Department of Informatics, University of Ziirich

Facharbeit

Linear Optimization in Relational
Databases

Thomas Preu
Matrikelnummer: 06-738-694

Email: preu@math.uzh.ch

June 15, 2017

supervised by Prof. Dr. M. Boehlen and G. Garmpis

(1™ University of D
\eg/ Zurich™ E

Department of Informatics L

Acknowledgements

I thank the Institut fiir Mathematik at the University Ziirich for using their computing in-
frastructure. In particular I thank the IT administration, Carsten Rose, Rafael Ostertag and
Benjamin Baer, for their continued support.

Abstract/Zusammenfassung

This Facharbeit is concerned with altering the syntax of PostgreSQL 9.4.10 to issue commands
to solve linear programming instances stored and encoded as relations and implementing some
variants of the simplex algorithm to solve such instances. It provides that for small scale
problems. It also surveys several aspects of the simplex algorithm and implements some of
these ideas and provides an auxiliary program to import linear programming instances in MPS
format.

Diese Facharbeit beschiftigt sich mit der Abdnderung der Syntax von PostgreSQL 9.4.10,
um Befehle zum Losen intern als Relationen gespeicherter und codierte linearer Programme
absetzen zu konnen. Dazu implementieren wir mehrere Varianten des Simplexalgorithmuses,
welche Probleminstanzen kleiner Grosse 16sen konnen. Wir tragen Hintergrundmaterial zu
einigen Aspekten des Simplexalgorithmuses aus der Lehrbuch- und Forschungsliteratur zusam-
men und stellen ein Hilfsprogramm bereit, das den Import von linearen Programmen im MPS-
Format erlaubt.

Contents

1. Background

2. Findings Of The Project

2.1.
2.2.
2.3.

24.

2.5.
2.6.
2.7.

An Example Of A Linear Program
Modifying PostgreSQL
Background On Linear Programming
2.3.1. The Iterative Step Of The Simplex Method
2.3.2. The Initialization Of The Simplex Method
2.3.3. The Tableau Simplex Method
2.3.4. The Revised Simplex Method
2.3.5. Remarks On Degeneracy
Implementation Of A Simplex Algorithm
24.1. Implemented Simplex Methods
24.2. AccessingData L
2.4.3. Enhancing Sparse Matrix Inverses
2.4.4. Numerical issues L L Lo
Auxiliary Programs L L oL
Testing L
Miscellaneous Useful Remarks

3. Conclusion And Outlook

A. Appendices

Al
A2
A3.
Ad4.
AS.

List Of Modified Files In PostgreSQL
Commands Within A Build Directory
Signatures Of Functions In nodeAlgoScan.c
Using GLPK And The Auxiliary Program
Test Instances And Their Dimensions

N O (3]

11
13
14
15
16
18
19
21
24
30
30
33
36

1. Background

This Facharbeit is part of a project that wants to implement methods to solve linear programs
in an extension of the back end of a PostgreSQL database.

The application lies within feeding nutrients optimally to farm animals. The Swiss Feed
Database holds related data and is provided by domain experts. It is assumed that all require-
ments can be modeled by a (mixed integer) linear program, the modeling itself is not part of
the project.

Modern linear programming software such as the proprietary CPLEX, or the open source
glpk can solve large linear programs with the number of conditions and variables in the ten
thousands in a matter of seconds, however the CPU time required for solution is comparable
to the time spent on reading and interface execution (cf. [vP16, fig. 8]). This is a sign that
modern solvers are quite adapted to problems from applications but also indicates a different
route to further improve running time by implementing a solver directly in the back end of a
DBMS and thus reducing the time of data transfer. Another justificationsis that the process
of “export—solve—reimport” is error prone, not user friendly, not efficient and potentially
additional postprocessing to format solutions is needed.

This Facharbeit as a first step is concerned with implementing a solver for (non-integer)
linear programs integrated in PostgreSQL. The two main goals are to modify the syntax and
parsing in such a way that linear programs can be effectively stored and entered in PostgreSQL
and to implement a simplex solver which can process this data.

2. Findings Of The Project

2.1. An Example Of A Linear Program

A linear program consists of three things:
1. A list of real variables, that is usually implicitly given and denoted = = (z;)?;,
2. alist of linear conditions (equations and/or inequalities) in these variable,
3. alinear objective function that is either to be minimized or maximized.

We call an assignment of real numbers to the variables simply a point or vector in our search
space. An answer to the problem stated as linear program is a point, such that all conditions are
satisfied, and no other point satisfying all conditions has “better” (depending on the direction
of optimization) value regarding the objective function. That is, if such a point exists, in which
case we call such a point a solution or optimal solution. If no such point exists an answer is
simply that statement of non-existence which can be further detailed as either infeasible or
unbounded — see below.

In general all linear programs can be reduced to standard form (see [LY 16, ch. 2.1] for
details), which satisfies additional requirements:

1. for each variable x; there is exactly a single inequality x; > 0, which is summarized in
a vector inequality that has to be read componentwise:

x>0,

2. all other constraints are linear equations which can be summarized in matrix vector form
with m rows, where the A is called the system matrix and b the right hand side, and such
thatn > mand b > 0:

Axr = b,

3. the objective function is to be minimized and given as a scalar product, where the com-
ponents of ¢ are called cost coefficients':

min cx.

"'We assume ¢ to be a row vector, thus no transposition is needed in contrast to many text books where min ¢’ z

is used.

Each variable corresponds to a column in the system matrix A and each equality constraint
is a row of A. We will identify columns and rows with variables and equality constraints in
the following. The number of rows m and columns n are called the dimensions (in plural)
of the problem, the dimension (in singular) means the number of columns. Note: in database
terminology one also speaks of rows and columns of a table or relation; the reader is warned
not to confuse these notions.

We give an example of a linear program not in standard form:

max —1-xz1— 2-x9,
S.t. 1.2+ 2-29 < 1000,
2- T+ 0.5- To = 1250,
T > 0

One can depict the conditions as halfspaces or hyperplanes and their intersection is the set
of points satisfying all conditions, which is called the feasible region (marked by a fat segment
in the image). The direction of optimization can be depicted as the (scaled) vector c:

T2 5

200 +
1000
800 +
600 +
400 1

200 +

200 /|0 200 400 600 800 1000 1200 %1
¥ 1200

Figure 2.1.: Graphic representation of a linear program.

In the example there is a solution and it is the point Max(625,0). Obviously this graphic
depiction has its limits, in particular if one thinks of a problem in dimension more than 3. Note
that the graphic intuition from dimension 2 might be misleading as it cannot capture the full
complexity of the problem, such as cycling (cf.2.3).

By changing the sign of the objective function one can get from maximization to minimiza-
tion. By introducing additional variables and modifying the conditions one finally arrives at

an equivalent linear program in standard form:

min 1-z1+ 229,

s.t. 1- xri1+ 2- To+ 1- T3 = 1000,
2.1+ 0.5 -2, = 1250,
x> 0

Here equivalence means that a solution (si, s9, s3) of the later program yields a solution
(s1,$2) of the original problem, and vice versa for any solution (¢,) of the original pro-
gram there is a real number t3 such that (¢, t5, t3) is a solution to the modified program.

If the condition n > m for standard form is violated one can use GaufBlian elimination to
determine superfluous rows and leave them out until the n > m is met. The condition b > 0
can also easily be achieved by sign changes as in the objective function.

A linear program may fail to have a solution in one of two ways. Either there might not
be any point satisfying all conditions at once (e.g., x3 = —1,x3 > 0 cannot be satisfied
simultaneously for a trivial example). In this case we say that the linear program is not feasible.
The other way is that the feasible region is unbounded in the direction of optimization (e.g.,
min —x1, s.t. x; > 0 without further conditions). In this situation the linear program is called
unbounded. A solution to a linear program may not be unique, we will however not be bother
with the question of uniqueness.

The simplex algorithm by G. Dantzig (first presented in [Dan48]) is a method to answer a
linear program, i.e., to either find a solution or to show that there is non. See 2.3 for more
details.

In practical implementations there are two ways to store the matrices encoding a linear
program: dense matrices store all entries including zeros in arrays, sparse matrices can be
implemented as linked lists omitting zeros but storing additional row and column information.

2.2. Modifying PostgreSQL

We use PostgreSQL 9.4.10 as starting point for our modifications. More specifically we
start from the following revision of the master branch of the git-project for PostgreSQL (see
gitlab.com/ggarmpis/LPinPostgres—ThomasPreu):

x commit e€9802122d42aee661113423d290d41b005a9%b1b2

| Author: Tom Lane <tgl@sss.pgh.pa.us>

| Date: Tue Nov 15 16:17:19 2016 -0500
Beginning from a home directory PGLHome the unpacked software resides in

PGLHome/postgresqgl. As a start to modify the syntax of PostgreSQL we apply a patch
provided by the advisor based on a modification to include the possibility to sample from a

given table. The details go back to [Con] and are explained there.
The program is maintained and started from a UNIX bash. Some commands are listed in

A2

A list of essentially modified files is included in A.1 — since the file names of the changed
or created files are unique we abbreviate by omitting the full path, which can be retrieved
from the appendix. All files from the original version that got modified have comments of the

form /«Simplexchangex/ to mark the beginning of code that got inserted or changed.
The only two exceptions are files that do not allow comments without issues in compiling:
Makefile has an easy to find nodeAlgoscan.c and errcodes.txt has a new error code
22P07.

PostgreSQL processes queries in several stages such as parsing, rewriting, optimization and
execution and others which are however not relevant to us (cf. [Con] for general details).
In the following we first explain the modification to syntax and parsing, then we discuss the
rewrite and optimization stage and finally the executor.

In this paragraph we give details on how the syntax is extended. We introduced a new
type of node “algo_expr” that in principle can be used as a frame work to implement new
algorithms in PostgreSQL. It is part of a select statement and its syntax is:

SELECT * FROM prob_inst ALGO {arguments};

The problem has to be specified as a table “prob_inst” according to the encoding format of
the algorithm that should be applied. The arguments specify the algorithm to be executed
as well as additional parameters. In order to implement new algorithms one has to modify
the syntax of PostgreSQL accordingly as well as provide the code for the algorithm in the
file nodeAlgoscan. c. Currently only the simplex algorithm is supported, indicated by the
key word “SIMPLEX”. After the next key word “DIM” one must specify the number of rows
and columns of the linear program whose system matrix, right hand side and cost function is
encoded in the table “asimp_inst”.

SELECT *x FROM asimp_inst ALGO SIMPLEX DIM (dimr,dimc);

The grammar is described in gram.y. We will call such a statement as above a simplex
statement.

In the following two paragraphs we explain the data types and formats of the input and
output of a simplex statement. The table “asimp_inst” must have three columns, the first two
have to be of type “int” the last of type “float8”. An entry (¢, j,v) encodes an entry of the
system matrix of the linear program, if 7, j > 0: row ¢ and column 5 has value v. Unspecified
entries are assumed to be 0. If ¢ = 0 a cost coefficient v for the j-th variable is specified. If
j = 0 the right hand side v for row : is specified. This is a presentation of a linear program in
standard form which we will explain in section 2.3.

The output is a newly created table with two columns, the first of type “int” the last of

type “float8”. The entry (0, s) indicates the status of the computation: s = —1 indicates that
the system is not feasible, s = —2 indicates an instance unbounded in the optimal direction
of the cost function and s = —3 stands for having reached an optimal solution. In the later

case an entry (j,v) encodes that the j-th variable in the optimal solution has value v. In the
non-feasible case the other entries (j,v) have all v = 0 and in the unbounded case the v
corresponds to some point on the boundary of the feasible region.

We give some remarks about rewriting and optimization in the next three paragraphs. We
store data like dimensions and transitory data needed for the execution of the simplex al-
gorithm in a field “algo_info”, which is appended in an rte (relation target entry) of the
different nodes involved in the stages from parsing to execution in PostgreSQL. Details of

this data structure can be found in plannodes.h, primnodes.h and relation.h. In
execnodes.h an “AlgoScanState” is introduced that holds this data for execution stage.
There are also legacy entries there from the sample scan, that should be removed at some
point.

In PostgreSQL target lists specify the data types of return columns of a node. Since we
have a different input format compared to the output and both is known up front we need to
encode this information at some point. Since target lists are used to store this data we choose
to set this up in parse_target.c. In discussion with the advisor we were convinced that
the proper place to do this should be parse_clause. c, since otherwise we might get into
trouble when a “ALGO SIMPLEX” modifier is called in a subquery as the return target list
of the subquery might not match the entry target list expected in the super query. As a first
working implementation we kept the changes in parse_target.c.

