selects the temporary pointer on the pivot column as active pointer

select_active_pointer(node->tupstore1, 1);

matrixElementPC = read_tuple(node->tupstore1);

// selects the temporary pointer on the RHS column as active pointer

select_active_pointer(node->tupstore1, 2);

matrixElementRHS = read_tuple(node->tupstore1);

if(matrixElementPC.val > 0){

currentRatio = matrixElementRHS.val / matrixElementPC.val;

if(currentRatio >= 0 &&

(currentRatio < minRatio || pr == -1)){

minRatio = currentRatio;

pe = matrixElementPC.val;

pr = currentRow;

}

}

}

select_active_pointer(node->tupstore1, 0);

node->pe = pe;
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node->pr = pr;

}

By choosing the temporary pointers as the current active pointer, their position changes
when a new tuple is read and we can read the columns in parallel. Table 5.5 shows
this process with focus on the pointers. Since ’Barley’ is the pivot column, we only care
about this column and the right hand side. The temporary pointers are named p1 and
p2. The first table shows the initial state of the loop, where we just skipped the first
tuple of both rows. After we entered the loop we select p1 as active pointer and we read
the next tuple, which is the next one in the pivot column. p1 moves one tuple forwards
and the second table shows the current stage of the pointers. We read the value of the
same row in the right hand side column by choosing p2 as active pointer. p2 moves one
tuple forwards and the third table shows the current stage of the pointers. At this point
we have the two necessary values to calculate the ratio of the ’CP’ row and we divide the
value of the right hand side column through the value of the pivot column. Before we do
this, we need to check if the value in the pivot column is positive. If it is not, we can skip
this row, because it can not be the pivot row, otherwise we can calculate the ratio. If the
calculated ratio is not negative and smaller than the current minimal ratio in minRatio

or pr is still −1 and hence it is the first ratio, we replace the value in minRatio with
the new ratio and the current pivot row and pivot element with the values of the new
row. We repeat these steps for all rows and finally store the pivot row and the pivot
element in our state node. The forth and fifth table in Table 5.5 show the stage of the
pointer during reading the values of the second row. All together we need to read m
tuples in the pivot column and m tuples in the right hand side column. Since we jump
from column to column, we need to restore the active pointer every time we read a tuple,
hence we have random reads. In total we need to randomly read 2 ·m tuples to find the
pivot row. In the sparse version the processing is quite similar. The only difference is
that in the pivot column it is possible that some zero value tuples are missing, but not in
the RHS column. To check if any tuple is missing we use the array namesOfRows, which
stores the name of the rows. We compare the row we are reading now and the row we
have read before. The difference of the indexes of these rows in the array namesOfRows

subtracted by one is the number of zero value tuples that are missing before the currently
read tuple. Since the value in the pivot column need to be positive in the pivot row,
these rows can not serve as the pivot row and we can skip these rows in the right hand
side. We can skip these tuples without deserializing them, because we know that even
the zero value tuples are contained in this column and hence the ordering is fixed. In
this version we need to randomly read only nz ·m tuples in the pivot column and the
same amount in the right hand side, which is in total 2 · nz ·m. Beside this we need to
skip (1 − nz) ·m tuples in the right hand side. In both versions node->pr is assigned
to -1, if there is no positive value in the pivot column and the solution is unbounded.
The function optimizeStep can return UNBOUNDED as SimplexStatus and the function
ExecSimplexMethod can start to return the final values, which are unbounded in this
case. At the end of the function, the pointer at position zero is chosen as the active
pointer again.
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Table 5.5.: Pointers During Determination of the Pivot row

pointer row col val
0, 1 optimize RHS 0
p2 CP RHS 2

LYS RHS 4
2 optimize Barley 12
p1 CP Barley 3

LYS Barley 1
3 ... ... ...

pointer row col val
0, 1 optimize RHS 0
p2 CP RHS 2

LYS RHS 4
2 optimize Barley 12

CP Barley 3
p1 LYS Barley 1
3 ... ... ...

pointer row col val
0, 1 optimize RHS 0

CP RHS 2
p2 LYS RHS 4
2 optimize Barley 12

CP Barley 3
p1 LYS Barley 1
3 ... ... ...

pointer row col val
0, 1 optimize RHS 0

CP RHS 2
p2 LYS RHS 4
2 optimize Barley 12

CP Barley 3
LYS Barley 1

p1, 3 ... ... ...

pointer row col val
0, 1 optimize RHS 0

CP RHS 2
LYS RHS 4

p2, 2 optimize Barley 12
CP Barley 3
LYS Barley 1

p1, 3 ... ... ...

Now that we have found the pivot column and the pivot row, we can start to update the
values in the tuplestore. First we initialize the second tuplestore tupstore2, in which
the updated values are stored. The updating of the pivot column and the updating of
the normal columns is separated in two functions, one to update the pivot column and
one to update a non-pivot column. To keep the ordering of the columns in the table
exactly the same as it was before the update, we loop through the columns and update
the columns one by one according to whether it is the pivot column or not. First we
will consider the function to update the pivot column and afterwards we investigate the
updating of a normal column. The code for updating the pivot column is shown in
Listing 5.14. First we copy the pointer on the pivot column in the pointer 0, which is
the active pointer. For every row in the pivot column we read the corresponding tuple,
update the value and push the updated tuple on the new tuplestore tupstore2. If the
row is the pivot row, the value needs to be one and otherwise it needs to be zero. Since
we do this for every row once, we need to read and write m tuples. The updating of the
pivot column in the sparse version is much easier. Since all values in the pivot column
but the one, which belongs to the pivot row, are zero, we just need to store the tuple of
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the pivot row and the one of the relative cost coefficients row. In total we need to write
two tuples and read a single one, to keep the correct name of the pivot column.

Listing 5.14: Update pivot column

void getAndUpdatePivotCol(SimplexMethodState *node){

copy_column_pointer_in_active(node->tupstore1, node->pc);

for(i = 0; i<node->numberOfRows; i++){

matrixElement = read_tuple(node->tupstore1);

if( i == node->pr){

matrixElement.val = 1;

}else{

matrixElement.val = 0;

}

write_tuple(node->tupstore2, matrixElement);

