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Abstract

Ongoing dates, such as now, are nowadays widely used in many temporal databases. However,
the ever nature of ongoing dates with passing time have a few implications. The instantiated
value of the date, the validity of predicates, the result of functions and queries involving ongo-
ing dates changes with passing time. To avoid this problem, the conventional bind approach
instantiates all ongoing dates to a given reference date before further processing. This implies
that any query result of the bind approach is only valid for that specific reference date. A
newly proposed ongoing approach tries to remedy this issue by leaving any ongoing dates
uninitialized during the process and generating a result that takes any reference date into con-
sideration. A result for a specific reference date can be retrieved from this result with minimal
computational effort and without re-evaluating the query, resulting in a drastic reduction in
execution runtime. In this thesis, this novel approach is implemented into the kernel of the
popular open-source database system PostgreSQL and evaluated against the conventional bind
approach. With our novel ongoing approach we see a similar runtime compared to the bind
approach for results at a single reference time. However, for every subsequent request at a
different reference date, the ongoing approach can retrieve results from a previously cached
result for almost no computational effort, making it greatly favorable when queries are evalu-
ated at multiple reference dates.



Zusammenfassung

Fortlaufende Kalenderdaten wie now sind heutzutage weitgehend in temporale Datenbanken
gebräuchlich. Weil jedoch solche Daten sich mit der Zeit ändern, bringen sie etliche Probleme
mit sich mit. Der instanziierte Wert, die Gültigkeit Resultate von Prädikaten, Funktionen und
Queries mit fortlaufende Daten verändern sich mit der Zeit. Um dieses Problem zu umgehen,
instanziiert das konventionelle Bind Approach alle fortlaufende Daten zu einem gegebenen
Bezugsdatum, bevor es weiter verarbeitet wird. Jedoch sind alle Resultate dieser Methode
nur gültig für das Bezugsdatum. Ein neulich vorgestelltes Ongoing Approach umgeht dieses
Problem, indem es die fortlaufenden Daten uninstanziiert lässt. Die neue Methode generiert
Resultate, die alle Bezugsdaten in Betracht zieht und demzufolge auch für alle Bezugsdaten
gültig ist. Resultate für ein spezifisches Bezugsdatum können mit minimalem Rechenaufwand
aus diesem Zwischenresultat abgerufen werden. Die Query muss in diesem Fall nicht neu
evaluiert werden, was in einer drastischen Reduktion der Laufzeit resultiert. In dieser Thesis
wird diese neue Methode in den Kernel von PostgreSQL, ein populärer open-source Daten-
banksystem, implementiert. Folglich wird es evaluiert und mit dem konventionellen Bind
Approach verglichen. Mit der neuen Methode ist die Laufzeit vergleichbar mit dem Bind Ap-
proach. Jedoch kostet jede nachfolgende Abfrage mit dem Ongoing Approach zu einem un-
terschiedlichen Bezugsdatum kaum Rechenaufwand, was es zur bevorzugten Methode macht,
falls eine Query zu mehreren Bezugsdaten abgefragt wird.
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1 Introduction

1.1 Overview
Ongoing dates, such as now, are widely used in relations that include valid times. The most
common form of such valid time attributes are date intervals with fixed dates as the start date
and an ongoing date now as the end date that describes a tuple that has a known start point
and an end date not known yet. Such tuples are therefore valid from the given start date to the
current date, changing depending when the tuple is retrieved.

Clifford et al. [2] proposes a now date that is only instantiated by the time it is accessed. The
point of such ongoing dates is that its instantiated value changes as time passes by to allow
dates such as now. The ongoing date now instantiated at the reference date 2015-10-15 will
return 2015-10-15, while instantiated at reference time 2017-08-11 will return 2017-08-11.
While ongoing dates are useful to represent such dates, they can not be easily processed. To
use them in queries with the conventional method, the bind approach proposed by Anselma et
al. [1], they first have to be instantiated into fixed dates with a reference date. However, that
means that the results are only valid at that specific reference date. It could be possible that
the results are completely wrong for any other reference date. A newly proposed solution by
Y. Mülle et al. [3] addresses this issue by leaving ongoing dates uninitialized and produces a
result that is independent of reference dates. These results can be cached and instantiated at
any desired reference date, even multiple times, without re-evaluating the query. In this thesis,
this approach is referred as the ongoing approach.

To exemplify both the ongoing and the bind approach and illustrate the difference between
them, consider a relation describing software bugs and keeping track of their status. Table 1.1
serves as an example with two entries. Its attributes are an id to uniquely identify the bug, a
description and a date range as valid time to denote when the bug was recorded and resolved.
The first entry B1 describes a bug that was discovered 2015-01-01 and closed 2015-03-02.
The second entry B2 has been recorded on 2014-01-01 and has not been fixed yet, hence a
now as its end date.

Bug ID Description VT
B1 Login broken [2015-01-01, 2015-03-02)
B2 Crashes every 5 minutes [2014-01-01, now)

Table 1.1: Example relation
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As an example query, we want to know if the valid time interval of B1 overlaps with B2 at
the reference dates 2014-10-14 and 2015-08-20. We start with joining the table 1.1 with itself
and choose the tuple where B1 and B2 are joined together.

To achieve the goal with the conventional bind approach, any ongoing date involved has
to be first instantiated at the reference date 2014-10-14. In this case, the valid time of B2
becomes [2014-01-01, 2014-10-14). With only fixed dates in the valid time intervals, the
regular overlaps predicate can be used to determine if the two date ranges overlap with each
other, resulting in false in our example. For the second reference date 2015-08-20, the same
procedure must be done again with the new reference date.

With the ongoing approach, the ongoing date now in bug B2 is left uninstantiated. To
process ongoing dates, a special generally valid overlaps predicate is necessary. This new
overlaps predicate takes two date ranges with ongoing dates as inputs and produces a result
that holds information on whether they overlap or not at any reference date. The result is then
instantiated at the first reference date 2014-10-14 to false. The same result is then instantiated
at the other reference date 2015-08-20 to true without having to re-evaluate the query.