Most other files that are changed for rewriting and optimization are of minor interest and we
simply adapted the changes for a sample scan with the necessary changes. For the estimation
of the execution time in costsize.c needed for proper optimization we copied the code
from sample scan. Thus we only estimate the time for reading and putting out but not for
executing the simplex algorithm itself. This is left for future work.

We finally come to the execution stage. For each execution node it is expected by Post-
greSQL that there are procedures Execlnit, Exec (or ExecMain) and ExecEnd. In our case
ExeclnitAlgoScan assigns the data format of input and output table and also the location in
physical memory. In general ExecMain is iterated and processes tuple by tuple. ExecAlgo-
Scan in our case reads in all data in the first pass and applies the simplex method. At the
end of the first pass it puts out the first row of the output table. Then in iterations it puts out
the remaining rows one by one. Finally ExecEndAlgoScan frees memory, e.g., the transitory
memory needed to hand over the results from the execution node to the PostgreSQL system.
We follow the standard scheme except that we read all the input tuple at once in ExecAlgoScan
and only do the output iteratively. This is due to the fact that the simplex algorithm potentially
needs all data at once.

We also have an alternative implementation that demonstrates the possibility of leaving the
original data on disk and not fetching everything into working memory at the beginning. We
do not exploit the algorithmic potential for the simplex method however and only demon-
strate a proof of concept. In this implementation we used the functions “heap_markpos” and
“heap_restrpos” for heap scans to mark positions on disk memory and later come back to it.
In the newest versions of PostgreSQL these functions are no longer provided for sequential
scans but still seem to be there for index scans. For this to work it is required that the data is
stored ordered first with respect to increasing columns and within that with respect to increas-
ing rows. The code is located in nodeAlgoscanBackupAOnDisk.c. By copying it to
nodeAlgoscan.c and compiling one can activate this implementation.

We also investigated the possibility to use hash maps that are employed within PostgreSQL
for index scans but it seemed to much work to access the internal hash tables directly. Thus
we relied on the functions accessing the heap in sequential scans.

10

2.3. Background On Linear Programming

For linear programs there are several different algorithmic methods to solve them. The most
popular are the simplex method (cf. [LY16, ch. 3]) and interior point methods such as the
ellipsoid method (cf. [LY16, ch. 5]). We did not consider other approaches, such as the very
first but outdated Fourier-Motzkin method.

The ellipsoid algorithm has the advantage that it provably runs in polynomial time with
respect to the input size of the problem. The simplex method is not polynomial time: for none
of the proposed variants polynomial time could be proven and for some of the most common
variants there are problem instances known which require exponential time. However for
practical instances arising from applications usually only a linear number of iterations of the
basic simplex step, say about 3m, is needed (cf. [LY16, ch. 5.2, p. 118]). There are also
some theoretical results pointing in the direction of general well-behavedness of the simplex
method, despite some extreme exponential instances ([CSRLO1, ch. 29, p. 897], [Sch99, ch.
11.5, p. 143]).

In competitions between interior point algorithms and simplex methods the later usually
outperforms the former on instances coming from real world applications. Therefore we will
also implement the simplex method.

In the remaining of this section we will first introduce the simplex method, then discuss
some variants and finally make additional remarks.

2.3.1. The lterative Step Of The Simplex Method

The basic idea of the simplex method is to iterate a simplex step starting from a feasible solu-
tion until an optimal solution is found, or a verification that there is no optimal solution. For
expository reasons we explain the simplex step first and afterwards the additional initialization
around this iteration. Here is a pseudo-code description of the main ideas, the details can be
found in [LY16, ch. 3].

Algorithm 1 Simplex-Step
Ensure: base is a list of length m with integer values j such that 1 < j < n and such that the
unique feasibility condition is satisfied
Require: A is an m x n-matrix, b is an m-vector and c is a n-vector
1: procedure SIMPLEX-STEP(m,n, A, b, ¢, base)

2: Compute a reduced cost vector ¢ from c and A

3: if ¢ > 0 then

4: return IsOptimal=true

5: Determine column j /7 to enter the base from ¢ (avoid cycling: Bland’s rule)
6: Determine row iOut such that base(iOut) leaves the base from A, b and jIn
7: if (jIn,iOut) could not be found then

8: return IsBounded=false

9: Set base[iOut| = jIn.

10: return [sOptimal=false, [sBounded=true

11

One assumes at the beginning of each step that a feasible point is known. We use the
structure of a linear program in standard form. The feasible region F' is the intersection of
the positive orthant’> given by x > 0 and an affine-linear® subspace of R", which is a convex
affine polytope. One can show (cf. [LY16, ch. 3]) that there always is a (0-dimensional)
vertex of F, provided F' # (). Furthermore the relative boundary of I is at the boundary of the
orthant where some variables have to vanish and one can show that at least n — m variables
of a vertex are vanishing. In order to describe a vertex it thus suffices to specify m columns
that represent the (potentially) non-vanishing variables; these are called basic variables. This
(ordered) assignment of the m rows to m distinct of the n columns is called a base”.

Actually a base specifies a feasible point uniquely provided certain unique feasibility con-
ditions hold, which are specified now. A base singles out a quadratic m X m-submatrix 5B of
A. Any feasible point needs to satisfy Az = b and if we set the non-basic variables to 0 then a
solution of Bz = b gives (potentially) non-vanishing coordinates of a solution. Z is uniquely
determined, provided B is invertible, and the associated x is feasible provided z > 0. In this
sense does a base specify a feasible point, more precisely a vertex of F', provided the two
stated conditions hold.

We will represent these feasible vertices by the base and assume that the unique feasibility
conditions hold. The simplex step then produces from a given feasible vertex another one, such
that the cost function is at least not increased. In one step the base changes by substituting
a leaving column base(iOut) by a new entering one jIn. The criteria to determine j/n and
base(iOut) ensure that the unique feasibility conditions are preserved. Geometrically going
from one base to another means going from one vertex of F' to another that are connected by
an edge, which is described by base, base(iOut), and jIn.

We determine jIn,base(iOut) such that the cost is non-increasing — actually we aim at
dropping the cost but this cannot be ensured in every step (cf. 2.3.5 for details). This potential
drop in cost is determined by so called reduced cost coefficients ¢. Each step is governed by
¢, 7In, base(iOut) and these data can be computed from A, b, ¢ and base.

There are three different behaviors when taking several iterations together. Either the actual
cost drops eventually than we go on. Or at some point the cost would drop unboundedly in
which case there are feasible points but no optimal ones — geometrically this means that from
a feasible vertex we follow a boundary edge that does not stop at a new vertex, but is actually
an unbounded ray. The third possibility is that none of the edges at the current vertex have the
potential to decrease costs, in this case we have reached a solution.

If we can assure, that each base occurs at most once in any iteration of the simplex step,
1.e., we guarantee that we do not cycle through the same bases indefinitely without making
progress, this will assure termination of the algorithm as there are only finitely many distinct
bases. See below for further remarks on these anti cycling methods.

2 An orthant is the generalization of quadrants in R? and octants in R? to arbitrary dimensions.

3For the remainder “linear” will always mean “affine-linear”.

4The connection to the notion of basis from linear algebra would go beyond the scope of this work and will not
be explored.

12

2.3.2. The Initialization Of The Simplex Method

Now we need to talk about the initialization, i.e., how one gets a feasible vertex resp. a base
in the first place. For this one augments the linear program to a new auxiliary program which
has an easy feasible point. One introduces m new variables and appends an m x m-identy
matrix / as a block to the system matrix A’ = (A, I). The right hand side b stays the same.
We have n + m variables in the auxiliary linear program and declaring the first n non-basic
and the last m (in order) to be basic we get a base. It satisfies the unique feasibility conditions:
the identity matrix [is clearly invertible, and the solution of /Z = b is non-negative, since in
standard form b > 0.

Now we have a feasible point but only for the auxiliary conditions. For this we introduce
an auxiliary cost vector ¢ = (0, 1) with n zeros and m ones. The idea is that the auxiliary
variables are expensive, while the original ones are for free. Thus iterating the simplex step on
this auxiliary program will try to diminish the auxiliary variables in favor of the original ones.

Algorithm 2 Simplex
Require: A is an m x n-matrix, b is an m-vector and c is a n-vector
1: procedure SIMPLEX(m,n, A, b, c)
2: > Initialize an auxiliary program with known feasible point (0, b):

3: A" = (A, I) with [an m X m-identity matrix

4: ¢ = (0,1) with n zeros and m ones

5: for:=1tomdo

6: base(i) =n+i

7: > First phase to find a feasible point via an auxiliary program:
8: IsOptimal=false, IsBounded=true

9: while [sOptimal=false, IsBounded=true do

10: SIMPLEX-STEP(m,n +m, A’, b, ¢, base)

11: for i = 1tomdo

12: if base(i) > n then

13: return Infeasible

14: > Second phase to find an optimal point via the original program:

15: IsOptimal=false, IsBounded=true
16: while I[sOptimal=false, IsBounded=true do

17: SIMPLEX-STEP(m, n, A, b, ¢, base)

18: if IsBounded==false then

19: return Unbounded

20: Set B to be the quadratic submatrix A specified by base

21: return Optimal Solution 7 = B~'b padded with 0 for non-basic variables

One can show that this indeed works. Either one finds a base where all basic columns are
original variables, in which case this base encodes a feasible vertex of the original program that
can be used as a starting vertex. Otherwise, 1.e., if we find an optimal solution to the auxiliary
program that does not have a base exclusively consisting of original variables then one can
show that the original program was actually infeasible. Since the auxiliary cost function is

13

bounded from below by 0 the unbounded case cannot occur for the auxiliary program. Pseudo-
code for this wrapper algorithm around the simplex step is given above.

In summary the simplex method proceeds as follows. For an auxiliary program we have an
easy feasible vertex, encoded in the form of a base satisfying the unique feasibility conditions.
Using the simplex step iteratively in a first phase we can either produce from this a feasible
vertex of the original program, or show that the original program is actually unfeasible. If
we have a feasible point, we can apply the simplex step iteratively in a second phase. The
outcomes are either that the program is unbounded or that it has a solution in which case an
optimal solution is easily read off from the last base.

2.3.3. The Tableau Simplex Method

Actually the two variants of the the simplex algorithm which we implemented, the tableau
simplex and the revised simplex, work a bit different in detail. We will explain the ideas of the
differences to the basic version that was described above.

We introduce some notation. For simplicity we assume that we are in one of the phases of
the simplex method and do not introduce terminology to distinguish between the two phases.
We use £ to index the iterations of the simplex step with the start at & = 0. We reorder
the columns of A such that the basic variables occupy exactly the last m columns, which
is actually the case at the beginning of the first phase by default. We can thus subdivide
Ay, = (Dg, By), where D, is for non-basic columns and By, for the basic columns and Ay
denotes the reordering of A for the base to be in the end after & steps. In particular in the first
phase Ay = (Do, By) = (A, I), where I is the m x m-identity matrix, A is the original system
matrix and only the trivial reordering was applied. Similarly we reorder and subdivide the
cost vector ¢, = (cP, cP). The information is stored in a tableau T}, = (77, TP, TP) where
the first part is a column vector corresponding to the right hand side b and the other two parts
correspond to non-basic resp. basic variables. We have Ty = (b, Dy, By).

Algorithm 3 Tableau-Step

1: procedure TABLEAU-STEP(m,n, Ay, b, cx, base, Ty,)
B

2. Compute a reduced cost vector ¢ = (¢, c2) = (¢ — c2TP,0)
3: if ¢, > 0 then

4: return IsOptimal=true

5: Choose a column j/n with (&), <0

6: Determine iOut s.t. (T})iout,jrn > 0 with minimal (7%)iout.0/(Tk)iout,jin
7: if (jIn,iOut) could not be found then

8: return IsBounded=false

9: Set baseliOut| = jIn,
10: Compute the new tableau T},
11: Reorder Ayy1 = (Dyt1, Bit1), crpr = (¢iyy, cip)
12: return IsOptimal=false, [sBounded=true

The tableau step is just a detailed version of how to actually compute ¢, j/n and :Out. See
the pseudo-code above. We give a naive complexity analysis assuming that all data is given as

14

dense matrices and vectors, which is actually the case for the tableau method. We indicate by
t; an estimate for the number of floating point operations in line ¢ as given in the pseudo-code.
We omit negligible costs and use m < n for standard form linear programs:

t =ty +t5 +ti9p = O(mn) + O(mn) + O(m(m +n)) = O(mn)

For the assignments to compute the new tableau in line 10 see (3.6) of [LY16, ch. 3.1].
The idea is to replace the column j/n by a standard basis vector’ e;o,,. One achieves this by
applying GauBian elimination to the whole tableau. Then one permutes the columns again to
have Ty+1 = (B;} b, Byl Dita, 1).