}

}

Next to update the pivot column we also need to update the other columns. Listing 5.15
shows the corresponding function. This function is called for every column but the pivot
column once and hence the position of the current column to update is a parameter of
the function. To update a tuple in the Simplex algorithm we need to know the current
value of the tuple, the value of the updated pivot row in the current column and the
value in the pivot column in the current row. Since we update column by column the
value in the pivot row is the same for all the tuples we want to update in one function
call. Therefore we read and store this value in the variable valueInPivotRow at the
beginning of the function. To do so, we copy the position of the current column in the
active pointer, skip as many tuples that the next tuple is the pivot row and then read
and store the value of the next tuple. Because we need the updated value of the pivot
row, we need to divide the read value through the value of the pivot element, which is
stored in our state node. Since the value in a tuple gets subtracted by the value in the
pivot row multiplied by the value in the pivot column, the values of the tuples in the
current column do not change during this Simplex step if the value in the pivot row is
zero. In this case, we can just get all tuples of the current column without deserializing
and put them on the new tuplestore without serializing. In the case, where the value in
the pivot row is not zero, we need to read the column to update and the pivot column in
parallel, similarly like we did earlier to find the pivot row. We create temporary pointers
on both of the columns and then alternately read a tuple of both columns by selecting
the temporary pointers as active pointers. For every row but the pivot row we calculate
the new value of the according tuple using the corresponding pair of values and put the
updated tuple on the tuplestore tupstore2. In the pivot row we can just replace the
old value with the value in the variable valueInPivotRow.
To get the value of the variable valueInPivotRow we need to skip in average 1/2 · m
tuples and read one tuple. Assuming that this value is not zero, we need to read 2 ·m
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tuples and write m tuples to update the current column. Equally as to get the pivot row,
we jump from column to column to read the next tuple, so we have again only random
reads in this case. Regarding that the variable valueInPivotRow is zero we only need to
get and put the tuples of the current column without deserializing or serializing a tuple,
because the values stay the same. The probability that the variable valueInPivotRow is
not zero should be similar to the percentage of non-zero values nz. However, experiments
in Section 6 showed, that the percentage of non-zero values in the pivot row and the
percentage of non-zero values in the whole table can differ extremely. Because of this,
we want to have a different variable for this percentage. In the following the parameter
pr stands for the probability that the variable valueInPivotRow is not equal to zero.
Regarding this we need to process in average around 2 · pr · m random reads, pr · m
writes, (1.5 − pr) ·m single sequential gets and (1 − pr) ·m single puts to update one
column. Since we need to update every column once, these values can be multiplied by
n to update the whole table.

Listing 5.15: Update normal column

void updateCol(SimplexMethodState *node, int colToUpdate){

// get the value in the pivot row of the current column

copy_column_pointer_in_active(node->tupstore1, colToUpdate);

skip_tuples(node->tupstore1, node->pr);

matrixElement = read_tuple(node->tupstore1);

valueInPivotRow = matrixElement.val / node-> pe;

if(valueInPivotRow != 0){

// update the current column

create_temp_pointer(node->tupstore1, colToUpdate);

create_temp_pointer(node->tupstore1, node->pc);

for(i = 0; i<node->numberOfRows; i++){

select_active_pointer(node->tupstore1, 1);

matrixElementCC = read_tuple(node->tupstore1);

select_active_pointer(node->tupstore1, 2);

matrixElementPC = read_tuple(node->tupstore1);

if(currentRow == node->pr){

matrixElementCC.val = valueInPivotRow;

}else{

matrixElementCC.val = matrixElementCC.val -

matrixElementPC.val * valueInPivotRow;

}

write_tuple(node->tupstore2, matrixElementCC);

}

select_active_pointer(node->tupstore1, 0);

}else{

// get and put the current column

copy_column_pointer_in_active(node->tupstore1, colToUpdate);

for(i = 0; i<node->numberOfRows; i++){
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tupleSlot = get_tuple(node->tupstore1);

put_tuple(node->tupstore2, tupleSlot);

}

}

}

In the sparse version the proceeding is again really similar, but there are some differences.
At the beginning we also need to find out the value of the variable valueInPivotRow.
However, in this version we can not just skip some tuples to find the value we need. We
need to read every tuple in the current column, to check if it is the one we need, until we
found the correct one. This makes an average of 1/2 ·m · nz sequential reads to find the
correct value. If the needed value is not found in the current column, it is zero and we
can just get and put the current column without changes as done before. However, this
time we need to deserialize every tuple, to check if we are still in the correct column.
Otherwise we need to read the pivot column and the current column in parallel similarly
as done before. In this version some values are missing and we need to check the row of
the read tuples, to update the tuples correctly, but this does not affect the number of
read tuples. Summarized we need in average 1/2·m·nz sequential reads to find the value
in pivot row and in average 2 ·pr ·m ·nz random reads, pr ·m ·nz writes, (1−pr) ·m ·nz
sequential reads and (1 − pr) · mṅz single puts to update one column when the value
in the pivot row is already known. These costs combined multiplied by the number of
columns, this makes a total of (1.5 − pr) ·m · n · nz sequential reads, 2 · pr ·m · n · nz
random reads, pr ·m · n · nz writes and (1 − pr) ·m · n · nz single puts to update the
whole table.
Considering these cost calculations it needs to be mentioned that the non-zero values
are not evenly distributed in the table. The columns of basic variables have much less
non-zero values than the rest of the table. Since most of the basic variables (all but one)
have a zero value in the pivot row, the columns, where the value in the pivot row is zero,
have in average less non-zero values than the columns, where it is not zero. Table 5.6
shows an example, which has nz and pr equal to 60%. The columns, where the pivot row
is zero are written in italics. We can see that in the part, which concludes these columns,
the percentage of non-zero values(objective function included) is only 45%, while in the
other part the percentage of non-zero values is 70%. So the percentage of non-zero val-
ues is higher in the part, where we need to update the tuples. Therefore more tuples
than we estimated before need to be updated and less can just be read and put on the
new tuplestore, hence we need to process more operations than calculated before. Such
a difference in the percentage of non-zero values between these two parts theoretically
occurs in every example. However, the influence of this difference of the percentage
is minor regarding the total cost to update the columns and we will not consider this
more deeply to avoid unnecessary complexity. Hence we let our cost calculation for the
updating of the columns how it is, but we need to have in mind that it is probably a bit
optimistic.
For both versions we mentioned, that we just read and write the whole column, if the
variable valueInPivotRow is equal to zero. This can happen very often if we have a
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Table 5.6.: Distribution of Non-Zero Values

constraint pivot var var2 var3 var4 var5 var6 var7 var8 var9 RHS
row1 0 3 0 2 0 4 1 0 0 2
row2 4 0 0 0 0 0 0 1 0 4

pivot row 2 3 1 4 1 0 0 0 0 3
row4 1 0 2 2 0 3 0 0 1 9

optimize -3 3 1 -2 0 3 0 0 0 2

problem with many zero values. Regarding this, it is a huge disadvantage that we can
not update the tuplestore, because then we could just skip these columns and would
only need to consider the columns, where the variable valueInPivotRow is not equal to
zero. For both versions the costs would be much smaller if there are many zero values
in the pivot row.
At this point we have updated the whole table once. Since we have new basic variables
now, we need to update them at the end of every Simplex step. We just assign the pivot
column as the new basic variable in the position of the pivot row in the basic variables
array in our state node. Additionally we want to have the updated table in the initial
tuplestore tupstore1. To do that, we copy the new table from the tuplestore tupstore2
into the tuplestore tupstore1 and free the allocated space in the tuplestore tupstore2.
This also takes some mentionable time, but we can not describe it in a cost formula like
we have done for the other operations. However, if the table is big enough, this time is
marginal and hence we do not consider it in the cost calculations, but in small examples
it probably has some influence on the total time.
After this we have done a whole Simplex step and the function can return the SimplexS-
tatus Running, which means another Simplex step will be processed, because we have not
found the optimum yet. This process will be repeated until no pivot column or no pivot
row is found, which means we found the optimum or the problem is unbounded. In both
cases we can return the results and the algorithm is finished. To return the values we can
just assign the values at the right hand side to the current basic variable once and then
return the correct values one by one by using the variable numberOfReturnedTuples.