The main difference between the bind and the ongoing approach is that the result of the bind
approach is only valid at a specific reference date. For any other reference date the query must
be re-evaluated from scratch. On the other hand, the ongoing approach evaluates the query
at any reference date, making its result valid regardless of reference date. The final result of
multiple reference dates can be easily retrieved from a cached result of the ongoing approach
for almost no computational cost.

In this thesis, an implementation of the new ongoing approach is presented. First, two
new data types are introduced: the ongoing date for holding data about ongoing dates and
the ongoing boolean to store the intermediate results of the ongoing approach. Then, ongoing
predicates and generally valid logical connectives are added to make queries following the
ongoing approach possibles. The implementation is then evaluated and compared against
the bind approach. The results will be analyzed and used to determine if the new ongoing
approach is applicable in real-world scenarios.

1.2 Thesis Outline
The remainder of this thesis is structured as follows. First, in chapter 2, the theory behind
the ongoing approach, namely two data types and their respective functions, is provided as a
foundation required to fully understand the implementation. Chapter 3 explains the implemen-
tation of the ongoing approach into the PostgreSQL kernel in detail, which is then evaluated
against the bind approach in the chapter 4. In the chapter 5, the thesis is summarized with a
short conclusion and future potential of the new approach is discussed.
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2 Ongoing Data Types

In this chapter, the theory behind the ongoing approach to query ongoing dates is explained in
detail to provide the necessary knowledge to understand the remainder of the thesis. Further-
more, relevant terms of the ongoing approach used throughout in this paper are defined and
explained and exemplified with an application scenario.

2.1 Ongoing Date
An ongoing date is a date variable consisting of two dates, notated as a+b with a and b as sep-
arate fixed dates. It can be instantiated to a fixed date with a reference date. The instantiation
of an ongoing date at a reference date can be defined with three cases:

• If the reference date falls between a and b, the ongoing date instantiates to the value of
the reference date.

• If the reference date is earlier than or equal to a, it instantiates to a.

• If the reference date is later than or equal to b, it instantiates to b.

As an example, the ongoing date 2010–01–01+2020–01–01 with a reference date 2015–
01–01 will instantiate to to the same date as the reference date, as it falls between the dates a
and b. With a reference date of 2005–01–1, it will instantiate to the date a, 2010–01-01, as the
reference is earlier than a.

Any ongoing date can be categorized into five types listed in the table 2.1. The notation of
every type except for capped ongoing dates can be shortened. The short names of any ongoing
dates will be primarily used throughout the thesis.

Type Fixed Now Growing Limited Capped
Notation a+a −∞+∞ a+∞ −∞+b a+b
Short form a now a+ +b a+b
Example 2010-01-01 now 2010-01-01+ +2010-01-01 2010-01-01+2020-01-01

Table 2.1: Ongoing Date Types

10



2.2 Ongoing Boolean
The ongoing approach evaluates predicates with ongoing dates at any reference date and there-
fore produces a result that can change with different reference dates. To actually store these
results, a simple boolean value is not enough. The ongoing boolean is introduced as a new
data type to represent results that either instantiates to true or false at a given reference date.

It is represented as a set of fixed date ranges to signify date intervals of reference dates at
which it instantiates to true. As an example, the ongoing boolean b[[2010-01-01, 2011-01-
01)] instantiates to true at any reference date from 2010-01-01 until 2011-01-01 and to false
for any other reference date.

2.3 Generally Valid Predicates
The generally valid predicates are special functions that evaluate ongoing dates with ongoing
booleans as results. These special predicates are necessary for using the ongoing approach
because it is not required to instantiate any ongoing dates before evaluating them, keeping the
results valid for any reference date. For example, the ongoing less-than predicate evaluates the
two ongoing dates 2015-01-01 and now into the ongoing boolean b[[2015-01-02, ∞)]. The
result of this ongoing less-than predicate tells that the fixed date 2015-01-01 is less-than (or
earlier than) the ongoing date now for any reference date from 2015-01-02 and later. While any
predicate that can evaluate dates can be theoretically transformed into an ongoing equivalent,
the focus in this thesis lies on the less-than and overlaps predicate.

2.4 Generally Valid Logical Connectors
Generally valid logical connectors like AND, OR and NOT for ongoing booleans are also dif-
ferent from logical connectors for simple booleans. Again, because the instantiated value of
ongoing booleans can change depending on the reference date, results of generally valid logi-
cal connectors for ongoing booleans are ongoing booleans again. For example, the generally
valid conjunction of the two ongoing booleans b[[2012-01-01, 2014-01-01)] and b[[2013-06-
02, 2017-08-02)] would be another ongoing boolean b[[2013-06-02, 2014-01-01)].

These logical connectors for ongoing booleans are needed to combine generally valid predi-
cate results to allow for more complex queries and to construct more generally valid predicates.
The implementation of the generally valid overlaps predicate depends on the generally valid
less-than predicate and the generally valid conjunction as an example.
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3 Implementation

In order to use the ongoing approach, the ongoing date, the ongoing boolean, generally-valid
logical connectives and an overlaps predicate must be implemented first. The widely used
open-source database system PostgreSQL is used as a base for this implementation. The source
code of PostgreSQL is written in the C programming language. Therefore any modification
and addition are in the same language. In this section, the any changes made to the kernel are
described in detail.

3.1 Ongoing Data Types

3.1.1 Ongoing Dates

typedef struct
{

// a + b
DateSingleADT ongoingLower; // a
DateSingleADT ongoingUpper; // b
bool isFixed;

} DateADT;

Listing 3.1: Implementation Ongoing Date

The built-in PostgreSQL date data type was only intended to hold fixed dates. The type
"DateADT" was an alias for a 32-bit integer that stored the value of the fixed date. We extended
the DateADT type to support ongoing dates in the form of a+b. We preserve a fixed date data
type as the DateSingleADT. The former definition of "DateADT" is then replaced with a new
ongoing date type struct, shown in listing 3.1. In addition to the two DateSingleADTs a and
b contained in the DateADT struct, the bool isFixed indicates if the dates a and b are equal.
Equal dates implies that it instantiates to the same date regardless at which reference date. This
boolean value simplifies checks on whether it is fixed or not and is often used in algorithms.