2.3.4. The Revised Simplex Method

The Tableau Simplex uses dense representations. However many practical instances are rather
sparse. For example the 51 medium sized problems of the collection of linear programs from
NetLib have as median only 8.43 entries per row (see 2.6 below) compared to a number of
columns of at least 500. The revised simplex method is more suited for implementations
with sparse matrices. The tableau method looses sparsity over the course of execution in
the (m x n)system matrix A while revised simplex leaves it unaltered and sparsity can only
degrade in the smaller (m x m)-matrix B~

Algorithm 4 Revised-Step
procedure REVISED-STEP(m, n, Ay, b, cx, base, By ')
Compute a reduced cost vector &, = (P, ¢P) = (cP — (¢2 B, ') Dy, 0)
if ¢;, > 0 then
return IsOptimal=true

Form the two tableau columns (7},)o = By *band (T}) 1, = B, '((Di))
Determine iOut s.t. (T})iout,jrn > 0 with minimal (7%)iout.0/(Tk)iout,jin
if (jIn,iOut) could not be found then
return IsBounded=false
10: Set baseliOut] = jIn, reorder A1 = (Dyi1, Bs1), Ch1r = (Chars Chyr)
11: Compute Bk_+11
12: return [sOptimal=false, [sBounded=true

I:
2
3
4
5: Choose a column jIn with (&)jm < 0
6
7
8
9

Essentially we do the same operations as in the tableau simplex except that we delay the
evaluation of the actual tableau until we determine :Out. But since we only need two columns
of the tableau for this, this reduces costs for computing the tableau by a factor of n from
O(mn) to O(m).

But we need to compute the inverse of a matrix B,_; which costs O(m?®) using standard
GauBian elimination. However we only need to replace a single column in By, to get to By ;.
More conceptually we need to update the inverse of a rank-one-modification by a column

3 A standard basis vector e; has zeros everywhere except at the i-th entry which is one.

15

vector u and a row vector v and this can be done efficiently using a special case of the Sher-
man—Morrison formula, which itself can be computed by 5 matrix-vector multiplications and
1 matrix-matrix subtraction (cf. slide 109 of [Hala] or [Wik17c]):

Ay At

—1_ g1 A uwvA
(A+uv)" =A ey

We use this updating method in our implementation and the complexity analysis for the
dense case compliant with our implementation gives O(m?).
When computing the reduced costs we could simply use a matrix-vector multiplication with
a part of the tableau before. Now we need to do actually two matrix-vector multiplications. So
in the end the revised simplex method for dense representations will have the same complexity
per step as the tableau simplex:
t = O(mn).

The advantage is that we can use sparse representations. Denote by 7 the number of non-
zero elements in the system matrix A. The complexity for sparse matrix-vector multiplication
is bounded by 27. Updating an inverse of a sparse matrix by a rank-one-modification is more
complicated to estimate. The updated inverse usually has non-zeros in the same place as
the original one except for some newly added non-zeros called fill-ins. So updating a sparse
inverse should require operations proportional to the number of non-zeros plus fill-ins. In any
case updating requires at most O(m?) steps. The complexitiy of the sparse revised simplex is
per step at most (cf. slide 109 of [Hala]):

t=0(m*+71).

See 2.4 below for further discussion on sparse matrices.

2.3.5. Remarks On Degeneracy

The simplex method proceeds by several steps going from a vertex of the feasible domain to
another along edges that promise potential improvement of the objective function. There are
several phenomena of degeneracy that may occur in this process and we give some comments
about these here.

First of all the feasible region may not posses any vertices at all, despite not being empty.
A simple example can be constructed by any non-empty polytop F' C R" and taking F’ =
F x R¥ ¢ R" x R¥. One can show that up to a linear transformation all examples of this
phenomena are of this type (cf. [Gril3, 4.3.17 Korollar]) — see below for a graphic example.
In the context of standard form programs this cannot arise, since the condition z > 0 ensures
that no linear subspaces are contained in an associated F'. In this sense bringing a linear
program in standard form eliminates degeneracy. On the other hand it might also introduce
numerical instability (cf. [Gril3, 4.5]).

Another type of degeneracy arises when the rows of a standard form problem are linearly
dependent. In this case no square submatrix of the system matrix will be invertible and the
unique feasibility condition is not satisfied by any candidate for a base when entering the

16

Figure 2.2.: A convex set without vertices.

second phase. Linear dependence can be efficiently detected using Gauflian elimination be-
forehand. Depending on the right hand side the feasible region is either empty or there are
superfluous equality conditions. In the first case no optimal solution exists and we are done,
in the second case the superfluous conditions can be detected by GauBian elimination and
discarded. We assume that this kind of degeneracy does not occur in the input to our imple-
mentation.

Then a vertex may be overdetermined. Geometrically this means that more than n of the (in-
)equality conditions are satisfied with equality. For example at the apex in a square pyramid in
3-space 4 faces are intersecting indicating such a degeneracy. For standard form programs this
is equivalent to at least one of the basic variables being 0. In such a situation the same vertex
is determined by several different bases and for any two such bases exchanging base columns
of one bases one by one by new columns of the second will lead to a sequence of bases all
determining the same vertex. One can think of two bases differing only in a single column as
two “virtually different” vertices that are connected by a “virtual edge” of length 0.

Although the length of these virtual edges is 0 algorithmically one associates a direction to
them and if it is positively aligned with the direction of optimization taking this virtual edge
promises potential progress but since we only go length 0 until we hit the next (actually the
same) vertex in this direction the value of the objective function is unaltered. Even worse
it may occur that after taking several of these virtual edges one ends up at the starting base
and one has come full circle. This phenomenon is called cycling and it can occur even if one
always takes the virtual edge that promises best alignment with the direction of optimality
according to the reduced cost coefficients. See [Moh, slide 4 ff.] for an explicit example in
standard form with (m,n) = (3,7).

Thus one needs “anti-cycling rules” that will assure that each base is visited at most once.
There are some numerical methods such as perturbing the system by a small essentially ran-
dom error once a no-progress step was detected entering potential cycling and thus (hopefully)
eliminate the degeneracy — in the example with the square pyramid if one tilts one of the faces
slightly the apex will resolve to form a small ridge between two distinct perturbed vertices.
One can detect when one has left the original vertex completely and return to the unper-
turbed system afterwards. This is possible since after each step the status of the algorithm

17

is essentially reconstructable from the discrete information of the list base and no numerical
information is needed.

There are also discrete methods such as Bland’s rule, which we implemented and sketch
in pseudo-code below. It relies on ordering the variables once and for all at the beginning —
usually such an order is given implicitly from the start via the the column indices. This rule
provably avoids cycling.

Algorithm 5 Bland’s rule for revised simplex
1: Choose a column j/n with (¢x);r, < 0 s.t. additionally j/n is minimal
2: Form the two tableau columns (7})o = By 'b and (T});1, = By, ' ((Dy.) j1n)
3: Determine i:Out s.t. (Tx)iout,jin > 0 with minimal (7%);out,0/ (1%)iout,j1n and in case of
ties take that iOQut s.t. additionally base(iOut) is minimal

It is common practice that one takes jIn to be such that (&);7, < 0 is most negative (see
[LY16, ch. 3.4 and ex. 3.18]). One could combine this usual practice with Bland’s rule in the
following way: one uses the most negative reduced cost coefficient to determine j/n unless
the objective value has not made progress in the last step in which case we use Bland’s rule.
We however only implemented Bland’s rule. See [LY16, ex. 3.37] or [Mo&h, slide 10 ff.] for
further details and remarks on anti-cycling.

Finally another case of degeneration would be if the unique feasibility conditions were vi-
olated, i.e., either the base submatrix B is not invertible or the solution B~'b has negative
components. The auxiliary program with the initial base clearly satisfies the invertibility con-
dition. So we only need to show that this property is inductively preserved. But this is exactly
ensured by the choice of i{Out such that (7%);out jrn > 0 (cf. [LY16, ch. 3.1, p. 35]). On the
other hand, should it be impossible to find such an i{Out, unboundedness follows. Thus the
first part of the conditions is satisfied between iterations.

At the beginning we start with a non-negative solution b padded by some 0 for the auxiliary
program, since b is required to be non-negative by the conditions on standard form. The
conditions of minimality of (7%)iout.0/(Tk)iout.jin in choosing iOut is exactly such that the
first basic variable that is to become negative following an improving edge is chosen to leave
the base and thereby bounded from below by 0, thus non-negativity of all basic and non-basic
variables is conserved between steps (cf. [LY 16, ch. 3.2]).

We have discussed several degenerate situations. Other issues in the same spirit may arise
from numerical inaccuracies. We defer discussion of these to subsection 2.4.4.

2.4. Implementation Of A Simplex Algorithm

In this section we describe several aspects of the implementation of the simplex method in the
file nodeAlgoscan. c. We first outline the various data structures, procedures and functions
that are implemented there. Some of the functions are not used for all of the implemented
variants — see 2.4.1.

First of all matElem is a data type that stores a real and an integer value together with a
pointer to a struct of its own type and is used to implement a linked list storing a column of the

18

system matrix A and similar data in sparse format. The real variable holds the matrix entry,
the integer variable holds the row index of the entry. The column of an entry is assumed to be
implicitly specified elsewhere.

struct matElem
{
int row ;
float8 entry ;
struct matElem *xcnext;
}i
The functions ExecInitAlgoScan, AlgoNext, AlgoRecheck, ExecAlgoScan
and ExecEndAlgoScan are standard for any scanning execution node and they govern
reading and outputting a relation. ExecAlgoScan does not follow the usual setup. Usu-
ally the “ExecMain” is iterated and reads a single tuple and then generates an output tuple. In
our implementation we read all tuples describing the linear program in the first call and only
output one tuple after another in iterated calls. ExecAlgoScan provides the entry point to
the simplex algorithm.
simplexinitTab and simplexmainTab are implementations of the algorithms 2 and
1 in the tableau variant. It uses dense matrices which are stored as an array with a single index.
To simplify access and emulate an array with two indices we use the helper function mat ind.
simplexinitRevSparse and simplexmainRevSparse provide an implementa-
tion of the same pseudo-code but in the revised variant and using a sparse representation using
the data type matElem.

We tried to implement some improvments on inverting matrices. For this we implemented
a Hopcroft-Karp bipartite matching algorithm in the functions shortestBFS,

hopcroftKarpDFS and hopcroftKarp and an algorithm to find strongly con-
nected components in a directed graph by Tarjan in sccRecursive and sccTarjan.
Furthermore we coded functions that perform an LU-decomposition of a block-triangular
matrix in upluSingBlock and uplu, as well as some functions uFromRightSolve,
uFromLeftSolve, 1IFromLeftSolve and luFromLeftSolveBlock solving linear

systems using the resulting LU-decomposition.
For the signatures of these functions see A.3.

2.4.1. Implemented Simplex Methods

We have four different implementations of the simplex method. In order to switch between
these one has to copy the appropriate source file to nodeAlgoscan. c and in one case set a
certain switch in the code.

First Implementation: Tableau Simplex

We first implemented a tableau simplex. The file nodeAlgoscanFinDense. c holds the
corresponding code and one has to set the variable method to 1 before compiling. All data
is read in first and stored as a dense matrix in a single array. Via the helper function mat ind

19

we access this array a as if it would have two indices. If the dimensions of the system matrix
are m rows and n columns the array is effectively an (m + 2) x (n + 2)-array. The array is
subdivided as follows

s ¢ 0
b, Ar 0
0 ¢ O

c is the original (auxiliary) cost vector and is unchanged over the iterations of the simplex
step. It is a column vector residing in row 0 as indexed in C. by and A, represent the tableau
after k-steps and ¢, the reduced cost vector. They change in the course of the execution of the
algorithm. by, is in column 0, A; occupies rows 1 to m and columns 1 to n and ¢, is in row
m + 1. The entry s at (0,0) is used to indicate the return state (—1, —2 or —3 as specified
in 2.2) at the end of execution. Just before termination the last row is used to hold the found
solution x instead of ¢i. This is returned to the calling function ExecAlgoScan.