5.3.4. Two phase method in PostgreSQL

As we have already seen many times some additional steps need to be processed for
problems with no basic feasible solution at the beginning. We need to run the Simplex
algorithm twice, first on an artificial problem to find a feasible solution and then on the
result of the artificial problem with the real objective function. The extended version of
the function ExecSimplexMethod is shown in Listing 5.16.
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Listing 5.16: ExecSimplexMethod with Two Phase Method

TupleTableSlot *

ExecSimplexMethod(SimplexMethodState *node)

{

if(node->currentStatus == RUNNING){

// storing the input table in a tuplestore

storeInTupleStore(node);

if(node->startOfArtificials != -1){

// preprocessing for the first phase

initializePointers(node);

transformObjectiveFunctionRow(node, false);

// execute Simplex Method

while(node->currentStatus == RUNNING){

node->currentStatus = simplexStep(node, false);

}

if(node->currentStatus == OPTIMAL){

// preprocessing for the second phase

removeArtificialVariablesFromBasicVariables(node);

transformObjectiveFunctionRow(node, true);

node->currentStatus = RUNNING;

}

node->numberOfColumns = node->startOfArtificials;

}

// execute Simplex Method

while(node->currentStatus == RUNNING){

node->currentStatus = simplexStep(node, true);

}

getOutput(node);

}

// return the correct values

return returnATuple(node);

}

Compared to the initial version in Section 5.3.3 we mainly added the code inside the
if-clause, where the parameter startOfArtificials is compared with −1. This is the
code, which belongs to the first phase and it is executed when an artificial variable
was added during the method storeInTupleStore. In the explanation of the initial
implementation in Section 5.3.3, we already mentioned that this method stores the scan
relation on the state node into the tuplestore node->tupstore1 and counts the number
of rows and columns. Beside these tasks it also searches for the basic variables and adds
an artificial variable for every row, where no basic variable could be found. Since in the
initial implementation there was always a slack variable for every row, we moved the
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explanation of this method in this Section. An overview of the tasks done in this method
is shown in the following.

• Scan every tuple and put it on tuplestore

• Count number of rows and columns

• Store the name of the rows, if the sparse version is used

• Search for basic variables and store the rows they belong to

• Insert artificial variables for the rows, where no basic variable could be found

We scan every tuple in the input relation and put it on the tuplestore. While doing
this, we also count the number of rows and columns in the relation and search for cur-
rent basic variables. For every tuple we check if it belongs to a new column. When a
new column appears node->numberOfColumns is increased by 1. For every tuple, which
belongs to the first column (RHS), we increase node->numberOfRows by 1. For each
other column than the right hand side we need to check if it is a basic variable. If the
value in the objective function (first tuple of the column) is zero and only one non-zero
value is contained in the other tuples of the column and this non-zero value is equal to
1, the current column is a basic variable. Hence we assign the position of this column
in the array node->basicVariables as the basic variable for the row, where the value
1 belongs to.
After we have read every tuple in the relation, the scan part of the function is finished.
In total we need to read and write every tuple once, which makes m ·n tuples. Regarding
the sparse version, this is done quite similar. The only difference is, that we additionally
need to store the names of the rows. This can be done by reading the right hand side
column once to count the number of rows, that we can allocate the needed space for the
array node->namesOfRows and another time to store the names in the array. Hence in
total we need to read the whole table once plus one additional time the right hand side
column. This makes a total of m · n · nz + m reads and m · n · nz writes.
At this point the initial table is stored in the tuplestore and the position of the current
basic variables are stored in the array node->basicVariables. If no basic variable was
found for a row, the array contains the value 0 for this row. We now check for every
row if the row has a basic variable already. If no basic variable is available, an artificial
variable is added to serve as basic variable and the variable node->numberOfColumns is
increased by one. If it is the first added artificial variable, the new column is marked
as the start of the artificial columns in the variable node->startOfArtificials. If no
artificial variable is added for any column, the variable node->startOfArtificials is
assigned to −1. To insert the correct tuples in the tuplestore we insert a tuple with the
value 0 for every row but the one the added artificial variable belongs to. In this row
the value is 1. Since we have total control over the positioning of the tuples and the
artificial tuples have no real meaning, the name of the row and column of these tuples
does not matter and we just assign the value ”0” for the row and the column for all of

61



them. This is different in the sparse version. There we just need to insert two values,
one for the row the artificial variable belongs to and one for the objective function row.
Since we have the name of the rows stored in an array, we can use the correct names to
store the tuples. To indicate that the column is an artificial column, the name of the
row for the artificial objective function is ”-123” for these columns.
If an artificial variable was added in this step, node->startOfArtificials is unequal
to -1 and we need to apply the two-phase method and the function transformObjec-

tiveFunctionRow is executed. Before that, we need to initialize the pointers, because
we use them during the execution of this function. This function needs to create a new
tuplestore as well, because some values are updated. However, most of the tuples are
just copied from the old tuplestore on the new one. In the following an overview of the
task is shown for this method.

• Get the values in the objective function for the basic variables

• Calculate the value of the relative cost coefficient row for every column

• Push the calculated value on the tuplestore along with the rest of the column

In the call of this function, we can see that besides of the SimplexMethodState a boolean
is given as parameter to the function. This boolean stands for the current phase of the
Simplex algorithm. If the boolean is false we are currently in the first phase and if it
is true we are in the second phase. Regarding the function transformObjectiveFunc-

tionRow, the only difference between the two phases is, that we need to consider the
artificial objective function as row to transform if we are in the first phase, and other-
wise the real objective function. Since we need to subtract every row multiplied by the
value in the objective function of the corresponding basic variable, we need to get the
values in the objective function for every basic variable at the beginning of this function.
In the second phase we just restore every basic column and read the value in the first
tuple, which represents the objective function. In the first phase, we assign the value 1
to every basic variable, which represents an artificial variable, and 0 for the other basic
variables, since the artificial objective function yet does not exist and it is initialized like
that. As the next step we can transform the objective function row into the relative cost
coefficient row by subtracting every row from the objective function as many times as
the value we previously stored for this row. We calculate the cost coefficient column by
column and push the calculated value along with the other tuples of the corresponding
column on the new tuplestore, to keep the ordering from the beginning. In the sec-
ond phase we can delete the artificial cost coefficient row, which was created in the same
method in the first phase. The artificial variables can be deleted out as well in the second
phase by not pushing them on the tuplestore, because we do not need them again after-
wards. After this function is called the first time we can optimize the artificial problem
by calling the function simplexStep, which was introduced previously in Section 5.3.3.
Again we need to signalize with a boolean if we are in the first or in the second phase,
that we know if we need to optimize the artificial or the real problem. If the artificial
problem is optimized and has an optimal solution not equal to zero, not_feasible is
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returned as SimplexState and we can directly go to the end and return the result, that
the problem is not feasible. Otherwise we have found a feasible solution for the real
problem and can continue with the algorithm. The function removeArtificialVari-

ablesFromBasicVariables checks if some artificial variables are still contained in the
basic variables and exchange them by calling another Simplex step, with the row, where
the artificial variable is the basic variable, as pivot row and a positive or negative value
in a non-artificial column in this row as pivot column. Afterwards we can transform the
real objective function by calling the function transformObjectiveFunctionRow again.
The artificial variables are removed during that and the number of columns is reduced
to the number of real variables. We can optimize the real problem and return the final
results as done before.
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6. Cost calculations and performance
tests