The reason a new date data type with ongoing functionalities was not created entirely
from scratch was the ability to use the built-in PostgreSQL daterange type, which stored two
DateADTs as a range, without any large adjustments. With an implementation of a daterange
type that also works with ongoing dates, date ranges with ongoing dates as range limits are
possible. This advantage is used to store ongoing dateranges and also makes is possible to
implement an generally valid overlaps predicate for dateranges.
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The struct type is used to describe the five ongoing date types described in the previ-
ous chapter: fixed, now, growing, limited, and capped. The representation of each type as
DateADT is illustrated in table 3.1.

Struct member Fixed Now Growing Limited Capped
ongoingLower 2010-01-01 −∞ 2010-01-01 −∞ 2010-01-01
ongoingUpper 2010-01-01 ∞ ∞ 2010-01-01 2018-01-01

isFixed true false false false false

Table 3.1: DateADT examples

Along with the redefinition of the DateADT type to a struct, other changes were necessary to
render the new ongoing date usable. To use ongoing dates in SQL statements, the date_in()
and date_out() were adjusted. These functions are responsible for deserializing strings in
SQL statements into ongoing date objects. For example, deserializing the string "2017-04-
22+2018-06-04" to an instance of the DateADT struct and serialize the DateADT struct back
to the string.
A trade-off decision was to include the isFixed boolean to the DateADT struct. Whether a
DateADT is a fixed date or not can be implied from the two DateSingleADTs, so there is
a small redundancy. This redundancy results in DateADTS requiring more memory space.
However, the isFixed boolean is kept in the struct to simplify checks the fixed state, which is
done in many algorithms. The benefit of reduction of the runtime was chosen over the benefit
of reduction of memory space requirements.
Another decision was whether to extend the existing built-in date data type of PostgreSQL
with ongoing features or to create a new data type separate from the built-in type. One advan-
tage of the current implementation with the extension of the PostgreSQL date is that the built-
in daterange data type, used to represent date intervals, can be used with the extended date
type without any large modifications. The downside of this method is the loss of dateranges
with non-ongoing dates. In the current implementation, ongoing booleans are persisted as
daterange arrays, but only fixed dates are allowed as daterange bounds per definition of the
ongoing boolean. Basically, the extended version of the date type is used for ongoing booleans
when ordinary fixed dates would be enough. The consequence is greater memory usage for
ongoing booleans and the necessity of checks on dates where only fixed dates are allowed.
The method of extending the date data type was chosen over creating a separate ongoing date
due to the simplicity of using the extended date for everything, as those can emulate simple
dates just as well.
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3.1.2 Ongoing Booleans

typedef struct OngoingBoolean
{

DateSingleADT lower;
DateSingleADT upper;
struct OngoingBoolean *next;

} OngoingBoolean;

Listing 3.2: Implementation Ongoing Boolean

There are two different ways ongoing booleans are stored. The first one is the Ongoing-
Boolean struct in C (see listing 3.2) and the other one a PostgreSQL daterange array. There
is a reason why two seperate representation of the ongoing boolean are needed. While the
OngoingBoolean struct is easy to modify and create, it can not be stored in the database.
That is why the built-in daterange array data type is necessary to persistently save ongoing
booleans.

The OngoingBoolean struct is implemented as a forward list of nodes, each node containing
one date range represented with DateSingleADTs lower and upper as members of the struct.
The next pointer points to the next OngoingBoolean node in the list or to null if the list
ends. It is a series of non-overlapping date ranges ordered by time in ascending order. The
reasoning behind these constraints is to allow the generally valid logical connectives for
ongoing booleans to be implemented more efficiently, but those will be discussed later.

The list feature of the struct is crucial as the number of ranges is typically not known before
the end of a logical connective algorithm. With a forward list like the OngoingBoolean struct,
any additional node can be appended by setting the next pointer of the latest node to the node
to be appended. The same can not be done with an array, as the memory required must be
allocated beforehand and the size of the allocated memory can not be changed after.
To convert the OngoingBoolean struct into persistable daterange arrays and vice versa, two
functions are defined: deserialize_ongoingBoolean() in algorithm 1 that transforms daterange
arrays into OngoingBoolean structs, and serialize_ongoingBoolean() in algorithm 2 that re-
verses the process.

14



Algorithm 1: Deserialize ongoing booleans
Input : inputArray - Daterange[]
Output: outputBool - OngoingBoolean pointer

1 outputBool = null;
2 currentBool = null;
3 rangeArray = deserialize_array(inputArray);
4 foreach range_element ∈ rangeArray do
5 bounds = range_deserialize(rangeElement);
6 newNode = new OngoingBoolean(bounds.lower, bounds.upper);
7 if outputBool = null then
8 outputBool = newNode;
9 else

10 currentBool→next = newNode;
11 currentBool = newNode;
12 end
13 return outputBool;

Algorithm 2: Serialize ongoing booleans
Input : inputBool - OngoingBoolean pointer
Output: outputArray - Daterange[]

1 if inputBool = null then return empty_array();
2 ;
3 numElems = length(inputBool);
4 outputArray = new Array[numElems];
5 foreach i ∈ range(0, numElems) do
6 lowerBound = create_dateADT(inputBool→lower, inputBool→lower);
7 upperBound = create_dateADT(inputBool→upper, inputBool→upper);
8 outputArray[i] = make_daterange(lowerBound, upperBound);
9 ongoingBool = ongoingBool→next;

10 end
11 return outputArray;

15



3.2 Generally Valid Operations

3.2.1 Logical Connectives for Ongoing Booleans
We implemented the three logical connectives for ongoing booleans: NOT, AND, and OR.
They are used to combine ongoing booleans to enable more complex queries. There are two
functions defined for each connector, one being the actual algorithm that is only callable from
within the C-code and the other being a function callable from the PostgreSQL client. The
functions accessible through the PostgreSQL client via queries take PostgreSQL daterange
arrays as arguments and are responsible for properly serializing and deserializing input
arrays. The internal function in C will take those deserialized OngoingBooleans and calculate
the results of logical connectives.