Second Implementation: Dense Matrix Revised Simplex

The next implementation is a revised simplex using dense matrix representations. The corre-
sponding code is in the file nodeAlgoscanFinDense.c and one has to set the variable
method to 2 before compiling. We use two arrays. In initializing the simplex we modify A
and right hand side b by sign changes in such a way, that b > 0. The first of the arrays a
holds these modified A™ and b™, and they are not altered between the simplex steps. We omit
the index k for readability here and set p = i{Out,q = jIn. The format is similar as in the
tableau variant explained above, except for an added row:

s c 0
bt AT 0
0 ¢c 0
0 (a), 0

The row (@), = n! A is the pivotal row of the simplex tableau in the notation of [Hala, slide
98] (see below for 7'). The inverse matrix to the base submatrix B of A and additional
transitory data is stored in an array called b (do not confuse with the right hand side equally
named b!). It is again a single indexed array that is accessed via two indices through mat ind
and therefore effectively an (m + 2) x (n + 2)-array.

T

0 = «Q
b B a,
0 y" ¢

All notation is as in [Hala, slide 98]: the pivot column a, = B~'A,, the pivot factor o =
b,/ay.q» the updated right hand side bye,, = b — iy, 71 = egB_l, y" = cPB~'and ¢, is the
g-th entry of the revised cost vector £. The inverse matrix is not computed from scratch each
time but rather via updates (see 2.3.4). The reduced cost vector is computed from scratch.

20

Third Implementation: Revised Simplex System Matrix A On Disk

The third implementation is a revised simplex using a dense matrix representation as an array
b for the inverse matrix B~! as before but accessing the essentially static system matrix A
from disk instead of loading it into working memory. The corresponding code is in the file
nodeAlgoscanFinAOnDisk.c. We use an additional array redcost to store the transi-
tory data of a from ¢;. With this implementation we investigate how to modify the data access
to make use of disk memory. A requirement is that the relation storing the static tableau data
b,c and A is ordered first by column then by row®. Thus when iterating through the tuples
using standard PostgreSQL-API we access the tuples in this order. We also need to index the
start on disk of each column of the tableau before executing simplex. Thus we have to never
the less iterate through all given data at the beginning and we will actually have at least as
many [O-operations as with the variant before. This implementation is just a proof of con-
cept, in order to efficiently access the different rows one might additionally require that a list
of columns is provided along side the tableau data when issuing the SELECT ... ALGO
SIMPLEX ... command.

Forth Implementation: Revised Simplex Sparse Matrices In Working Memory

Finally we coded an implementation starting from the second implementation above that tries
to improve on the inverse matrix. The file nodeAlgoscanFinSparseWM. c has the cor-
responding code. First of all is the representation not a dense inverse matrix, but rather a
sparse format representing an LU-decomposition. Second we tried to improve heuristically
the number of fill-ins when inverting. We also planed to combine this with an update strategy
for this kind of LU-format but time restrictions of this Facharbeit and the complexity of this
task which we underestimated did not permit it. We give a detailed account of the code and
the ideas behind it in subsection 2.4.3.

2.4.2. Accessing Data

First of all PostgreSQL provides its own API for allocating and freeing memory on the heap.
The basic commands are palloc, pallocO and pfree. While one can use standard
C system calls it is not recommended. See https://blog.pgaddict.com/posts/
allocation-set-internals for details.

We started out from the modification described at [Con], which uses blockwise scanning
of a relation. We aim at a version where the original system matrix is not stored as a whole
in working memory but rather columns are fetched on “as-needed”-basis to minimize time
spent for IO, as outlined in 1. Therefore we choose to modify the data management from
nodeSeqgscan.c. The system matrix is stored as a relation in PostgreSQL and the solution
has to be written into the data base as another relation. Here we explain some aspects of the
I10.

®We use the convention that the right hand side b is in column 0, while the cost coefficients c are in row 0

21

Reading And Outputing Tuples

The code in ExecInitAlgoScan and ExecEndAlgoScan is a rather straight forward
modification from nodeSegscan.c. There is one noteworthy exception though: as

discussed in 2.2 we need to set the target lists for the output relation manually in
parse_target.c. The plan node “node” of type AlgoScan defined in plannodes.h,
that is an argument for ExecInitAlgoScan, carries the necessary information for both
target lists and at one place we need to switch them:

scanstate = makeNode(AlgoScanState);

scanstate —>ss.ps.plan = (Plan %) node;

/* further codex/

node—>scan.plan. targetlist = node—>algo_info—>targetlistln;
ExecAssignScanProjectionInfo(&scanstate —>ss);
node—>scan.plan. targetlist = node—>algo_info—>targetlistOut;

Starting from ExecAlgoScan we can access the relation through its argument equally
called “node”, which is an execution node of type AlgoScanState defined in execnodes . h.
The following code snippet indicates how to retrieve the row index “indr”, column index
“indc” and value “val” of an entry of the system matrix:

slot = ExecScan ((ScanState =) node, (ExecScanAccessMtd) AlgoNext,
(ExecScanRecheckMtd) AlgoRecheck);
while (! TupIsNull(slot))
{
indr = DatumGetInt32(slot_getattr(slot,l,&isnull));
indc = DatumGetInt32(slot_getattr(slot,2,&isnull));
val = DatumGetFloat8(slot_getattr(slot,3,&isnull));
/xcode to process this entry of the system matrix x/
slot = ExecScan((ScanState *) node, (ExecScanAccessMtd) AlgoNext,
(ExecScanRecheckMtd) AlgoRecheck);

The functions AlgoNext and AlgoRecheck used as function pointers above are again
straight forward modifications of corresponding functions in nodeSegscan. c.

After this we close the relation and do some clean up, so that the relation can potentially be
accessed in parallel by another PostgreSQL-client:

relation = node—>ss.ss_currentRelation;
scanDesc = node—>ss.ss_currentScanDesc;
ExecClearTuple (node—>ss.ss_ScanTupleSlot);
heap_endscan(scanDesc);
ExecCloseScanRelation(relation);

For the output we need to create again in ExecAlgoScan tuples for the newly created out-
put relation encoding the found solution. Since in this stage of the program ExecAlgoScan
is called iteratively to output each tuple separately, we need to have a variable to carry the
information of the current column index j to put out the x; across calls. This is done by the
variable “node->param4”. The variable “node->a” holds the solution as an array.

22

resTupDesc = ExecTypeFromTL ((node—>ss.ps.plan)—>targetlist , false);

resSlot

= MakeSingleTupleTableSlot(resTupDesc);

ExecClearTuple(resSlot);
if (node—>param4 <= dimc)

{

resSlot —>tts_values [0]
resSlot —>tts_values|[1]
resSlot —>tts_isnull [0]
resSlot —>tts_isnull [1]

Int32GetDatum (node —>param4) ;
Float8GetDatum ((node—>a)[node —>param4]);
false ;

false ;

resSlot = ExecStoreVirtualTuple(resSlot);
node —>param4 ++;

}

return resSlot;

In the above it is hardcoded that in the input table the first column holds the row index
of an entry of the system matrix as an int 32, the second the column index as an int32
and the third its value as a f1oat8. Similarly the output types are hardcoded as int 32
for the first column of the output table and £1oat 8 for the second. This is compatible with
parse_target.c. Should the input relation not follow this data convention the behavior
of our code is undefined; one should expect erroneous behavior.

Keeping The System Matrix On Disk

Now we turn our attention to providing support for leaving the system matrix on disk and
not storing it in working memory. In ExecAlgoScan we initialize two arrays “aStartDisc-
Tid” and “aStartDiscInd” which indicate the start of each column — recall that we assume the
relation to be stored sorted by columns as first key and then by rows as second key.

aStartDiscTid = pallocO ((dimc+2) x sizeof(ItemPointer));
aStartDiscInd = pallocO ((dimc+2) * sizeof(int));

relation
scanDesc

oldIPD

= node—>ss.ss_currentRelation ;
= node—>ss.ss_currentScanDesc ;
scanDesc—>rs_ctup . t_self;

if (scanDesc—>rs_pageatatime)
oldInd = scanDesc—>rs_cindex;

/x store

next tuple in slot as abovex/

while (! TupIsNull(slot))

{

/*xaccess indr, indc, val as abovex/
if (aStartDiscTid[indc] == NULL)

{

aStartDiscTid[indc] = palloc(sizeof (ItemPointerData));
xaStartDiscTid[indc] = oldIPD;
if (scanDesc—>rs_pageatatime)

aStartDiscInd[indc] = oldInd;

23

}

oldIPD = scanDesc—>rs_ctup.t_self;
if (scanDesc—>rs_pageatatime)
oldInd = scanDesc—>rs_cindex;
/xstore right hand side and cost coefficients in working memoryx/
/x store next tuple in slot as abovex/

With the above code the two arrays will have the information to point to the tuple just before
the start of a column. This is necessary because ExecScan iterates to the next tuple before
putting it into a slot and making it available for information retrieval.

The next code snippet is for accessing the first tuple of the j-th column. The following
tuples in this column can be accessed by iterating ExecScan until “indc” of the latest tuple
indicates a different column.

(node—>ss.ss_currentScanDesc)—>rs_mctid = xaStartDiscTid[]];

if ((node—>ss.ss_currentScanDesc)—>rs_pageatatime)
(node—>ss.ss_currentScanDesc)—>rs_mindex = aStartDiscInd[j];

heap_restrpos (node—>ss.ss_currentScanDesc);

slot = ExecScan((ScanState =) node, (ExecScanAccessMtd) AlgoNext,
(ExecScanRecheckMtd) AlgoRecheck);

/xaccess indr, indc, val as abovex/

2.4.3. Enhancing Sparse Matrix Inverses

As already discussed in 2.3.4 it is not an option to compute the inverse B~ in the revised sim-
plex method as a dense matrix via GauBian elimination in each simplex step as its time com-
plexity is too bad. There are update strategies for dense B! that were already discussed above
(cf. [Hala, slide 109]). In this subsection we discuss several approaches to make computing
and/or updating sparse representations of B! more efficient and point to several sources in the
literature that we found useful or interesting — it is by no means a comprehensive overview of
this matter. At the end we discuss what aspects of these improvements we tried to implement
and what difficulties we came across.

We studied in particular the following articles and presentations: [Halb] gives an introduc-
tion and a practical selection of methods how to generate and update an inverse matrix in the
context of the revised simplex method. [DRSL16] is a recent overview article on direct meth-
ods for inverting sparse matrices and [AB] provides slides to some lectures on the same topic.
Lecture notes on updating inverse matrices for the revised simplex can be found in [Sau] and
[HH13] is a recent research article that compares several update methods in this context and
provides experimental results.

A fundamental question is how to represent a sparse matrix. There are several different
formats that are discussed in [DRSL16] or [AB]. We decided to use an array of linked lists:
each list represents a column of the matrix and each node is of type matElem and stores the
row and the value of the entry as well as a pointer to the next entry in this row. Generally

24

the list is ordered by ascending row index. Later we will discuss an LU-decomposition. The
U-factor is stored in the same way, but for the L-factor each linked list represents a row.

Direct Methods For Matrix Inverses

[DRSL16] gives an overview of current direct methods to invert a sparse matrix A. Direct
methods are in contrast to iterative solvers which use numerical techniques to approximate
solutions — as it is not clear how sparseness can be preserved using iterative methods we do
not discuss these any further. We will list several of the results provided there because we base
our approach on a selection of these techniques.

The inverse is always represented via some kind of factorization: for symmetric matri-
ces as Cholesky factorization PAPT = LL” or for general quadratic matrices the LU-
decomposition PAQ) = LU. In this cases P, () are permutation matrices and L, U are (lower
resp. upper) triangular matrices. [DRSL16] also considers the QR-decomposition A = QR
with () orthogonal (note that permutation matrices are orthogonal in particular) and R upper
triangular. We will usually omit the “decomposition” to make terminology smoother from
now on.