Now that we have seen the implementations of the Simplex algorithm in PLSQL as well
as in the PostgreSQL kernel with two different versions (sparse and dense), we want to
compare them regarding efficiency and find their advantages and disadvantages.

6.1. Costs calculations of PostgreSQL implementations

Before we compare the running times of the different methods, we want to investigate the
cost of the PostgreSQL implementations more deeply to finish the part of the optimizer.
During the explanation of the implementation of a Simplex step, we described how
many sequential read, random read, write, single get and single put operations each
Simplex operation needs to execute in proportion to the number of rows and columns.
At this point we want to sum up all these numbers in a single table to see how many
sequential read, random read, write, single get and single put operations one iteration
of the Simplex algorithm needs in total. Table 6.1 shows the different operations along
with the amount of times they are called for the dense version and Table 6.2 the same
for the sparse version. This table does not cover the cost for storing the table in the
tuplestore at the beginning and computing the relative cost coefficients in the objective
function row. Since these operations are just executed one or two times, while we have
several iterations, these costs are marginal for most of the problems and we let them
by the side for the following experiments and discussions. Beside this, the Tables 6.1
and 6.2 do not contain the cost to reset the tuplestore (clear tupstore1 and assign
tupstore1 = tupstore2) neither, because we could not calculate a cost formula for this
operation. Since the time consumed by this operation is marginal regarding the total
consumed time for bigger problems, this should not be a problem.
As mentioned in Section 5.3.3 the cost to update the normal columns is a bit higher in
the sparse version than the cost presented in Table 6.2. This is because the parameter
nz is higher in the part where we need to update the values (when the value in the pivot
row is non-zero), than in the part where we can just read and put the tuples (when the
value in the pivot row is zero). Through this we need to update a bit more tuples than
we have calculated. Since these additional costs, which are added through that, are just
minor and we only want to have an approximation of the total cost, we do not consider
these costs in our cost formula to simplify our calculations. However, we keep in mind
that the cost estimation for updating the columns is a bit optimistic and we discuss it
in more details in Section 6.2 later.
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Table 6.1.: Costs for one Iteration of the Simplex Algorithm in the Dense Version

operation sequential read random read write
initializePointers 0 0 0
getPivotColumn 0 n 0

getPivotRow 0 2m 0
updatePivotColumn m 0 m

updateNormalColumn 0 2pr ·mn pr ·mn
Overall 0 2pr ·mn pr ·mn

operation sequential get put
initializePointers mn 0
getPivotColumn 0 0

getPivotRow 0 0
updatePivotColumn 0 0

updateNormalColumn (1.5− pr)mn (1− pr)mn
Overall (2.5− pr)mn pr ·mn

To calculate the overall cost of one iteration, only the cost of the functions to initialize the
pointers and to update the columns are considered, because they are the most expensive
operations. In these two operations every tuple of the table needs to be processed, while
in the other functions only the tuples of one or two rows respectively columns need to
be investigated. If we have a big table these costs are getting marginal regarding the
total costs.
At this point we only want to look at the representative total costs. We notice that the
amount of random read, write and single put operations is always multiplied by nz in
the sparse version compared to the dense version. Since nz is the percentage of non-zero
values in the table, this value is between 0 and 1 and hence the sparse operation needs
to process these operations less times. Considering the other two operations (sequential
read and single get), we can see that the sparse version needs to sequentially read the
same amount of tuples multiplied by nz, which the dense version only needs to get. Since
the read operation consists of the get operation and of deserializing the tuple, the sparse
version is worse in this case, if nz is high and deserializing a tuple has a considerable
cost. This is because in the dense version the positioning of every tuple is exactly known,
because every column has the same amount of tuples and when we want to skip some
tuples we can do that without deserializing any tuples. In the sparse version we always
need to deserialize a tuple, to know to which row and column it belongs. Summarized
we see that the only operation, which the dense version executes less times than the
sparse one, is the sequential read operation. However, to really compare the cost of the
implementations, we need to compare the time cost of the different operations.
Before we consider all operations we want to investigate the random get operation, which
is a part of the random read operation. The time consumed for a random get depends on
the size of the table, hence we want to find out how the time for a random get changes
when the table gets bigger. Figure 6.1 shows the consumed time regarding the size of
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Table 6.2.: Costs for one Iteration of the Simplex Algorithm in the Sparse Version

operation sequential read random read write
initializePointers mn · nz 0 0
getPivotColumn 0 n 0

getPivotRow 0 2m · nz 0
updatePivotColumn 0 1 2

updateNormalColumn (1.5− pr)mn · nz 2pr ·mn · nz pr ·mn · nz
Overall (2.5− pr)mn · nz 2pr ·mn · nz pr ·mn · nz

operation sequential get put
initializePointers 0 0
getPivotColumn 0 0

getPivotRow (1− nz)m 0
updatePivotColumn 0 0

updateNormalColumn 0 (1− pr)mn · nz
Overall 0 pr ·mn · nz

the table.
We can see that at first the time is constant until a size of around 200-300 tuples and
then increasing logarithmically. This makes sense when we consider the buffer of the
tuplestore, which can store around 200 tuples. Since a tuple from the current block in
the buffer can be gotten without restoring the position of the file pointer in the disk, a
tuplestore with less than 200 tuples never needs to restore the position of the file pointer,
even when we have random gets. Therefore the time of a random get is almost constant
there. If the tuple the active pointer points at is in the next block of 200 tuples in the
disk, the tuplestore does not need to restore the position of the file pointer as well, it
can just copy the next block into the buffer. Hence if we have a table with 400 tuples
we have 2 full blocks of tuples (A and B) and 4 possible cases when we want to get the
next tuple. The possible cases are shown in Table 6.3. If block A is currently stored in
the buffer, the tuplestore never needs to restore the position of the file pointer, because
it already has the tuples from block A in the buffer and block B is the next one on the
disk. If block B is currently stored in the buffer, the tuplestore needs to restore the
position of the file pointer if the tuple to get is in block A, because it needs to move
the file pointer on the beginning again. If the tuple to get is in block B, it already has
it in the buffer. So in one of four cases the tuplestore needs to restore the position of
the file pointer on the position of the block, which contains the tuple the active pointer
points at, and the probability is 25%. If we increase the size of the table, the probability
that the tuplestore needs to restore the position increases as well. Because of this, the
time needed for a random get operation increases logarithmically, at the beginning very
fast and later it is almost constant again, since any way for almost every random get
operation the position in the disk need to be restored.
Regarding the random get we will consider two cases. First if we have a small table with
less than 200 tuples and second if we have a big table with more than 3000 tuples. In
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Figure 6.1.: Time Consumed for a Random get Tuple Operation
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Table 6.3.: 4 Different Cases With 2 Blocks of Tuples