For example, the generally valid logical connective NOT can be called with
gv_logical_not(daterange[]) in a query. It deserializes the daterange array into Ongo-
ingBooleans, calls the internal function gv_internal_logical_not(OngoingBoolean input),
serializes the result back to a daterange array and returns it. This separation is done in order
to keep algorithms for OngoingBooleans chainable without serializing to daterange arrays
and deserializing to OngoingBooleans again in between function calls. An example of a use
case of the ability to chain OngoingBoolean logical connectives is the overlaps predicate of
the DateADT type. The conjunction of OngoingBooleans is used three times for one overlaps
function call and it would create a massive computational overhead to serialize and deserialize
between OngoingBooleans and daterange array. Another advantage of modularizing logical
connectives and predicates is the improved readability and maintainability of the source code.
Another example is illustrated in algorithm 3.

When using the generally valid logical connectives, is crucial that any input OngoingBoolean
for the functions comply with the constraints of non-overlapping date ranges and order by
ascending date. This is done to greatly simplify the algorithms and results in a lower runtime.
However, as the algorithms are constructed with these limitations in mind, it will break with
invalid ongoing booleans as input. The generally valid predicates and logical connectives for
ongoing booleans in this implementation will always produce valid ongoing booleans if the
inputs were also valid.
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Algorithm 3: Separation of Serialization and Algorithm Logic
1 // Callable function from SQL statement
2 Function gv_logical_not(daterange[])
3 ongoingBoolInput = deserialize_ongoingBoolean(daterange[]);
4 ongoingBoolResult = gv_internal_logical_not(ongoingBoolInput);
5 daterangeResult = serialize_ongoingBoolean(ongoingBoolResult);
6 return daterangeResult;

7 // Internal algorithm without serialization/deserialization
8 Function gv_internal_logical_not(ongoingBoolInput)
9 [[ Not algorithm ]];

10 return negation;

11 // The separation between serialize/deserialize and algorithm allows to use algorithms
back to back without de-/serializing.

12 Function double_negate(ongoingBooleInput)
13 negated = gv_internal_logical_not(ongoingBoolInput);
14 double_negated = gv_internal_logical_not(negated);
15 return double_negated;

17



Algorithm 4: Negation
Input : inputBool - OngoingBoolean pointer
Output: outputBool - OngoingBoolean pointer

1 outputBool = null;
2 currentBool = null;
3 if inputBool = null then return b[(MINVAL, MAXVAL)];
4 if inputBool → lower 6= MINV AL then
5 newNode = b[(MINVAL, inputBool→lower)];
6 outputBool = newNode;
7 currentBool = newNode;
8 end
9 while inputBool 6= null do

10 if inputBool → upper = MAXV AL then break ;
11 currentBool = new OngoingBoolean();
12 currentBool→lower = inputBool→lower;
13 inputBool = inputBool→next;
14 if inputBool 6= null then
15 currentBool→upper = inputBool→lower;
16 else
17 currentBool→upper = MAXVAL;
18 end
19 if outputBool = null then
20 outputBool = newNode;
21 else
22 currentBool→next = newNode;
23 currentBool = newNode;
24 inputBool = inputBool→next;
25 end
26 return outputBool;

The first generally valid connective is a logical negator that flips an OngoingBoolean. In
essence, it will produce an OngoingBoolean as a result that instantiates to false if the input
OngoingBoolean instantiates to true and vice versa at the same reference date. The algorithm
is illustrated in algorithm 4.
As an example to show the functionality of the negator algorithm, consider the ongoing
boolean b[[2010-01-01, 2015-01-01), [2018-01-01, 2020-01-01)] as input parameter. The
algorithm will check if the first date range starts at MINVAL, the minimum value of a date, at
line 4. If this is not the case, like in the example, it will add a date range with MINVAL as start
date and the start date of the first input date range as the end value to the result. In our example,
it would be [MINVAL, 2010-01-01). After the initial check, it will iterate through the remain-
ing input ranges and add an range for each gap between them in a while loop starting at line
9. In the example, an range [2015-01-01, 2018-01-01) is appended to our result array. At line
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14, if the last date range of the input array does not end with MAXVAL, the maximum value of
a date, it will add another one to the result with the ending date of the last input element as the
start date and MAXVAL as ending date. In the case in the example, [2020-02-02, MAXVAL).
The returned result is the ongoing boolean b[[−∞, 2010-01-01), [2015-01-01, 2018-01-01),
[2020-01-01,∞)].

Algorithm 5: Conjunction algorithm
Input : input1, input2 - OngoingBooleans pointers
Output: outputBool - OngoingBoolean pointer

1 outputBool = null;
2 currentBool = null;
3 while input1 6= null ∧ input2 6= null do
4 while input1→ lower ≥ input2→ upper ∨ input2→ lower ≥ input1→ upper

do
5 if input1→ lower ≥ input2→ upper then input2 = input2→next ;
6 else input1 = input1→next ;
7 if input1 = null ∨ input2 = null then return outputBool ;
8 end
9 newNode = new OngoingBoolean(

10 max(input1→lower, input2→lower),
11 min(input1→upper, input2→upper)
12 );
13 if outputBool = null then outputBool = newNode ;
14 else current→next = newNode ;
15 current = newNode;
16 if input2→ upper < input1→ upper then input2 = input2→next ;
17 else if input1→ upper < input2→ upper then input1 = input1→next ;
18 else
19 input1 = input1→next;
20 input2 = input2→next;
21 end
22 end
23 return outputBool;