Except for non-generic cases these decompositions will have non-zeros where the original
matrix had non-zeros, but they might have additional ones called fill-ins. Obviously reducing
fill-ins is desirable. The freedom in choosing permutations P, () (called pivoting) can be used
to achieve two often contradictory goals: reduction of the number of fill-ins and reduction of
pile up of numerical errors.

A nice fact is that the analysis of fill-in generation is related across the different types of
decomposition. The sparsity pattern for LU for a square matrix A is bounded above by the
one for the QR which is itself related to the one for the Cholesky decomposition for AT A,
at least when the matrix A is strong hall, i.e., its block triangular decomposition (see below)
consists of a single block (see [DRSL16, p. 54]).

There are several variants to compute the LU of a square matrix. The up-looking LU (see
[DRSL16, p. 41]), the left-looking LU (see [DRSL16, p. 42]) and the right-looking LU (see
[DRSLI16, p. 45]). Their advantages and disadvantages regarding choosing permutations and
implementations are discussed there.

The notion of bandwidth of matrix is introduced in [DRSL16, 8.2]: for a matrix A = (4, ;)
the lower bandwidth is max{i — j : A, ; # 0}, the upper bandwidth is max{j — i : A;; # 0}
and the bandwidth is the maximum of both. Reduction of bandwidth is connected to fill-in
reduction. They also explain the connection from efficient matrix decomposition to related
graph problems by viewing a square matrix as adjacency matrix where the non-zeros indicate
an edge in a (directed) graph.

At several places (cf. [DRSL16, pp. 12, 66, 67, 71]) results are mentioned that show NP-
hardness of problems associated to fill-in reduction. In particular finding permutations P, ()
that minimize fill-ins is NP-complete, as well as minimizing the bandwidth. A recent result
(cf. [DFU11]) shows that even trying to approximate minimal bandwidth within a factor of 2 is
NP-hard via proofing an analog result for a related graph problem. In the face of these negative
results it is clear that one resorts to heuristics several of which are discussed in [DRSL16].

One of these strategies is named after Markowitz [DRSL16, pp. 48, 58]. We explain it

25

for the up-looking LU. In the process of computing this decomposition proceeds to give a
bigger and bigger square matrix in the upper left corner (after permutation) that is inverted
by “adding” a single row and column in each step. We assume that we have computed an
LU-decomposition Ly1Uq; = 12111 in the upper left corner:

Ly Un up 7 An az Aus 3
loy 1 Uy 7| = Cf21 Q22 Cf23 =A
T 177 ? Asy ase Ass

In this setup A = PAQ is an intermediate permutation of the matrix A. One still has the
freedom to change the permutation in the lower right part of A with upper left corner at aso
— such a permutation will result in a change of the pivot as;. One can estimate the number r
of non-zeros in /5; and ¢ of non-zeros in 11, that will result from different choices of as, and
Markowitz rule says to take that, which minimizes the product rc. In this sense it is a local
greedy heuristic.

The Markowitz rule is a dynamic method: while performing the LU one computes the
permutation alongside. One can also use pre-orderings where permutations are determined
and applied before perform the LU. One of these methods is permuting to a block triangular
decomposition (abr. BTD). A matrix in (upper) block triangular form by definition looks like
this:

A A Asg

A22 A23
A33

A BTD is a permutation in block triangular form such that the diagonal blocks cannot further
be refined. If a matrix can only has a trivial BTD as a single block we say that the matrix is
strong Hall. One can show that the BTD is essentially unique up to permutations of the blocks
and permutations within the blocks, and that the diagonal blocks have the strong Hall property.
Since all the lower blocks are zero there cannot arise any fill-ins in this part when performing
LU. When permuting to BTD one reduces fill-ins at least in L, while /2 might still have many
fill-ins.

Another advantage of BTD is that one does not actually have invert the upper blocks in
order to solve a linear system. Assume we are given

An A A € by
Ay Asg z2 | = | b2
Ass €3 b3

We can solve this system in three steps: x3 = Agj'bs, 7o = Ay (by — Agsrs) and 71 =
Al_ll (by — Ajaxs — Aj3x3). So we are only left with computing LU's for the diagonal blocks.

[DRSL16, 8.7] explains how to find a permutations to put A in BTD. BTD is essentially
the same as finding the strongly connected components of the directed graph for which A is
the adjacency matrix, provided that the diagonal of A is filled with non-zeros. To achieve
this one can regard A as the adjacency matrix of a bipartite graph whose vertices are the
rows resp. columns and find a bipartite matching. The invertibility of A is equivalent to the

26

existence of a perfect matching in the associated graph and a perfect matching gives rise to
a permutation matrix () such that the column permutation A() has a non-zero diagonal. We
have implemented the Hopcroft-Karp algorithm to find bipartite matchings and were following
[Wik17b]. To identify strongly connected components we implement Tarjan’s algorithm as
presented in [Wik17d]. It produces a permutation matrix P such that P(AQ)PT is in BTD.

We briefly sketch the main ideas behind these two algorithms. Hopcroft-Karp greedily
matches successively a node u from one part U to a node v from the other part V/, i.e., uv is an
edge. Then one increases any such matching, as long as possible, to two pairs by finding v" and
v’ such that v'u and vu’ are valid edges: removing the single matching uv and entering two
matching v'u and vu’ will increase the number of matchings by one. Similarly one proceeds
from such a chain with two matches to a chain with three matches and so until one has found
a perfect matching.

Tarjan’s algorithms starts from any vertex in the graph and performs a depth-first search
until all vertices reachable from there are found. While doing this one keeps track of cycles
by representing a cycle by the first vertex of this cycle that was entered in depth-first search.
The last cycle to be found is cut off and forms a strongly connected component. Then one
proceeds to the second last cycle and so on until all reached vertices are discarded. Overall
one restarts this process until no further vertices are left.

Permuting A to BTD is not unique, since we can still permute within the blocks and the
blocks themselves. One might permute the diagonal blocks further to achieve further fill-in
reduction. We observed however that the ordering already produced by Tarjan’s algorithms
seems to reduce the lower bandwidth within each diagonal block nicely. We looked for theo-
retical justification of this but could not find anything definitive. There are at least some note-
worthy heuristics that reduce the lower bandwidth (cf. [DRSL16, pp. 67f]). We do not know
if one of them provably minimizes lower band width. Also take into account that minimizing
total band width is NP-complete. So we simply pose this question for further investigation:
Does Tarjan’s algorithm produce an ordering that provably minimizes lower bandwidth?

We also had another unanswered question during studying the literature for fill-ins. How
bad can unavoidable fill-in generation become in the worst case? E.g., can it happen for some
matrices A that the fill-in minimizing permutations still have number of full-ins larger than
the original number of non-zeros? And how badly is optimal fill-in behaved if we exchange
several columns over the course of the iteration of the simplex steps? We speculate that one
can construct such badly behaved matrices with the help of expander graphs (see [Wik17a]).
This are graphs that have few edges but rather strong connectivity properties. They are rather
artificial however and thus might seldomly arise in practical applications.

We conclude this part on fill-in reduction with another remark on the literature. [AB] pro-
vides slides for a lecture that also discusses many of the above topics as well.

Update Methods For Matrix Inverses

One needs to distinguish two aspects when discussing updates. The first is whether an actual
inverse is updated or some decomposition. The second aspect concerns storage of the update:
does the update come as a modification of existing data, such that the modified representation
can be used as is, or is it provided as supplemental data, that leads to conceptually added

27

operations.

We will here summarize the findings of [HH13] that compares the Forrest-Tomlin update
to three forms of product form updates, the classical one (PF), the alternate product form
(APF), and the middle product form (MPF). All of these supplement an LU-decomposition
with external update data. Other update methods are the discussed in [Sau] or [Halb].

As already discussed in 2.3.3 does the simplex step modify the base matrix B only in a
column which is a rank one modification. Let e, denote the p-th standard basis vector, that is
zero everywhere except for the p-th entry which is 1. If the p-th column of B is to be replaced
by the ¢-th column q,, of the system matrix then the newly created matrix B’ can be written as

B'= B+ (a, — Bey)el = B(I + (a, — ep)e)) = BE

P

where a, = B~'a, and is readily available in the course of the matrix step. To represent F we
only need to know p and a, which can be efficiently stored. Let o be the number of non-zeros
of a,. E is the identity matrix with one column replaced by some column — this is called an
n-matrix. These matrices are simple enough such that for any vector v the products £~v and
v E~! can be computed in time O(m + o) from p and a, and v.

Assume we have executed the simplex algorithm £ steps and have the base matrix Bj,. Let
By = LUy, be an LU-decomposition. Let £, denote the n-matrix for the i-th step, then we
have after &’ further steps

By = LU Eg i1 B2 -+ Egyrr

Storing Ly, Uy, and the updates £; allows for efficient computation of B, jk,v for any v. This
is the classical PF update. However after &k’ steps the computational cost was increased by
O((m + &)k’), where 7 is the average of the various o. This and pile up of numerical errors
require a restart with a fresh decomposition By = Lp. Uk €very once in a while, say
about after &’ ~ O(m) steps.

APF and MPF work similarly except that the decompositions look like this:

By = Thqp -+ ThroThr1 LUk, Biw = LT Trro - - Thiw Use

The T} and TZ are essentially as easy to obtain and store as the F; — see [HH13] for the details.
In experimental results in practical instances [HH13] found that the most competitive prod-
uct form update was MPF comparable to rest-Tomlin update.

Our Approach

Since matrix inverses are only need for the revised simplex method we implemented matrix
inverses only for the last three of our four implementations. For the first of these three we
implemented B! as dense matrix and updated according to the formula from [Hala, slide
109]:

—€p) 1\t
———¢,)B

P,q
For testing reasons we also implemented a Gauflian elimination algorithm to compare the
results of updating inverses with computing inverses from scratch. Our second revised simplex

28

implementation aimed at exploring the possibility of storing the system matrix on disk and we
did not change anything for the inverse of the base.

For our implementation in nodeAlgoscanFinSparseWM. c, i.e., the last of our four
implementations, we tried to combine a BTD with an up-looking LU-decomposition using a
Markowitz-like pivoting rule and a MPF update strategy. We explain the different parts and
difficulties that arouse. For the various functions involved see 2.4 above.

We explained above that it is necessary to restart the updating from time to time. So as-
sume that we start from the base matrix B = B, after k£ steps and we need to find a good
LU-decomposition PB() = LU first. As discussed above permuting B to BTD has many
advantages, in particular reducing the lower bandwidth significantly, so this is our first step.
The main technical issue is getting the various permutations correct that come from finding
a non-zero diagonal first and then applying the strongly connected component algorithm of
Tarjan. As also discussed above only the resulting diagonal blocks that are strong Hall need
to be inverted.

For each diagonal block we need to compute an LU and we use the up-looking LU as
outlined before. We compromise a Markowitz-like fill-in reducing strategy with a numerical
stability criterion. Generally we apply column permutations to reduce fill-in and row per-
mutations to ensure numerical stability, except in unstable cases. Assume we have a partial
LU-decomposition L;;U;; already for Aa permutation of B and we need to permute a suitable
a99 from the lower right part:

L1y Un up 7 A G Ais B
o 1 Uy 7| = | 21 dpp dp3 | = A
7707 ? Az azy Ass
Denote A’ = <Z§z Z‘;) If all entries of A’ have absolute value below 10~ we permute

the maximal entry to ass. Otherwise choose among those columns that have entries above
1072 the sparsest column and within this sparest column the row with maximal entry. Should
among the eligible columns be several column of minimal sparseness take the column with
largest entry.

The wrapper function uplu calls the function upluSingBlock for each diagonal block.
This function computes two arrays of linked lists representing the factors L; and U, for
the ¢-th diagonal block. When iteratively computing the various u;> and l; we already
need to solve triangular systems for the already obtained U;; and L;; and we call functions
uFromRightSolve, 1IFromLeftSolve for this. Additionally when we have the decom-
positions for all the diagonal blocks we need another function to solve equations of the form
Bu = v. This can be done with luFromLeftSolveBlock thatcalls 1IFromLeftSolve
and uFromLe ft Solve for each block separately and incorporates the information from the
unaltered off-diagonal blocks.

For testing we also implemented a standard GauBian elimination algorithm and compared
the resulting explicit dense inverse B~! with the effect luFromLeft SolveBlock had on
the standard basis which gives the columns of B~1.