current block needed block restore position probability
A A NO 25%
A B NO 25%
B A YES 25%
B B NO 25%

both cases the time consumed for a random get operation is almost constant. If we have
a table between 200 and 3000 tuples we can look at the graph, how long one random get
operation takes.
Now we can compare every operation and so compare the cost of the dense and the
sparse implementations. We compare the average consumed time for every operation
and multiply it with the amount of times the specific operations is executed. Since we
only want to compare the two implementations and do not calculate exact times, we take
the operation, which is the fastest one as reference and compare the other operations
with it.
Table 6.4 shows the absolute time consumed for the elementary basic operations and the
relative time compared to the sequential get operation, which is the fastest operation.
In the following we will focus on the relative times.
Since in our implementations, we have combined some of the elementary basic opera-
tions to define new combined basic operations, we need to calculate the costs for these
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Table 6.4.: Costs of Elementary Basic Operations

operation absolute time consumed relative time consumed
sequential get tuple 0.000180 ms 1 tsg

random get tuple small relation 0.000180 ms 1 tsg
random get tuple big relation 0.001740 ms 9.7 tsg

put tuple 0.000215 ms 1.2 tsg
deserialize 0.000942 ms 6.7 tsg
serialize 0.001200 ms 5.2 tsg

combined operations. Table 6.5 shows the costs for these combined operations along
with the used elementary basic operations in relation to the cost to sequentially get a
tuple.

Table 6.5.: Costs of Combined Basic Operations

operation relative time consumed
sequential read 7.7 tsg

random read small relation 7.7 tsg
random read big relation 16.3 tsg

write 6.4 tsg
sequential get tuple 1 tsg

put tuple 1.2 tsg

With the values in Table 6.5, we are now able sum up the costs of the different operations
according to Tables 6.1 and 6.2 and to calculate one single number for the cost of
one iteration for the dense and the sparse implementation, which only relies on the
parameters tsg, m, n, nz and pr. We focus on big problems, hence we pick the cost
for big relations(>3000 tuples) for the random read. In the dense version we have the
following cost:
16.3 · tsg · 2 · pr ·mn + 6.4 · tsg · pr ·mn + 1 · tsg · (2.5− pr) ·mn + 1.2 · tsg · (1− pr) ·mn

= ((36.8 · pr + 3.7) · tsg) ·mn

In the sparse version we have the following cost:
7.7 · tsg · (2.5− pr) ·mn · nz + 16.3 · tsg · 2 · pr ·mn · nz+
6.4 · tsg · pr ·mn · nz + 1.2 · tsg · (1− pr) ·mn · nz

= ((30.1 · pr + 20.45) · tsg) ·mn · nz

We can split the cost formulas into two parts. The left part, which is in the parenthesis,
indicates the average cost of processing a tuple. It is dependent on the parameter pr. The
remaining part on the right side indicates how many tuples are processed. It is dependent
on the parameter nz. Both parameters have a value between 0 and 1. Regarding the
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left part of the formulas, the dense version is strictly better than the sparse version,
because the sparse version does not know the exact positioning of the tuples. If pr is
near to zero, the dense version only need to process few operations to process a tuple,
while the sparse version still needs to do a lot more operations. Hence the dense version
is much better regarding the left part, if pr is low. However, the dense version can be
in maximum around 5.5 times better than the sparse version when pr is near to zero.
Regarding the right part of the formulas the sparse version is better than the dense one,
because it has less tuples. In this part the difference between the two versions can differ
infinitely, since nz can be close to zero. In total we observe that two parameters steer
the performance difference between the two implementations, while nz is the dominant
one. If nz is small enough, the sparse implementation is faster no matter what pr is.
The threshold for nz is around 18%.
Since pr is the percentage of non-zero values in the pivot-row, it is dependent on the
parameter nz. Hence it is most likely that if one of the parameter is close to zero also
the other parameter is close to zero and vice versa. However, we already mentioned
that we do not consider the parameters as the same, because they can differ extremely
in some examples. In most cases we still have the tendency that if one of them is very
high also the other is high and if one of them is very low also the other is low. Since
we can not predict the exact values of these parameters before we have executed the
Simplex algorithm, because they change during the execution, it makes it hard to predict
which version is faster. To have the opportunity to still include these cost formulas in
the optimizer we could consider nz and pr as the same and assign them to the initial
percentage of non-zero values in the whole table, which is known from the beginning. We
then are able to calculate the percentage of non-zero values at which the sparse version
gets faster than the dense version, and pick the sparse implementation, if the initial nz
is under this threshold. So we make an equality of the two cost formulas and consider
pr = nz.

((36.8 · nz + 3.7) · tsg) ·mn = ((30.1 · nz + 20.45) · tsg) ·mn · nz

⇒ 36.8 · nz + 3.7 = 30.1 · nz2 + 20.45 · nz

⇒ −30.1 · nz2 + 16.35 · nz + 3.7 = 0

⇒ nz = 0.717

Regarding this calculation, we see that the threshold of the dense and the sparse version
is around 71.7% for nz and pr. This means that if nz is under 71.7% the sparse version
should be faster, while if nz is over 71.7% the dense version should be faster, considering
that nz = pr. This percentage seems quite high, because there are always basic variables
with few non-zero values, and hence nz is probably smaller than this threshold. However,
regarding the optimizer it possibly makes sense to pick the dense version, if the initial
percentage of non-zero values is over this threshold and otherwise the sparse version.
In the next section we will consider different examples, calculate the percentage of non-
zero and run both versions on them and compare the results and check if our cost
calculations are correct.
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6.2. Findings

Now that we know how the costs are composed for the C implementations, we want to run
examples and count the total running times. We mainly focus on the C implementations,
but we also want to compare them with the PLSQL implementation. We investigate
3 sort of problems. First we look at some benchmark problems from the Netlib.org
library1, second we investigate the transportation problem, where few non-zero values
are present, and third a problem with an exponential amount of iterations, where the
percentage of non-zero values in the pivot row(pr) is much lower that the percentage of
non-zero values in the whole table(nz). In the last two sort of problems we concentrate on
the C implementations with tuplestores, while in the benchmark problems, we compare
the running times of all methods and also check the validity of the implementation.