The next logical connector is the conjunction of two ongoing booleans. It takes two ongoing
booleans as input and calculates a new ongoing boolean that instantiates to true at reference
dates where both input OngoingBooleans instantiate to true. The overlapping parts are added
into a new OngoingBoolean forward list to be returned as the result. The logic behind this al-
gorithm is taken from the paper presentig the ongoing approach [3]. However, it was modified
and tested to fit in this implementation. The algorithm is illustrated in algorithm 5.
To exemplify the conjunction algorithm, consider the two ongoing booleans b[[2000-01-01,
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2010-01-01)] and b[[2005-01-01, 2012-01-01)]. It will pass the first while loop in line 3, but
fail the loop in line 4. Then, a new OngoingBoolean is created with an daterange set as the
overlapping part of the two inputs in line 9 and its value is assigned to the outputBool pointer
variable, which will be returned. The input2 pointer advances to the next node in line 13, in
this case to null. At the end of the while loop, it will fail the condition in line 3, as input2
is now assigned to null. It breaks out of the loop and returns the outputBool variable, which
contains the conjunction of the two input OngoingBooleans. The final results is the ongoing
boolean b[[2005-01-01, 2010-01-01)].
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Algorithm 6: Disjunction algorithm
Input : input1, input2 - OngoingBooleans pointer
Output: outputBool - OngoingBoolean pointer

1 outputBool = null;
2 currentBool = null;
3 while input1 6= null ∧ input2 6= null do
4 if input2→ lower < input1→ lower then swap(input1, input2) ;
5 newNode = new OngoinBoolean();
6 newNode→lower = input1→lower;
7 while input1 6= null ∧ input2 6= null] do
8 if input2→ lower ≤ input1→ upper then
9 if input2→ upper > input1→ upper then

10 input1 = input1→next;
11 swap(input1, input2);
12 else
13 input2 = input2→next;
14 end
15 if input2 = null then
16 newNode→upper = input1→upper;
17 input1 = input1→next;
18 end
19 else
20 newNode→upper = input1→upper;
21 input1 = input1→next;
22 break;
23 end
24 end
25 if outputBool = null then
26 outputBool = newNode;
27 else
28 currentBool→next = newNode;
29 currentBool = newNode;
30 end
31 while input1 6= null ∨ input2 6= null do
32 if input1 6= null then
33 currentBool→next = input1;
34 else
35 currentBool→next = input2;
36 currentBool = currentBool→next;
37 end
38 return output;
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The last algorithm for OngoingBooleans is the disjunction of two OngoingBooleans illustrated
in algorithm 6. It takes two OngoingBooleans as input. The algorithm works with two point-
ers, each pointing to the first element of the two input OngoingBoolean lists. The first while
loop repeats if both input lists are not at the end yet. Inside the loop, it checks if the Ongo-
ingBoolean node the input1 points to starts before or at the same date as the one input2 points
to. If this is not the case, the two pointers get swapped to make sure the OngoingBoolean of
input2 does not start earlier. From here, the start point of the a new OngoingBoolean node is
set to the lower value of input1. The algorithm then enters the inner while loop, in which the
input1 is compared to the other set. Depending on the position of the daterange from input2,
different actions are taken:

• Line 9
If the daterange of input2 is fully contained in the daterange of input1, the pointer of
input2 is set to the next value in the list, as the current value does not change the result.
The inner loop is repeated.

• Line 12
If the daterange of input2 is starting inside the daterange of input1 or daterange input2
is extending daterange input1 respectively, the input1 pointer is set to the next element
in the list and the pointers are swapped again. The inner loop is repeated.

• Line 15
If input2 is pointing to null, the end of the list is reached and the upper value of the
current result node is set to to the upper value of the input1 daterange. The input1
pointer is set to the next element in the list. It will break out of the inner while loop, as
one of the pointers is set to null.

• Line 19
If the daterange of input2 is fully outside or has a start point later than the end point of
the daterange of input1 respectively, the end point of the current result node is set to the
upper value of the input1 daterange. The input1 pointer is set to the next element in the
list and the inner while loop is repeated.

Once outside the inner loop at line 24, the current result node is appended to the result
OngoingBoolean list. The outer loop is repeated until at least one of the input lists is at the
end. The last while loop at line 27 appends any leftover dateranges to the result list that may
exist in one of the input lists.

To exemplify the disjunction algorithm, consider the two ongoing booleans b[[2009-01-01,
2016-01-01)] as input1 and b[[2008-01-01, 2010-01-01), [2018-01-01, 2020-01-01)] as in-
put2. Inside the first while loop at line 3, it will make sure that the daterange of input1 starts
earlier than the daterange of input2, swapping both pointers if it is not the case. In our example,
input1 points at the daterange [2009-01-01, 2016-01-01), which starts later than input2 [2008-
01-01, 2010-01-01). Thus both pointers are swapped including any following dateranges. If
the daterange of input1 starts first, it is certain that the new daterange of the result starts at the

22



same time as the daterange of input1. In line 6, the lower date for the new OngoingBoolean
is set. It will then enter the inner loop at line 7, where the position of input2 daterange is
compared to the position of input1 daterange. The input2 daterange [2009-01-01, 2016-01-
01) starts inside the input1 daterange [2008-01-01, 2010-01-01), but extends after the end of
input1, so it will enter the if case in line 9. In there, the next daterange of input1 is assigned to
it and both inputs are swapped again in order to ensure that input1 starts first. From there, the
inner loop at line 7 is repeated with swapped inputs. Now, the input2 daterange [2018-01-01,
2020-01-01) is completely outside of the input1 daterange [2009-01-01, 2016-01-01). In this
case, the algorithm will go to line 19, where the end date of the new OngoingBoolean node is
set to the end date of input1. It will then advance input1 to the next daterange and break out of
the inner loop at line 7 and append the new node to the result. Because input1 now points to
null, the outer loop at line 3 is exited. At the end in the while loop in line 31, the last daterange
left is in input2, which will be copied and appended to the result as it is. The final returned
result is the ongoing boolean b[[2008-01-01, 2016-01-01), [2018-01-01, 2020-01-01)].