After coming this far we discovered that the MPF is actually incompatible with our format
of storing LUs only for diagonal blocks and leaving off-diagonal blocks unaltered. MPF re-

29

quires a full LU-decomposition of the matrix B in order to add updates between these factors.
BTD allows to efficiently solve linear systems in a way that requires LU-decomposition of the
diagonal blocks only and not of the off-diagonal blocks. But it is impossible to harness the ben-
efits from partial LU-decomposition and fulfill the requirements of a full LU-decomposition
in order to apply MPF. The PF and APF should be compatible however as they append the
updating factors either in front or at the back and do not interfere with the internal structure of
the decomposition. In the end we did not implement any update strategy.

2.4.4. Numerical issues

Finally we make some remarks on numerical issues. When testing the reduced cost coefficient
numerical errors can decrease an actual 0 to a small negative value. This leads to wrong
decisions when choosing (iOut, jIn) and eventually to wrong results, e.g., can a program be
deemed infeasible while it is feasible. We therefore set all small reduced costs below a certain
error tolerance to 0:

float8 errTol=1.0e—9;
for (j=1; j<=dimc; j++)
{
/¥ code to compute reduced cost coefficients x/
if (fabs(redcost[j]) < errTol)
{
redcost[j] = O0;
}
}

When determining (iOut, jIn) in the simplex step we applied the same error tolerance to
avoid some (7%);out,jin Z 0 Which properly would be 0 or below.

We already mentioned the accumulation of numerical errors using updates for the inverse
matrix in 2.4.3 as well as numerical stability issues in permuting the pivot to compute an
LU. The former can be dealt with using periodical restarts, the later by taking stability into
account in the Markowitz-like role. In future code an estimator would be useful that detects
degradation of numerical stability during the updates and restarts the process if it gets to bad.
Alternatively a simple rule as restarting after {;; steps might also work.

An issue which we briefly touched upon in 2.3.5 is the numerical instability introduced by
transforming an arbitrary linear program into standard form (cf. [Gril3, 4.5]). In section 2.5
we discuss an auxiliary program that transforms arbitrary linear programs given in the mps-
format to standard form accessible in our PostgreSQL implementation. This might be the
cause of some of the trouble we had in testing these instances.

2.5. Auxiliary Programs

In order to do some testing we wrote some auxiliary code. First here is an SQL-statement that
generates random linear programs:

30

DROP TABLE asimp_randomTMP ;
CREATE TABLE asimp_randomTMP (row int, col int, val float8);
INSERT INTO asimp_randomTMP

SELECT (random ()*20)::int AS row, (random()*50)::int AS col,

(random ()*200):: float8 AS val FROM generate_series (1,300) AS x(n);
DROP TABLE asimp_randomTMP2;
CREATE TABLE asimp_randomTMP2 (row int, col int, val float8);
INSERT INTO asimp_randomTMP2

SELECT row, col, SUM(val) FROM asimp_randomTMP GROUP BY col, row;
DROP TABLE asimp_randomFIN ;
CREATE TABLE asimp_randomFIN (row int, col int, val float8);
INSERT INTO asimp_randomFIN

SELECT % FROM asimp_randomTMP2 ORDER BY col, row ASC;

As the random command may create several entries with the same column and row number
we simply sum them up. At the end we sort the result.

As pointed out in [DRSL16, pp. 13f] testing with random matrices might not give accurate
results regarding practical problems. Therefore we tested our program on several instances of
the NetLib-library (see 2.6). However this library represents most of its problems in a com-
pressed MPS format (see A.4 on uncompressing these files and [Mak16, appendix B] on the
MPS format). We wrote an auxiliary program PGLHome/ProblemsFromMPS/sample
that converts the sample MPS files to .csv-files that can be read in by PostgreSQL.

For this we relied on the the package GLPK which is freely available. See [Mak16] for
the details. See appendix A.4 for some commands and instructions how to use the auxiliary
program. Here we will shortly describe the code sample. c.

The program has an absolute path hardcoded in line 40:

strcpy (path, "/home/.../PGLHome/ProblemsFromMPS/");

Relative to this it reads MPS-files from the directory MPSfiles and puts out .csv-files to
process with PostgreSQL in OutputForPostgresQL. The linear program from the MPS
file is not in standard form so we perform some transformations on the variables and even in-
troduce new rows and columns if needed. sample also puts a filein PostprocessFiles,
which contains code to be executable with the bash calculator bc. One needs to copy part of
the WARNING-output from PostgreSQL generated by nodeAlgoscanFinSparseWM. c
at the beginning of this file and after executing it in bc one gets the values of the optimal
solution for the original system from the MPS file.

We process the MPS file via calling the API provided by GLPK. Here is a part of the code
showing the header file, how to import the linear program and how to read out the dimensions:

#include <glpk.h>
/x ... other code ... %/
lp = glp_create_prob ();
glp_read_mps(lp, GLP_MPS_DECK, NULL, pathMPS);
dimr = glp_get_num_rows (lp);
dimc = glp_get_num_cols(lp);

31

The main part of the code consists in transforming the linear program in standard form.
Inequalities are transformed to equations introducing slack variables. Variables that do not
obey the standard form restriction x; > 0 need also be transformed. Similar code generates
bc-statements to compute the cost of the optimal solution for the original problem.

We give a sample of files at different stages of the parsing process. First we present the
MPS-file that represents the linear program from 2.1

NAME TEST
ROWS
N COST
L UP
E C1
COLUMNS
X01 COST 1.
X01 UpP 1.
X01 Cl 2.
X02 COST 2.
X02 UP 1.
X02 Cl 0.5
RHS
B Up 1000.
B Cl 1250.
ENDATA

The .csv-file generated by this is

1, 1, 1.000000
1, 2, 1.000000
1, 3, 1.000000
2, 1, 2.000000
2, 2, 0.500000
0, 1, 1.000000
0, 2, 2.000000
1, 0, 1000.000000
2, 0, 1250.000000

~
~

Solving this with our last implementation gives the following BC-code (stripped of WARN-
INGS):

y0 = =-3.000000
vyl = 625.000000
y2 = 0.000000

y3 = 375.000000

This has to be inserted in the beginning of the BC-file produced by the program sample:

32

x1=y1+0.000000;
x2=y2+0.000000;

cost = 0;

cost = cost + (x1 %= 1.000000);
cost cost + (x2 = 2.000000);

The program in standard form has different dimension than the original one. At the end
of sample.c there is a line that puts out these dimensions to standard out as well as to a
statistics file — if one applies this transformations to several MPS files this statistics file which
is a .csv-file is convenient:

printf ("standard:_rows: _%d,_cols: %d\n", outrow, newcol);
fprintf (fileStat , "%s, %d,_%d\n", argv[1l], outrow, newcol);

Afterwards it terminates. To sum up sample reads an MPS file using GLPK, transforms it
into standard form and puts this transform out as a .csv-file suitable for our simplex algorithm
in PostgreSQL. It also provides a bc-file, that can revert the transformation on a solution of
the standard form program.

2.6. Testing

We used several different problems for testing our code and we subdivide them in six cate-
gories. We created 5 small instances (category 1) to test whether our simplex implementation
recognizes infeasibility and unboundedness correctly in principle. We used 2 exercise prob-
lems from a high school book to validate if our code finds correct optima — overall they gave
rise to 24 instances (category 2) varying the objective function and the direction of optimiza-
tion. We created 11 instances (category 3) for testing Hopcroft-Karp and Tarjan’s algorithm in
nodeAlgoscanFinSparseWM. c. Then using the SQL-statement from 2.5 we created 4
random instances (category 4) also primarily for debugging the code to create the BTD and the
LU-code. We also created 2 small instances (category 5) to test the parsing of our auxiliary
program. In all of these the dimensions were bounded by 100. See appendix A.5 for some
code that was used in testing. Note that when testing nodeAlgoscanFinAOnDisk.c we
need sorted versions of the instances.

Finally we worked with 16 instances (category 6) from the NetLib problem library (see
[Gay]). From the 98 problems in NetLib 6 were omitted all together as they were not rep-
resented in compressed MPS format. The 16 instances were chosen to represent various in-
carnations of size, sparsity and square vs. rectangular system matrices. Since the various
implementations run into errors for many but the smallest instances we also tested several
additional smaller instances. In the end we were not able to remove all the bugs.

The NetLib library provides problems that in standard form have up to about 10000 columns
and rows. The biggest one is “fit2d” that has 10525 rows and 21024 columns. Of the 92
problems in compressed MPS format 51 are of medium size, i.e., have at least 500 rows. The
median of entries per row of these 51 problems is 8.43 with maximum at 48.19 and minimum
at 2.84 — so we see the need for sparse implementations.

33

For the problems in category 1 all our four implementations come to essentially the same
result. For the last of the 5 instances there are several different vertices with the optimal value
12. The tableau simplex ends up at a different vertex than the three implemented revised
simplex variants. In principle the pivoting strategy should be the same namely Bland’s rule,
so it is not clear to us why this different behavior arises.

For the problems in category 2 our implementations also show the same and correct behav-
ior for all instances except for instance “asimp_algebral_ex17cmax’ where the first revised
simplex implementations runs into seemingly infinite iterations after entering the second phase
of the simplex method. This also occurred when using the sorted instance as input. As we did
not plan to make this first revised simplex method productive we did not bother to investigate
this error further. Again the instance “asimp_algebral_ex17cmin” has several optimal vertices
and the tableau method pics another vertex than the revised simplex.

Category 3 problems were designed for debugging nodeAlgoscanFinSparseWM. c.
We did not sort these and so did not test nodeAlgoscanFinAOnDisk.c with these in-
stances. The remaining three implementations give the same results up to small numerical
deviations smaller than 10712, except for instance “asimp_testhopcroftkarp6™ where the first
revised simplex implementation again ran into seemingly infinite iterations.

For the random instances in category 4 the first revised simplex implementation ran into
seemingly infinite iterations all the time. The tableau implementation and the third revised
simplex implementation had matching results. The second revised simplex had an infeasible
as result for “asimp_random5” where the first and last implementation produced an optimal
result.

From this point on we only tested the tableau simplex (first implementation) and the re-
vised simplex with enhanced matrix inversion (last implementation), as the other two im-
plementation seemed to have bugs and it seemed not worthy to find them. The idea of
nodeAlgoscanFinAOnDisk.c was anyway just to demonstrate the possibility of leav-
ing the system matrix on disk, which was successful.

To test and debug the auxiliary program that parsed MPS files we used the two problems
from category 5. The results of the first and the last version agreed up to small numerical
deviations. They agreed with the expected results of the original programs encoded in MPS.

All tests were conducted on the computing server “jordan0” of the Institute of Mathematics
at the University Ziirich. This machine has two Intel Xeon 6C E5-2640 2.50 GHz processors
with 12 cores and 256 GB RAM memory. As we did not implement any parallelization only a
single core should have been used at a time. All instances so far did use less than a second, if
they completed, although we did not perform exact time measurements.

34

name rows columns shape sparsity optimal value
AFIRO 27 51 1.8888888889 0.0639070443 -4.6475314286E+02
AGG 488 615 1.2602459016 0.0084666134 -3.5991767287E+07
AGG2 516 758 1.4689922481 0.0115435356 -2.0239252356E+07
BLEND 74 114 1.5405405405 0.0617591275 -3.0812149846E+01
FIT2D 10525 21024 1.9975296912 0.0006237324 -6.8464293294E+04
GROW22 1320 1826 1.3833333333 0.0034509941 -1.6083433648E+08
GROW7 420 581 1.3833333333 0.0107900992 -4.7787811815E+07
KB2 52 77 1.4807692308 0.0726773227 -1.7499001299E+03
SCAGR25 471 671 1.4246284501 0.0064200531 -1.4753433061E+07
SCSD8 397 2750 6.9269521411 0.0103814976 9.0499999993E+02
SHARE2B 96 162 1.6875 0.0469393004 -4.1573224074E+02
SHIPO4L 402 2166 5.3880597015 0.0097044785 1.7933245380E+06
SHIP0O4S 402 1506 3.7462686567 0.0095967705 1.7987147004E+06
SIERRA 3263 4751 1.4560220656 0.0005968065 1.5394362184E+07
STAIR 444 626 1.4099099099 0.0138768961 -2.5126695119E+02
STOCFOR2 | 2157 3045 1.4116828929 0.0014451745 -3.9024408538E+04

Finally we come to discuss the practical test cases from [Gay]. The table above summarizes
characteristics of the 16 considered instances. Rows and columns are the dimensions for the
problem in standard form as transformed by the auxiliary sample. Shape is the fraction of
columns over rows — the closer to 1 the more “square” is a problem and the bigger the more
“rectangular” it is. Sparsity is the fraction of the non-zeros of the MPS-system divided by the
product of rows and columns of the normal form system. We also state the optimal value as
provided by NetLib.