6.2.1. Benchmark Problems

Correctness

Before we compare the running times, we want to check if our implementations are
correct and deliver the correct results. To do so, we execute the Simplex algorithm on
different Linear Programs using our implementations and the Python linear optimization
library provided by SciPy, which applies the Simplex method as well. By doing this
we can compare the results from the implementation in the SciPy library with the
results from our implementation. If they are all the same our implementations should
be correct. We run an example for every possible scenario, which can appear in the
Simplex algorithm. We run the following problems:

1. a problem, which only requires to execute the second phase with a feasible solution

2. a problem, which requires to use the two-phase method with a feasible solution

3. a problem, which has no feasible solution

4. a problem, which has a positive unbound solution

5. a problem, which has a negative unbound solution

6. a problem, where artificial variables are contained in the basic variables after the
first phase

Regarding the first problem, it needs to be mentioned, that the implementation in the
SciPy library adds an artificial variable for every row, even when a basic variable is
available. Because of this, the case, that the first phase is not executed, is not possible.
However, since the result is the same at the end, we can still compare it with our
implementations.
For every sort of problem listed above all implementations have the same result as the
SciPy library showing they are correct, at least regarding small problem tables.

1http://www.netlib.org/lp/data/
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Time Comparison

After we have proven the correctness of the implementations, we want to run some
bigger examples with more iterations and compare the running times and the number of
iterations. Table 6.6 shows different tested problems with its attributes while Table 6.7
shows the time consumed in total and Table 6.8 the time consumed per iteration and
the number of needed iterations for these problems for the different implementations.
Since the number of tuples is different for the first and the second phase, the average
number of tuples during the execution is presented.

Table 6.6.: Attributes of Different Problems

problem tuples nz pr
afiro 1607 0.1481 0.076
kb2 4729 0.2947 0.2746

share2b 16879 0.2507 0.1308
grow7 271454 0.1308 0.1592
agg 330413 0.0428 0.0252

Table 6.7.: Consumed Total Time (s) per Implementation

problem SciPy C array C dense C sparse PLSQL
afiro 0.329 0.0065 0.051 0.036 0.476
kb2 0.430 0.018 1.389 1.184 36.5

share2b 0.69 0.064 6.524 5.654 209
grow7 11.6 1.5 146 90.5 no result
agg 15.1 1.1 42.6 13.0 2810

Table 6.8.: Consumed Time (ms) per Iteration / Number of Iterations

problem SciPy C array C dense C sparse PLSQL
afiro 12.2 / 27 0.43 / 15 3.4 / 15 2.4 / 15 31.7 / 15
kb2 3.33 / 129 0.17 / 106 13.1 / 106 11.17 / 106 345 / 106

share2b 2.65 / 260 0.4 / 160 40.8 / 160 35.3 / 160 1304 / 160
grow7 14.9 / 776 4.66 / 316 462 / 316 287 /316 no result
agg 24.0 / 629 6.83 / 160 271.4 / 157 82.8 / 157 17563 / 160

In Table 6.7 we see that the PLSQL implementation is much slower than the other
implementations in every tested example. It takes already quite long even for small
examples and for big examples it takes so long, that it does not really makes sense to
use this implementation and it possibly does not even work. For the problem grow7 it
took so long, that we have decided to stop the execution of this problem. The reason
that the PLSQL implementation is so slow is because it needs to execute much more
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operations on the table and therefore the table is accessed many times. In the other
implementations we can simply scan through the table to get a new tuple, while in the
PLSQL implementation we need to execute a whole query over the table. Hence there
is no real reason to use the PLSQL implementation in practice.
Regarding the other implementations, we notice that the implementation using a C array
and the implementation in the SciPy library are much faster for big examples than the
implementations, which are using tuplestores to store the relation. The reason for this
is, that they work in memory and never need to access the disk. Additionally, they do
not always need to deserialize and serialize a tuple to get the information, because they
do not work with binary values to store the tuples, they just store the real information
in the memory. Hence the time needed to execute the Simplex algorithm with these
implementations is much smaller. However, if the memory resources are limited, it is
possible, that these implementations are using too much space for very big problem
tables and they do not fit in the working memory any more. In such a case these
implementations do not work. Considering such an example the C implementations
using tuplestores should actually work, because the table is written to the disk and does
not require much working memory space. Since with these implementations it would
take very long to find the results for such big tables, it would not be that effective to use
them as well. Interesting is that the implementation using the C array is even faster than
the implementation in the SciPy library. One reason for that is, that the implementation
in the SciPy library adds artificial variables for every row even when it is not needed.
Because of this, it needs to execute more iterations than the other implementations to
remove the artificial variables from the basic variables, which can be seen in Table 6.8.
However, regarding the time needed per iteration the implementation using a C array in
memory is still much faster than the implementation in the SciPy library, which is itself
actually already really good. Another interesting point is, that in both implementations
the time needed per iteration is decreasing at the beginning, even though that the size
of the table is increasing. The reason for this is, that the preparation steps for the
Simplex algorithm take an important part for these implementations and if we have
just few iterations, which is the case at the beginning, the biggest part of the time per
iteration comes from this. Considering the time needed for the dense and the sparse
implementations using tuplestores, the sparse implementation is faster in every tested
examples. Beside this, for both implementations we see that the time per iteration is
smaller in the problem agg than in the problem grow7 even thought that the problem
agg has much more values. This is because the parameters nz and pr are very low in this
example and regarding our cost formula the time consumed for a iteration is dependent
on these parameters. These examples confirm this. We also see that nz and pr are
always under 30%, so probably in bigger examples it is likely that these parameters are
small and the sparse implementation is faster. To find that out, we will consider two
sorts of examples and investigate only the running times of the dense and the sparse
implementation.
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6.2.2. Transportation Problem

The transportation problem is a problem that finds the minimum cost to transport an
amount of goods from m origins to n destinations. Every origin contains an amount
of a commodity, while every destination has a demand for the same commodity. More
specifically, origin i can deliver ai of the commodity and destination j needs bj of it. We
assume, that the total amount of goods in the origins is equal to the total amount of
goods demanded by the destinations and hence

m∑
i=1

ai =
n∑

j=1

bj.

Every transport from an origin i to a destination j has a cost cij. The goal is to
find the cheapest transport pattern between origins and destinations, which satisfies all
requirements. Regarding linear programs, we have the following objective function

minimize
m∑
i=1

n∑
j=1

cijxij

and for every origin and every destination one restriction. In total we have m + n
restrictions (rows) and m · n variables (columns). Every variable xij represents the
amount of commodity that is transported from origin i to destination j. So, the column
that corresponds to xij has non-zero values only in the row that corresponds to the

constraint about origin ai (
n∑

j=0

xij = ai) and in the constraint about destination bj

(
m∑
i=0

xij = bj). Along with the cost coefficient there are three non-zero values per column.