3.2.2 Less-than Predicate
The ordinary less-than predicate for fixed dates can not be used on ongoing dates, as they are
only intended to work with fixed dates and return an fixed boolean. A generally-valid less-
than predicate has to be implemented in order to be able to process ongoing dates. This new
generally-valid predicate takes two ongoing dates as input and computes an ongoing boolean,
showing for which reference dates the two ongoing dates would overlap with each other.
The algorithm for the generally-valid less-than predicate a+b < c+d can be broken down to
five cases illustrated in algorithm 7.

Algorithm 7: Implementation less-than predicate
Input : Two ongoing dates: a+b, c+d
Output: output: OngoingBoolean

1 if b < d ∧ b < c then return b[(−∞,∞)] ;
2 if a < c ≤ d ≤ b then return b[(−∞, c)] ;
3 if c ≤ a ≤ b < d then return b[[b+1,∞)] ;
4 if a < c ≤ b < d then return b[(−∞, c), [b+1,∞)] ;
5 else return b[] ;

This predicate can be used with the SQL function gv_date_lt(date1, date2). For instance, the
predicate gv_date_lt(’2000-01-01+2010-01-01’, ’2005-01-01+2020-01-01’) goes into line 4
and evaluates to the ongoing boolean b[(−∞, 2005-01-01), [2010-01-02,∞)]
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3.2.3 Overlaps Predicate
A generally valid overlaps predicate for ongoing dates is also implemented. It builts upon the
previously defined generally valid less-than overlaps and the generally valid logical conjunc-
tion connector. The implementation of the generally valid overlaps predicate is illustrated in
algorithm 8.

Algorithm 8: Implementation less-than predicate
Input : Two dateranges: range1, range2
Output: OngoingBoolean

1 return range1.start < range2.end ∧ range2.end < range1.start ∧ range1.start <
range1.end ∧ range2.start < range2.end;

This predicate can be used with the SQL function gv_date_overlaps(daterange1, dat-
erange2). For instance, the predicate gv_date_overlaps(daterange(2000-01-01, now),
daterange(2005-01-01, 2020-01-01) evaluates to the ongoing boolean b[[2005-01-02,∞)]

3.2.4 Bind Operator
Another addition to the new DateADT type are the date_bind() and the daterange_bind()
functions. These can be called from a PostgreSQL client via a SQL query and is responsible to
instantiate an Ongoing Date at a reference date. For example, the expression date_bind(2010-
01-01+, 2015-01-01), where the first argument is the ongoing Date and the second date is the
reference date to instantiate the ongoing date at, would evaluate to 2015-01-01. The dat-
erange_bind() function instantiates the two dates inside a given daterange to a reference date
similar to date_bind(). These functions were implemented to allow us to write queries follow-
ing the bind approach, where the ongoing date variables are instantiated to a specific reference
date before it is further processed.
The same is implemented for ongoing booleans with the bind_ongoing_boolean() function.
It takes an ongoing boolean and a reference date as arguments and instantiates the ongo-
ing boolean to the reference date, resulting in either true or false. For example, in a SQL
statement, the function call bind_ongoing_boolean([[2008-01-01, 2014-01-01)], ’2010-01-
01’) evaluates to true, whereas bind_ongoing_boolean([[2008-01-01, 2014-01-01)], ’2010-
01-01’) evaluates to false.
The date_bind() is necessary for the implementation of the bind approach, as the ongoing
dates must be instantiated before the query evaluation. The bind_ongoing_boolean() is nec-
essary for the ongoing approach to instantiate the results at given reference times into fixed
booleans.
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3.3 PostgreSQL Kernel Adjustments
In addition to all the changes described above, some smaller changes had to be done in order
to render the implementation useful. The first change is to the file pg_type.h. In this file, data
types are declared that can be used in PostgreSQL. The only line that required a change was
the date data type declaration because it was extended with ongoing features. The number
that depicts the size of the data type was raised from 4 bytes, a single 4-byte integer, to 9
bytes, two 4-byte integers and one boolean. The new OngoingBoolean type does not need its
own declaration because it is only a date struct used internally in C-code to store and modify
data from daterange arrays.

To make C-functions callable within SQL queries, they have to be declared in the pg_proc.h
file. Each function is declared with a unique OID. The OID number is an identifier for objects
in Postgres like data types or functions for example. Every object has to be assigned to a
unique OID, regardless of the object type. For the newly added lines, free OID numbers
from the 6000 to 6999 are used to avoid any OID duplicates with built-in objects. A sample
PostgreSQL function declaration is illustrated in table 3.2.

Parameter Value Description
OID 6001 An arbitrary, but unique OID
Internal name gv_date_lt Name of the internal C-function
External name gv_date_lt SQL function name
Input types 1082, 1082 Two ongoing dates
Return type 3913 Ongoing boolean

Table 3.2: Sample declaration of a PostgreSQL function
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4 Evaluation
In this section, we evaluate the ongoing approach on real-world and synthetic datasets. We
compare its execution runtime and result size with the ones of the bind approach. We use self-
joins whose predicate contains the overlaps predicate as queries. With a wide range of different
datasets, it can be easily observed how both approaches behave in different circumstances. In
addition to a comparison between approaches, different parts of the execution of the generally
valid overlaps and their impact on runtime is evaluated and analyzed. The overlaps predicate
for ongoing dates can be broken down into generally valid less-than predicates and generally
valid conjunctions for ongoing booleans. This test is done to compare how different parts of
the overlaps predicate affect the overall runtime.
The evaluation results show that the ongoing approach execution runtime is never significantly
worse than the bind approach for results at a single reference date. With the End set, the
runtime of the ongoing approach was even consistently shorter across all instantiation dates
and dataset sizes. In terms of results size, the result size of the ongoing approach was always
the same as the worst case of the bind approach in the test queries.