We summarize the behavior of the tableau simplex in yet another table. “correct” means
that the optimal values match up to an accuracy of less than 0.001%.

name behavior of tableau simplex implementation
AFIRO correct
AGG wrongly returns infeasible
AGG2 correct
BLEND result correct to within 1%
FIT2D too large to fit in memory
GROW?22 still in first phase after 50 thousand steps
GROW7 correct
KB2 correct
SCAGR25 correct
SCSD8 wrongly returns infeasible
SHARE?2B correct
SHIPO4L wrongly returns infeasible
SHIP04S wrongly returns infeasible
SIERRA | wrongly returns infeasible and server connection is terminated abnormally
STAIR still in second phase after 2.5 mio. steps
STOCFOR2 still in first phase after 0.55 mio. steps

For the last revised simplex implementation all instances terminated the server connection

35

abnormally except for the instance “afiro”. Using gdb for the instance “kb2” we were able to
determine the cause to be a segmentation fault in the function uFromRight Solve. Due to
time constraints we did not investigate this error further.

Thus “afiro” is the only instance where two implementations give the correct result in terms
of the objective function. We also compared the actual solution vector of both variants with
the solution vector returned from GLPK. They all differed in some of the variable, but also had
some in common. There are 27 rows in “afiro”, so one would expect as many non-zeros. The
output from the tableau version had 20 non-zeros and 4 of these were in the standard form
slack variables. That from sparse revised variant had 23 non-zeros, 3 of which were numerical
zeros, and 5 where in the standard form slack variables, including 1 numerical zero. The glpk
solution had 13 non-zeros. So ignoring slack variable non-zeros and numerical non-zeros for
the tableau there were 16 non-zeros, as well as for the sparse revised simplex, but only 13
non-zeros. These occurred in places where the simplex implementation also had non-zeros.
For these essential non-zeros the results of our two implementations did not differ, the glpk
solution had in addition to the extra 3 zeros another 3 places where the values differed. Since
one expects 27 non-zeros anyway we suspect that the instance “afiro” is somewhat degenerate.

To sum up all of our implementations run successfully in some of the test cases and gave
the correct output. The second and third implementation still have severe problems, but as
both were only intended as preliminary implementation to study principles of designing such
a C program we did not bother to fix these issues. One possible cause may lie in explicitly
updating a full inverse matrix that might lead to numerical problems. For the artificial test
cases our first and forth implementation give agreeing results. For the real world test cases
only one of the 16 was correctly solved by the first and the last implementation, giving the
correct value for the objective function. In all the tableau implementation performed best as it
correctly solved 6 problems and 1 other within an error of 1%.

2.7. Miscellaneous Useful Remarks

In this section we like to discuss some problems that we came across and took much time to
resolve in the hope that other programmers might profit from these remarks. As utilities we
used emacs as editor, cscope, git to access an online repository, glpk in a utility program to
convert mps-files, the shell calculator bc to postprocess and compare results from our Ip solver
implementation with glpk output. We did not use a debugger although that might have been
handy.

We used several directories PGLHome /buildxx for the compiled executables. This way
we can compare several versions of the code.

At one point we executed the compile commands not from these directories but by accident
within a directory from the source code. It did not spark any obvious problems at first, but
when we tried to compile modifications of the source it did not work. The likely cause is that
“make” detected some .o-files to be already compiled but these were in different directories
than the linker looked for them. The only way to fix it was to reinstall from git.

The command “heap_release_fetch” was called in the implementation of a sample scan
presented in [Con] to access the input table which is no longer supported in newer versions of

36

PostgreSQL. Replacing it with “heap_fetch” created a memory leak that had to be dealt with
by additional buffer releases. In the end we settled with an adaption of a sequential scan and
it was no longer an issue.

The type of data stored in a table in PostgreSQL is “Datum”. If you know that it is an
integer or a double you can convert it using “DatumGetInt32, DatumGetFloat8” and back
using “Int32GetDatum, Float8GetDatum.”

In newer versions than PostgreSQL 9.4.10 the function heap_restrpos is no longer
available for sequential scans. If one wants to implement a “from disk” version one would
need to use a different scan, since it seems still available for index scans.

At some point when segmentation faults abounded I got interested in the modifications that
PostgreSQL does to the C-allocations to implement a rudimentary garbage collector and found
the following very helpful post:
https://blog.pgaddict.com/posts/allocation—-set—-internals.

37

3. Conclusion And Outlook

The goal of this Facharbeit was to modify the syntax of PostgreSQL such that it is possible to
issue a command to solve a linear program stored as a relation and to actually implement the
simplex algorithm in the back end to solve such a linear program.

We modified the parser of PostgreSQL along the lines of a model example and implemented
several variants of tableau simplex and revised simplex algorithm. We tested these implemen-
tations and they were able to solve small test cases, these implementations were however not
able to reliably solve medium sized or large scale instances.

We investigated several aspects of the simplex method such as different variants of the
algorithm, different strategies to enhance sparse linear system solving which is needed for
one of the variants or different approaches to accessing data on disk and working memory.
We surveyed some of the state to the art literature on these topics and partially worked out
implementations of the algorithms presented there.

For testing our code we implemented an auxiliary program that converts MPS files from
NetLib library to .csv-files suitable as input for PostgreSQL and solving with the implemented
command.

We sketch some possible further directions of work in this line:

e implementing a reliable simplex method that scales with the problem size. For this
one of the update strategies surveyed in this work needed to be implemented. Some
unresolved issues arising in our implementation as discussed in the section on testing
would needed to be addressed.

e generalize to mixed integer linear programming. As the motivation of this project lies in
optimizing feeding strategies, and numbers of living animals do not come as fractions, as
do numbers of buyable goods, linear programming with fractions represented as floating
point numbers will not suffice.

e comparing different solution strategies. We implemented some of the researched strate-
gies and compared them qualitatively in terms of their applicability to certain artificial
and real world test instances. A proper evaluation would need to compare thoroughly
tested and scaleable version for which one compares running time.

e finding problem libraries that provide large scale instances and writing suitable parser
for these. Obviously before doing this one needs a reliable simplex implementation for
at least medium sized problems.

38

A. Appendices

A.1. List Of Modified Files In PostgreSQL

postgresqgl/src/backend/commands/explain.c
postgresqgl/src/backend/executor/Makefile
postgresqgl/src/backend/executor/execProcnode.c
postgresqgl/src/backend/executor/nodeAlgoscan.c
postgresqgl/src/backend/nodes/copyfuncs.c
postgresqgl/src/backend/nodes/equalfuncs.c
postgresqgl/src/backend/nodes/makefuncs.c
postgresqgl/src/backend/nodes/outfuncs.c
postgresqgl/src/backend/nodes/readfuncs.c
postgresqgl/src/backend/optimizer/path/allpaths.c
postgresqgl/src/backend/optimizer/path/costsize.c
postgresqgl/src/backend/optimizer/plan/createplan.c
postgresqgl/src/backend/optimizer/plan/setrefs.c
postgresqgl/src/backend/optimizer/plan/subselect.c
postgresqgl/src/backend/optimizer/util/pathnode.c
postgresqgl/src/backend/optimizer/util/relnode.c
postgresqgl/src/backend/parser/analyze.c
postgresqgl/src/backend/parser/gram.y
postgresqgl/src/backend/parser/parse_clause.c
postgresqgl/src/backend/parser/parse_relation.c
postgresqgl/src/backend/parser/parse_target.c
postgresqgl/src/backend/utils/adt/ruleutils.c
postgresqgl/src/backend/utils/errcodes.txt
postgresgl/src/include/executor/nodeAlgoscan.h
postgresgl/src/include/nodes/execnodes.h
postgresgl/src/include/nodes/nodes.h
postgresqgl/src/include/nodes/parsenodes.h
postgresqgl/src/include/nodes/plannodes.h
postgresgl/src/include/nodes/primnodes.h
postgresgl/src/include/nodes/relation.h
postgresqgl/src/include/optimizer/cost.h
postgresqgl/src/include/optimizer/pathnode.h
postgresqgl/src/include/parser/kwlist.h
postgresgl/src/include/parser/parse_target.h

39

A.2. Commands Within A Build Directory

We assume the file structure from 2.2 and that we are in a directory PGLHome /buildxx.

Shell commands to build executables (a “make check™ does only work for the unmodified
version); the first line has to be executed only once when creating a new build directory, the
second each time the source code has changed:

../postgresqgl/configure —--prefix=${PWD} --enable-cassert
——enable-debug CFLAGS="-ggdb -0g —-fno-omit-frame-pointer"
make —-j 4 && make install

Shell commands to create the database db-test and populate it with some data; has to be
executed exactly once when the executables are compiled for the dirst time, after that the
database is available also to new build directories:

./bin/initdb -D ../../data -U postgres -W

./bin/pg_ctl -D ../../data -1 /tmp/postgresgl.log -o "-F —-p 5401" start
./bin/createdb -U postgres -p 5401 db-test

./bin/psgl -p 5401 -d db-test -U postgres —-f populate.sqgl

./bin/pg_ctl -D ../../data -1 /tmp/postgresgl.log —-o "-F -p 5401" stop

Shell commands to start and stop the database server and client:

./bin/pg_ctl -D ../../data -1 /tmp/postgresgl.log -o "-F —-p 5401" start
./bin/psgl -p 5401 -U postgres
./bin/pg_ctl -D ../../data -1 /tmp/postgresqgl.log -o "-F -p 5401" stop

A.3. Signatures Of Functions In nodeAlgoScan.c

Signatures common to nodeAlgoscanFinDense.c, nodeAlgoscanFinAOnDisk.c
and nodeAlgoscanFinSparseWM. c:

AlgoScanState » ExecInitAlgoScan (AlgoScan xnode, EState xestate,
int eflags)

static TupleTableSlot * AlgoNext (AlgoScanState =*node)

static bool AlgoRecheck (AlgoScanState *node, TupleTableSlot =xslot)

int matind(int i, int Jj, int numCols)

TupleTableSlot * ExecAlgoScan (AlgoScanState =*node)

void ExecEndAlgoScan (AlgoScanState =xnode)

Additional signatures for nodeAlgoscanFinDense.c:
int simplexinitTab(float8 xa, float8 xb, int xbaseRToC, int dimr,

int dimc)
int simplexmainTab (int mode, float8 =*a, float8 xb, int *baseRToC,

40

int dimr, int dimc)

int simplexinitRev (float8 xa, float8 xb, int xbaseRToC, int dimr,
int dimc)

int simplexmainRev (int mode, float8 =%a, float8 xb, int =*baseRToC,
int dimr, int dimc)

Additional signatures for nodeAlgoscanFinAOnDisk.c:

int simplexinitRevSparse (AlgoScanState xnode,
ItemPointer xaStartDiscTid, int =*xaStartDiscInd,
struct matElem **aStart, float8 =xrhs, float8 *cost, float8 =x*b,
int *baseRToC, int dimr, int dimc)

int simplexmainRevSparse (int mode, AlgoScanState =xnode,
ItemPointer xaStartDiscTid, int xaStartDiscInd,
struct matElem *+aStart, float8 =xrhs, float8 =*cost, float8 =xb,
int *baseRToC, int dimr, int dimc)