So the initial sparsity of a transportation problem is computed as follows:

nz =
3 ·m · n

(m + n) ·m · n
=

3

m + n

Since the transportation problem has only equality conditions, it needs an artificial
variable for every constraint row. Artificial variables have only two non-zero values,
namely the constraint row they belong to and the objective function (which is actually
zero), hence the sparsity is still very low after adding them.
We assume that the percentage of non-zero values stays quite low for the transportation
problem during the Simplex algorithm and hence we guess that the sparse version could
be more efficient for this kind of problem, since there are a lot of zero values. We want to
prove that by applying our algorithm on different transportation problems. We set the
number of origins constantly equal to 10 and change the number of destinations during
the experiments. We measure the time needed to execute the algorithm and divide
it through the number of iterations needed. As result we get the time needed for one
iteration of this problem. Like this we can better apply our cost calculations and compare
the different experiments. Figure 6.2 shows the average time in milliseconds taken for one
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iteration for the dense and the sparse implementations regarding the number of values
the problem has, which is the product of the number of rows and columns. Besides
this, the average percentage of nz and pr during the execution is shown for the different
problems. The values of the percentages are shown in the right y-axis.

Figure 6.2.: Time per Iteration in the Transportation Problem
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We see that the sparse implementation is faster than the dense one in every tested size
of the problem, which makes sense, because the parameter nz is at maximum around
35% and nearly always lower than the parameter pr. nz is decreasing as bigger the
table gets, which fits with the initial sparsity we calculated before. pr is decreasing as
well, which makes sense, because it is related to nz. However, it is decreasing slower
than nz. Therefore, regarding the cost calculations the sparse version should be much
faster than the dense version, when the problem table is growing, because nz is very low
for big tables. The experiments confirmed this: The proportion between the consumed
times of the two implementations is increasing as bigger the problem table gets. While
the consumed time of the dense version is increasing linearly regarding the size of the
table, the grade of the time curve of the sparse version is decreasing slowly, because nz

is decreasing.
We want to confirm these results of the consumed times by considering our cost formula.

74



To check if it is representative to only consider the function to initialize the pointers
and to update the columns in the cost formula Figure 6.3 shows the contribution of the
different Simplex operations of the total time for the dense and the sparse problem.
We see that the contribution of the total time of the functions to initialize the pointers

Figure 6.3.: Contribution of the Total Time of the Different Operations in the Trans-
portation Problem
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and to update the normal columns is near to 100% and it increases as bigger the table
is. Therefore, our idea to only consider these operations to represent the total time
is acceptable and it is more accurate as bigger the table is. The biggest contribution
of the other part is the part called other operations, which represents the functions to
store the relation in the tuplestore, to transform the objective function into the relative
cost coefficients, to update the basic variables and to reset the tuplestores. The biggest
part of it comes from the resetting of the tuplestores. We see, that even in such a big
table, this operation has some influence on the total time, but it is not a problem to not
consider it regarding the representative total cost.
At this point, we want to calculate the exact cost for an example, by inserting the
parameters nz and pr in the cost formulas calculated before for both implementations.
We pick the biggest problem tested, because we have seen that the bigger the table is
the more exact the cost calculations should be. Beside the increasing contribution of
the measured functions (initializing pointers and update other columns) also the cost
for a random search operation should be more similar for the dense and the sparse
implementation the bigger the table is. The investigated problem has nz = 4.82% and
pr = 22.96%. Inserted in the cost formulas, we get

(36.8 · 0.2296 + 3.7) ·mn · tsg = 12.1493 ·mn · tsg
for the dense implementation and

= (30.1 · 0.2296 + 20.45) ·mn · 0.0482 · tsg = 1.3188 ·mn · tsg
for the sparse implementation. We can divide these costs through each other to get the
proportion of them.

12.1493 ·mn · tsg
1.3188 ·mn · tsg

= 9.212
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Hence considering the cost formula the dense version should be around 9.212 times slower
than the sparse version. By looking at the real times to solve the problem, the dense
version took 572.63 ms and the sparse version 89.15 ms per iteration. We now can divide
them through each other to get the real proportion of the two implementations.

572.63ms

89.15ms
= 6.423

We see that the proportion of our cost formulas is around this number, hence the cost
calculations we made are representative. The two proportions have a difference, because
our cost formula is only a estimation for the total cost. We mentioned that the cost
formula for the sparse problem is probably a bit optimistic, because the parameter nz is
higher in the part, where we need to process more operations, but we did not consider
that in the cost formula.
By inserting the number of tuples and the time needed for a sequential get in the costs
above, we can even get an aggregated time for an iteration. The problem has 269082
tuples(m · n) and a sequential get takes 0.00018 ms. Inserted in the term above we get

12.1493 · 269082 · 0.00018ms = 588.448ms

for the dense implementation and

1.3188 · 269082 · 0.00018ms = 63.876ms

for the sparse implementation.
We see that the calculated time for the dense implementation is nearly the same as
the real time, while the calculated time for the sparse implementation is a bit to low
regarding the real time. This confirms our assumption, that the cost formula for the
sparse problem is optimistic. Because of this the real proportion between the two versions
is a bit lower than the calculated one, but since it is only an aggregation of the real cost
this is acceptable.

6.2.3. Exponential Problem

The worst case for the Simplex algorithm is if a problem has exponential number of
iterations regarding the amount of variables and constraints. Victor Klee and George
Minty [KM72] proved that by showing a class of linear problems, which requires an
exponential number of iterations to solve an example of this class using the Simplex
method. In this section we will look at such a problem with an exponential amount
of iterations and execute some experiments. The characteristics of the problem type is
shown in the following:

maximize
n∑

j=1

10n−jxj

subject to 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1 for i = 1, ... , n
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To solve such a problem with the Simplex algorithm we need to perform 2n − 1 itera-
tions. We will apply our implementations on such problems with different amounts of
variables. We will execute problems with 1 until 20 variables, which means that in the
last problem we need to perform 220 − 1 iterations. In this problem we have around
50% of non-zero values at the beginning, which is under 71.7%, so if we consider that
nz and pr are the same, we should theoretically pick the sparse version. As done in
the transportation problem, we measure the time needed to execute the algorithm and
divide it through the number of iterations needed. Figure 6.4 shows the same graph
as before in the transportation problem in Figure 6.2, but this time with the numbers
from the exponential problem. The investigated problems are much smaller than in the
transportation problem, because the amount of iterations grows exponentially and hence
the times needed to execute a problem is always at least doubled when an additional
variable is added. Since the problem tables are smaller also the times consumed for one
iteration are smaller than in the transportation problem.