4.1 Setup

4.1.1 Datasets
To evaluate the ongoing approach, it was tested with both data from a real-world application
and from synthetically created data. All datasets contain date ranges with a fixed date as
start point and either a fixed date or an ongoing growing date as end point. This format of
date ranges is used because real-world data usually follow this pattern of a known fixed start
point and an end point that is not known. It is also favorable for the evaluation, as growing
dateranges overlap with every subsequent non-empty daterange, increasing execution time and
result size, magnifying differences between approaches for a more discernible comparison.

Real World Data

The real-world data set is a public dataset of bug reports from the Eclipse project [4]. The
data, initially formatted in a XML schema, is converted into a csv table with the following
schema:

(id integer, product text, component text, vt daterange)

Each tuple has a unique integer id, a product text attribute to show for which product the bug
was logged, a component text attribute to show for which part of the product it was registered
and a valid time daterange which signifies the date interval the bug was open.
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In total, this dataset contains 165547 tuples. To test the ongoing approach with different set
sizes, the original set was cut down into smaller pieces. The first 10k, 20k, ... , 90k tuples of
the original dataset ordered by the start point of vt in descending order are saved as smaller
datasets in order to include only the most recent tuples. With increasing dataset size, the time
range in which dateranges exists becomes larger, but the density of ranges stays approximately
the same. With this method, we can simulate datasets with different length of histories and
ultimately show the consequence of datasets that have been collecting data for a longer time.
It should also be noted that growing dateranges (unresolved bugs) tend to be at the end of
the history, as it is more probable that a bug has been closed over a longer period of time.
This dataset was chosen because it contained real-world data, making evaluation results more
relevant to real-world applications.

Synthetic Data

The synthetic data was created with a C program and has the following schema:

(id integer, vt daterange)

Starting points of tuples from the synthetic datasets fall within the range [2010-01-01,
2020-01-01]. The end point of fixed date ranges is set to 183 days ( 6 months) after the
starting point, while ongoing tuples have a growing ongoing date as end point. All sets consist
of 20% ongoing tuples, while the rest are fixed ones.

There are 3 types of synthetic datasets: Start, End and Random. For the Start set, all ongoing
tuples start in the first 20% of the range while the fixed ones populate the remaining 80%. In
the End set, all ongoing tuples start in the ending 20% of the range and every fixed tuple start
before that. In the Random set all tuples, growing or fixed, are randomly distributed within the
range. As with the Eclipse set, there are also various sizes with synthetic data sets. For each
type of synthetic datasets, multiple sets are created with sizes 10k, 15k, ... , 35k. However,
note that unlike the aforementioned Eclipse dataset, the range where tuples can start stays the
same for synthetic datasets, effectively increasing the density of dateranges. This should show
a contrast between adding tuples by extending the history like the eclipse dataset and adding
tuples by increasing the density in the same date range.

4.2 Methods
The two approaches are evaluated based on two criteria: execution runtime and number of
rows in the result. The test queries are always based on self-joining the datasets and filtering
by checking if any joined dateranges overlap with another.

4.2.1 Instantiation Dates for Bind Approach
The bind approach requires to instantiate the ongoing dates at a reference time before the
query is evaluated. To observe the impact of different instantiation date on the two criteria,
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multiple queries with different instantiation dates are evaluated. No instantiation dates are
required in order to execute the query for the ongoing approach, due to the result that remains
valid for all reference dates. The instantiation dates used for each set are listed in table 4.1.

Eclipse bugs Start set Random set End set
2001-06-01 2009-01-01 2009-01-01 2010-01-01
2002-06-01 2010-01-01 2010-01-01 2018-01-01
2003-06-01 2011-01-01 2011-01-01 2018-06-01
2004-06-01 2012-01-01 2012-01-01 2019-01-01
2005-06-01 2013-01-01 2013-01-01 2019-06-01
2006-06-01 2014-01-01 2014-01-01 2020-01-01
2007-06-01 2015-01-01 2015-01-01
2008-06-01 2016-01-01 2016-01-01
2009-06-01 2017-01-01 2017-01-01
2010-06-01 2018-01-01 2018-01-01
2011-06-01 2019-01-01 2019-01-01
2012-06-01 2020-01-01 2020-01-01

Table 4.1: Binding dates of tests

The instantiation dates are chosen to cover the whole range of the dataset. To achieve this,
one instantiation date must be earlier or equal the minimum start date and another instantiation
date must be later or equal the maximum end date of any fixed tuple in the dataset. Any other
instantiation date outside of the range between those two dates would not yield any different
results for the generally valid overlaps predicate. To observe the behavior with instantiation
dates in between the range, additional dates are added for each year except for the End dataset.
For the Eclipse set, the ongoing dates are instantiated at every year from 2001-06-01 to 2012-
06-01. These dates are mid year because the maximum date of the tuples of the eclipse dataset
only goes up to 2011-05-08. For the Start and Random set, the ongoing dates are also in-
stantiated at every year, but from 2010-01-01 to 2020-01-01. And finally for the End set, the
ongoing dates only get instantiated at the very start in 2010-01-01 and in the ending 20% of
the range. Any instantiation date before the ending 20% of the range would yield the same
results for the End set, as all ongoing tuples would instantiate to empty ranges.

4.2.2 Queries
This section describes the SQL queries with which we evaluate our implementation. In total,
425 test queries are executed to account for every combination of dataset, size, query approach
type (ongoing or bind), and instantiation dates for the bind approach. In order not to write out
every one of the queries, they contain placeholders to shorten the list down to four queries.

Queries for Synthetic Sets

The #dataset placeholders are replaced with the dataset names of Start, End or Random
set with each one having 6 different sizes as described in the setup section. The #instdate
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placeholders for the query of the bind approach are replaced with the fixed reference dates
stated in table 4.1.

The query of the ongoing approach (see listing 4.1) performs a self-join with the specified
dataset and calls the overlaps predicate function gv_date_overlaps() for each joined tuple.
The return value of the function is a daterange array, the serialized interpretation of an ongoing
boolean. The first join condition filters out any joined tuples with the same id with trivial
overlaps results. The second condition counts the elements in the result array and discards the
result row if the array is emptyl. An empty ongoing boolean as a result means that there does
not exist a reference date at which the two dateranges overlap. The cardinality() function
takes care of counting the elements in an array.