Additional signatures for nodeAlgoscanFinSparseWM. c:

int shortestBFS (int #*baseRToC, int dimr, struct matElem *xaStartc,
int *matchc, int *matchr, int =*distc)

int hopcroftKarpDFS (int *baseRToC, int dimr, struct matElem **xaStartc,
int *matchc, int #*matchr, int =*distc, int cStart)

int hopcroftKarp (int xbaseRToC, int dimr, struct matElem *xxaStartc,
int *matchc, int #*matchr)

void sccRecursive (int *baseRToC, int dimr, struct matElem **aStartc,
int *scclist, int i, int *index, int xendStack, int =sccCount,
int #*nodeCount, int =*indexList, int *xloindList, int <stack,
int xonStack, int xsccStartTmp)

int sccTarjan(int xbaseRToC, int dimr, struct matElem x*xaStartc,
int *sccStartTmp, int =xscclList)

struct matElem *uFromRightSolve (struct matElem *xrhsTriang, int start,
int end, struct matElem x*umat)

struct matElem xuFromLeftSolve (struct matElem xrhsTriang, int start,
int end, struct matElem x*umat)

struct matElem *1FromLeftSolve (struct matElem xrhsTriang, int start,
int end, struct matElem x*lmat, int *rpermInv, float8 =xrhsSys,
int xrpermInv2)

struct matElem xluFromLeftSolveBlock (int *baseRToC, int dimr,
struct matElem *rhsTriang, struct matElem x+xaStartc, int sccCount,
int *sccStart, struct matElem **lmat, struct matElem =x*xumat,
int xrperminv, int *cperm, float8 *rhsSys)

void upluSingBlock (int xbaseRToC, int dimr, struct matElem **aStartc,
int block, int *sccStart, int *scclistInv, struct matElem *xlmat,

41

struct matElem *xumat, int *rperm, int xrperminv, int xcperm,
float8 *rhsSys)

void uplu(int *baseRToC, int dimr, struct matElem x*aStartc,
int sccCount, int *sccStart, int #*scclListInv,
struct matElem *xlmat, struct matElem *xumat, int xrperm,
int xrperminv, int *cperm, float8 #*rhsSys)

int simplexinitRevSparse (float8 xnodea, struct matElem xxaStartc,
float8 xrhs, float8 xcost, float8 xb, int xbaseRToC, int dimr,
int dimc)

int simplexmainRevSparse (int mode, float8 =*nodea,
struct matElem **aStartc, float8 xrhs, float8 =xcost, float8 xb,
int *baseRToC, int dimr, int dimc)

A.4. Using GLPK And The Auxiliary Program

We downloaded the problem instances from [Gay] and stored files formated in compressed
MPS in the folder PGLHome /ProblemsFromMPS/CMPSfiles. We use the tool emps
that uncompresses these files. The C-source code can also be found at [Gay]. In the bash
execute in folder PGLHome /ProblemsFromMPS:

gcc emps.c —O0 emps

cd CMPSfiles

for i in *; do ../emps $i > ../MPSfiles/$i; done
cd

We assume that GLPK was installed separately in a directory GLPK. The details on how to
install it can be found in the manual. To use the standalone solver coming with GLPK and
writing the output to afiro.glpsol use

GLPK/GLPK_install/bin/glpsol —--mps MPSfiles/afiro.mps -o afiro.glpsol

Before compiling the sample.c one needs to set the absolute path manually in line 40 of the
code, e.g.

strcpy (path, "/home/.../PGLHome/ProblemsFromMPS/");

We assume that PGLHome /ProblemsFromMP S has subfoulders Output ForPostgresQL
and PostprocessFiles. To compile and use our program that produces a .csv-file that
can be loaded into PostgreSQL from the folder OutputForPostgresQL asin A.5 use

gcc -I GLPK/GLPK_install/include/ -c sample.c -o sample.o
gcc -L GLPK/GLPK_install/lib sample.o -1lglpk -1m -o sample
cd MPSfiles

for i in *; do ../sample $i; done

cd

42

When using a build from nodeAlgoscanFinSparseWM. c the output written as warn-
ings from PostgreSQL contains a part like “y0=-3; y1=80.0;...”. When copyed at the be-
ginning of a file like PostprocessFiles/afiro.post, and stripped from the “WARN-
ING:” running bc on it performs a reverse of the transformations from MPS format to standard
form. The x1 hold the values of the solution for the original program, the y i the output from
PostgreSQL. cost gives the value of the original cost function.

bc PostprocessFiles/afiro.post
vyl

x1

y50

x30

cost

A.5. Test Instances And Their Dimensions

The folder PGLHome /ProblemsFromMPS/ProbsCSV contains several .csv-files that were
used in testing our code. Due to some issues with privileges one needs to copy these files to
/ tmp before PostgreSQL can read them. When one is in the directory PGLHome /buildxx
one has to execute the following bash commands assuming that the server is already up:

cp ../ProblemsFromMPS/ProbsCSV/asimp_afiro.csv /tmp/.
./bin/psgl -p 5401 -U postgres

Inside a running PostgreSQL client one loads this data as follows after connecting to the
test database:

\c db-test

DROP TABLE IF EXISTS asimp_afiro;

CREATE TABLE asimp_afiro (row int, col int, wval float8);
COPY asimp_afiro FROM ’/tmp/afiro.csv’ WITH CSV HEADER;

One can have the output of the algorithm displayed by PostgreSQL or stored in an extra
table like “xout” in this example:

SELECT » FROM asimp_afiro ALGO SIMPLEX DIM (27,51);
DROP TABLE IF EXISTS xout;
SELECT » INTO xout FROM asimp_afiro ALGO SIMPLEX DIM (27,51);

In the following we give a list of commands that execute our simplex implementation on the
various test cases. Important are the correct dimensions. We split the instances up according
to the contest of testing. The commands work from a syntax point of view regardless which
implementation is active.

Basic testing: two feasible, an infeasible, an unbounded instance and an unbounded instance
that is bounded in the direction of optimality.

43

SELECT * FROM asimp ALGO SIMPLEX DIM (4,7);

SELECT » FROM asimp_testl ALGO SIMPLEX DIM (2,3);
SELECT » FROM asimp_testinf ALGO SIMPLEX DIM (4,7);
SELECT x FROM asimp_testunbmax ALGO SIMPLEX DIM (4,10);
SELECT » FROM asimp_testunbmin ALGO SIMPLEX DIM (4,10);

From a high school book we took 6 exercises (17 a)-c) and 19 a)-c)) and tested maximizing
and minimizing these programs, also for ordered variants. They all have dimensions (4, 8), so
we simply show one instance, as the other are straight forward modifications.

SELECT x FROM asimp_algebral_exl7amax ALGO SIMPLEX DIM (4,38);

We have several instances to specifically test the implementation of the Hopcroft-Karp and
Tarjan’s algorithm. For Hopcroft-Karp all 7 instances have dimensions (26, 26), so we give
just one instance. Most of these instances give only interesting outputs when the debug flags
are set as preprocessor commands in nodeAlgoscanFinSparseWM.c like #define
HOPCROFTKARPDEBUG_1 true

SELECT * FROM asimp_testhopcroftkarp7 ALGO SIMPLEX DIM (26,26);
SELECT x» FROM asimp_testscctarjanl ALGO SIMPLEX DIM (8,8);
SELECT « FROM asimp_testscctarjan2 ALGO SIMPLEX DIM (8,9);
SELECT » FROM asimp_testscctarjan3 ALGO SIMPLEX DIM (8,9);
SELECT * FROM asimp_testscctarjand4 ALGO SIMPLEX DIM (8,9);

There are a few randomly generated instances:

SELECT * FROM asimp_random2 ALGO SIMPLEX DIM (20,50);
SELECT x FROM asimp_random3 ALGO SIMPLEX DIM (20,50);
SELECT » FROM asimp_random4 ALGO SIMPLEX DIM (20,50);
SELECT * FROM asimp_random5 ALGO SIMPLEX DIM (10,100);

To test the auxiliary code that converts .mps-files to .csv-files we created two small .mps-
files. Once the corresponding .csv-files are read in one calls the simplex as follows:

SELECT « FROM asimp_testparser ALGO SIMPLEX DIM (3,5);
SELECT *» FROM asimp_test2parser ALGO SIMPLEX DIM (2,3);

We have 16 instances from the NetLib-library that we used for testing. Other instances
could easily be converted using the auxiliary program (see A.4).

SELECT = FROM asimp_afiro ALGO SIMPLEX DIM (27,51);
SELECT « FROM asimp_agg ALGO SIMPLEX DIM (488,615);
SELECT « FROM asimp_agg2 ALGO SIMPLEX DIM (516,758);
SELECT * FROM asimp_blend ALGO SIMPLEX DIM (74,114);
SELECT x FROM asimp_fit2d ALGO SIMPLEX DIM (10525,21024);
SELECT x FROM asimp_grow22 ALGO SIMPLEX DIM (1320,1826);
SELECT = FROM asimp_grow7 ALGO SIMPLEX DIM (420,581);

44

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

o T . S S S

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

asimp_kb2 ALGO SIMPLEX DIM (52,77);
asimp_scagr25 ALGO SIMPLEX DIM (471,671);
asimp_scsd8 ALGO SIMPLEX DIM (397,2750);
asimp_share2b ALGO SIMPLEX DIM (96,162);
asimp_ship041 ALGO SIMPLEX DIM (402,2166);
asimp_ship04s ALGO SIMPLEX DIM (402,1506);
asimp_sierra ALGO SIMPLEX DIM (3263,4751);
asimp_stair ALGO SIMPLEX DIM (444,626);
asimp_stocfor2 ALGO SIMPLEX DIM (2157,3045);

45

Bibliography

[AB]

[Con]

[CSRLO1]

[Dan48]

[DFU11]

[DRSL16]

[Gay]

[Gril3]

[Hala]

[Halb]

[HHI13]

[LY16]
[Mak16]

P. Amestoy and A. Buttari. Sparse linear algebra: Direct methods. amestoy.
perso.enseeiht.fr/COURS/ALC_2012_2013.pdf. Accessed: 2017-
02-13.

N. Conway. Introduction to hacking postgresql. www.neilconway.org/
talks/hacking/. Accessed: 2016-12-03.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2001.

G. Dantzig. Programming in a linear structure. Technical report, U.S. Air Force
Comptroller, USAF, Washington, D.C., 1948.

C. Dubey, U. Feige, and W. Unger. Hardness results for approximating the band-
width. Journal of Computer and System Sciences, 77(1):62-90, 2011.

T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct meth-
ods for sparse linear systems. Technical report, Department of Computer Sci-
ence and Engineering, Texas A&M Univ, faculty.cse.tamu.edu/davis/
publications_files/survey_tech_report.pdf, 2016.

D. M. Gay. Netlib repository lIp. www.netlib.org/lp/data/. Accessed:
2017-04-27.

P. Gritzmann. Grundlagen der Mathematischen Optimierung. Springer, 2013.

J. Hall. The practical revised simplex method (part 1). www.maths.ed.ac.
uk/hall/RealSimplex/25_01_07_talkl.pdf. Accessed: 2017-01-26.

J. Hall. The practical revised simplex method (part 2). www.maths.ed.ac.
uk/hall/RealSimplex/25_01_07_talk2.pdf. Accessed: 2017-01-26.

Q. Huangfu and J. A. J. Hall. Novel update techniques for the revised simplex
method. Technical report, School of Mathematics, University of Edinburgh, www .
maths.ed.ac.uk/hall/HuHal2/ERGO-13-001.pdf, 2013.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2016.

A. Makhorin. GNU Linear Programming Kit, reference manual for glpk version
4.58 edition, 2016.

46

[Moh]

[Sau]

[Sch99]

[vP16]

[Wik17a]

[Wik17b]

[Wikl17c]

[Wik17d]

R. Mohring. Einfithrung in die lineare und kombinatorische optimierung ws2013,
lecture 9, revised simplex method. https://www.coga.tu-berlin.de/
fileadmin/i26/download/AG_DiskAlg/FG_KombOptGraphAlg/

teaching/admlws13/lectures/lect_col_09.pdf. Accessed:
2017-02-02.

M. Saunders. Large-scale numerical optimization: Notes 8: Ba-
sis updates. web.stanford.edu/class/msande318/notes/

notes08-updates.pdf. Accessed: 2017-02-13.

A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience,
1999.

Laurynas Sik¥nys and Torben Bach Pedersen. Solvedb: Integrating optimization
problem solvers into sql databases. In Proceedings of the 28th International Con-
ference on Scientific and Statistical Database Management, SSDBM ’16, pages
14:1-14:12, New York, NY, USA, 2016. ACM.

Wikipedia. Expander graph — wikipedia, the free encyclopedia, 2017. Accessed:
2017-06-11.

Wikipedia. Hopcroft—karp algorithm — wikipedia, the free encyclopedia, 2017.
Accessed 2017-02-17.

Wikipedia. Sherman—morrison formula — wikipedia, the free encyclopedia, 2017.
Accessed 2017-06-08.

Wikipedia. Tarjan’s strongly connected components algorithm — wikipedia, the
free encyclopedia, 2017. Accessed 2017-02-17.

47