Figure 6.4.: Time per Iteration in the Exponential Problem
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We see that the dense problem is faster than the sparse version, even though that the
parameter nz is clearly under 71.7%. The reason for this is, that the parameter pr is
much smaller than nz. While pr is around 10%, nz is around 35%, hence the advantage
of the dense version regarding the average cost to process one tuple is bigger than the
advantage of the sparse version that it operates on less tuples. However, a case that pr
is so low, while nz is much higher is very rarely and never appeared in another tested
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example. Regarding this, the difference between the consumed time of the dense and
the sparse implementations is very small, they are even almost the same. Considering
this, we assume that the sparse implementation is mostly better than the dense one and
if it is not the dense implementation is just a bit faster.
As done in the transportation problem, we want to confirm the results of the consumed
times by considering our cost formula. Since we have a much smaller table than in
the transportation problem, we want to check if it is representative to only consider the
function to initialize the pointers and to update the columns as the total time in this sort
of problem as well. Figure 6.5 shows the contribution of the different Simplex operations
of the total time for the dense and the sparse problem.

Figure 6.5.: Contribution of the Total Time of the Different Operations in the Exponen-
tial Problem
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We see that the contribution of the total time of the functions to initialize the pointers
and to update the normal columns is smaller in this problem than in the transportation
problem. This is because the problem tables are much smaller here and hence the oper-
ations, which only process one or two rows/columns, and the resetting of the tuplestore
in every iteration have much more influence on the total time. Mainly the resetting
of the tuplestore took a lot of time and has high impact. However, because the time
contribution of the two measured functions (initialize pointers and update columns) is
increasing as bigger the examples are and their time contribution is similar in the two
different implementations, the cost formulas can still be used to find out which imple-
mentation is faster and around how much faster it is. Therefore, our cost formulas are
suitable to find out which implementation is faster, but not to calculate the exact total
time they need to execute the algorithm, which is anyway not needed.
We want to prove this by looking at the cost formula for an individual example again. We
again pick the biggest example, because the time contribution of the two measured func-
tions is the highest. Since the table has less than 3000 tuples, the random read operation
actually takes a bit shorter than in the cost calculations above. We will not consider
this difference because it is quite small regarding the total time. For this example we
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have nz = 33.68% and pr = 7.5%. Inserted in the cost formulas, we get

(36.8 · 0.075 + 3.7) ·mn · tsg = 6.46 ·mn · tsg

for the dense implementation and

= (30.1 · 0.075 + 20.45) ·mn · 0.3368 · tsg = 7.6479 ·mn · tsg

for the sparse implementation. And again we can divide these costs through each other
to get the proportion of them.

6.46 ·mn · tsg
7.6479 ·mn · tsg

= 0.8447

Hence considering the cost the dense version should take only around 84.47% of the
time, which the dense version takes. Considering the real times, the dense version took
1.471 ms per iteration and the sparse version 1.610 ms per iteration. We divide them
through each other to get the real proportion of the two implementations.

1.471ms

1.610ms
= 0.9137

Again the proportion of our cost formula is near to the real proportion of the two
implementations, hence the cost calculations we made are representative in this case as
well. The main reason for the difference between the calculated proportion and the real
one is that the cost formula only calculates an approximated cost and as we saw a big
part of the total time is missing in this example.
By inserting the number of tuples in the costs above and the time needed for a sequential
get as done in the transportation problem, we again can get an aggregated time for an
iteration. The problem has 861 tuples(m · n) and a sequential get takes 0.00018 ms.
Inserted in the term above we get

6.46 · 861 · 0.00018ms = 1.0012ms

for the dense implementation and

7.6479 · 861 · 0.00018ms = 1.185ms

for the sparse implementation.
We see that the calculated time for both implementations is smaller then the real time,
while in the transportation problem the times were much more equal. This makes sense,
regarding our findings from Figure 6.5. There we saw, that the function to initialize the
pointers and to update the normal columns only contribute about 65% - 75% of the total
time. If we add these missing parts to the calculated times, they are again really similar
to the real time. This confirms our assumption, that the cost formulas are appropriated
to find out which version is faster, but not to calculate the exact time in this example.
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7. Conclusion

In the project we have implemented and discussed different approaches to integrate the
Simplex algorithm in relational databases. In this section we want to summarize what
we have found out and give a short conclusion. We implemented the Simplex algorithm
using PLSQL and in the PostgreSQL kernel in the programming language C. Considering
the C implementation, we had to solve the problem, that the intermediate results need to
be materialised during the Simplex algorithm, because we need to read the tuples of each
intermediate relation many times to apply the Simplex algorithm. To do so we have used
two approaches. As a first approach we have stored the relation in a C array in memory
and just updated the values in the array. However, we mainly focused on the second
approach, where we stored the relation in a tuplestore, which is a generalized module for
temporary tuple storage. In the second approach we implemented two different versions.
In the first version every value of the problem table is stored in the tuplestore, while in
the second version only the non-zero values are stored in the tuplestore. These versions
are called dense and sparse version. For both versions we created a cost formula, which
counts the number of basic operations need to be processed per iteration. We observed
that in the dense version in average less operations need to be processed over each tuple of
the relation than in the sparse version. This is because in the dense version the position
of each tuple is exactly known in the relation, while in the sparse version we always have
to deserialize a tuple to find out to which row and column it belongs to. However, in the
sparse version the relation has less tuples, which have to be processed. Hence we could
not directly say which version is the better one. We measured the average needed time for
each basic operation, that we could sum up the different operations and find out which
version is faster. We expected that the operations, which are operating with the disk
are the most expensive one, but surprisingly deserializing and serializing a tuple is more
expensive than get and put a tuple from the disk. Another interesting point was that the
needed time for a random get operations increases logarithmically until around 10 times
slower than a sequential get. After inserting the detected time for the operations, it was
still hard to find out, which implementation is the better one, because other parameters
affect the performance of the implementations, mainly the percentage of non-zero values
in total and in the pivot rows. To compare the two implementations we have run different
examples and measured the needed times. We also compared the times with the other
2 implementations and an additional implementation from the SciPy library. Before
this, we have checked the correctness of the implementations and we could say that
each implementation delivered correct results and could handle the different cases of the
Simplex algorithm. Regarding the efficiency of the different implementations, the PLSQL
implementation was much slower than the other implementations and it already took
quite long for small examples and increased extremely when the examples were getting
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bigger. Therefore we could say that the PLSQL implementation is not really useful and
the worst of them. Regarding the two C implementations, which use a tuplestore to
store the relation, the sparse version was mostly the faster one and if the dense version
was faster the difference is just very small. Considering this, the sparse version should be
preferred and probably be picked all the time, because the parameters, which are needed
to calculate the cost can not be predicted before the implementation is executed and
like this we are on the safe side, that we will not pick the much slower implementation.
However, the implementation from the SciPy library and the C implementation using a
C array in memory were much faster for the bigger examples than the implementations
which are using a tuplestore, because they never need to access the disk and serialize
and deserialize a tuple. Since the tuplestores are generally used to materialise a relation
in PostgreSQL we expected the difference of the efficiency to be smaller and that the
tuplestores work more efficient. However, the main problem is, that the tuplestore
can not be updated, and we have to create a new tuplestore in every iteration. The
implementation using the C array was even few times faster than the implementation
from the SciPy, which is actually really good. Regarding this the best implementation
for the Simplex algorithm is to use a C array in memory. This implementation can solve
every tested problem in a very short time.
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