SELECT r.vt, s.vt, gv_date_overlaps(r.vt, s.vt) AS rt
FROM #dataset r
JOIN #dataset s
ON r.id != s.id
AND cardinality(gv_date_overlaps(r.vt, s.vt)) > 0

Listing 4.1: Ongoing approach for synthetic sets

The query of the bind approach (see listing 4.2) binds all ongoing dates at a given reference
date before the dataset is joined with itself. It ensures that the joined table only consist of
date ranges with fixed dates. Without any ongoing dates, the operator for ordinary overlaps
predicate for fixed dateranges (&&) is used to filter out non-overlapping tuples.

SELECT r.vt, s.vt
FROM (

SELECT id, daterange_bind(vt, #instdate) as vt
FROM #dataset

) r
JOIN (

SELECT id, daterange_bind(vt, #instdate) as vt
FROM #dataset

) s
ON r.id != s.id
AND r.vt && s.vt

Listing 4.2: Bind approach for synthetic sets
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Query for Eclipse Set

The #eclipseset placeholders of the queries in listings 4.3 and 4.4 are to be replaced with the
names of the Eclipse set for each size. The #binddate placeholders for the query of the bind
approach are to be replaced with the reference dates listed in table 4.1.

The only difference between the queries for the synthetic datasets and for the Eclipse set are
the additional join conditions for the product and component attribute of the Eclipse queries.
The reason behind the product and component matching is to mimic a realistic use case.

SELECT r.vt, s.vt, gv_date_overlaps(r.vt, s.vt) AS rt
FROM #eclipseset r
JOIN #eclipseset s
ON r.id != s.id
AND r.product = s.product
AND r.component = s.component
AND cardinality(gv_date_overlaps(r.vt, s.vt)) > 0

Listing 4.3: Ongoing approach for Eclipse set

SELECT r.vt, s.vt
FROM (

SELECT id, daterange_bind(vt, #bind_date) as vt
FROM #eclipseset

) r
JOIN (

SELECT id, daterange_bind(vt, #bind_date) as vt
FROM #eclipseset

) s
ON r.id != s.id
AND r.product = s.product
AND r.component = s.component
AND r.vt && s.vt

Listing 4.4: Bind approach for Eclipse set
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4.3 Results
In this section the evaluation results are discussed. For the results, we had some expectations
on what the test results show. First, for the result size, we expect that different instantiation
dates of the bind approach yield different result sizes. On the basis of the fact that all datasets
only contain fixed and growing tuples, it is certain that with a growing reference date, the
number of overlapping tuples can not become smaller. With our instantiation dates illustrated
in table 4.1, we expected result sizes to grow with later instantiation dates. Along with
increasing result sizes, the execution runtime should also increase.

For each dataset, the results are shown in four graphs. The runtime and result size each having
two graphs. One showing the absolute values of the measurements and the other showing the
ratio of the results of the binding approach compared to the ongoing approach. To prevent the
graphs with the absolute values from being illegible, they show the binding approach values
with an average line with an area that show the standard deviation from the average. The
graphs with the ratios show all results at different instantiation dates with a separate line. The
bind approach lines are not labeled with their respective instantiation dates as they provide no
useful or additional insight. The later the instantiation date, the longer the execution time and
the greater the result size will be for any result of the ongoing approach.
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4.3.1 Start set
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Figure 4.1: Start set runtime
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Figure 4.2: Start set result size

From the results from figure 4.2b we can see that the result size of the ongoing approach is
always the worst case of the bind approach. This is expected, as the result of the ongoing
approach holds information about overlaps for all reference dates. As with the runtime, figure
4.1b shows that the execution runtime of the ongoing approach tend to get worse with growing
numbers. At the size of 35k tuples, the ongoing approach is worse than all instiation dates
of the bind approach. This can be explained with the ongoing growing tuples at the start
of the range, as they will overlap with every following tuples if evaluated with the ongoing
approach. The bind approach on the other hand will instantiate any growing dateranges to a
fixed daterange, therefore limiting overlaps.
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4.3.2 End set
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Figure 4.3: End set runtime
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Figure 4.4: End set result size

In terms of result size in figure 4.4, the same can be said as with the Start set: The result size
of the ongoing approach is the same as the worst case of the bind approach.
With the End set, it can be observed from figure 4.3b the ongoing approach is significantly
below the bind approach regardless of the reference date used consistently across all dataset
sizes. This can be explained with the ongoing tuples mostly being at the end of the range. The
ongoing tuples still overlap with any following tuples with the ongoing approach, but unlike
the Start set, every fixed tuple are placed before the ongoing tuples, which means that the
ongoing tuples only overlap minimally with the fixed tuples.
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4.3.3 Random set
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Figure 4.5: Random set runtime
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Figure 4.6: Random set result size

From figure 4.5a we can see that the runtime of the ongoing approach is practically the same as
the average of results of the bind approach with the Random set. However, in figure 4.5b it can
be seen that for higher dataset sizes, some bind approach results tend to get faster compared
to the ongoing approach. This effect can probably be explained by the same argument as in
the Start set, but to a lesser extent.
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4.3.4 Eclipse set
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Figure 4.7: Eclipse set runtime
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Figure 4.8: Eclipse set result size

Note that for the Eclipse set, there is a slight "bump" in the lines between the sizes 55k and
60k in figure 4.7a due to a changed query plan. It does not influence the ratio values, as both
the ongoing and bind approach queries are affected. From the results from 4.7b we can see
that the ratios of the bind approach compared to the ongoing approach are stabilizing with
growing sample size. On average, the bind approach has a slightly shorter runtime than the
ongoing approach. In terms of result size, the ongoing approach is still the same as the worst
case of any bind approach results. However, unlike with the synthetic datasets, the ratio of
results of the bind appraoch in figure 4.8b changes with different dataset sizes. This is due
to the prolonging of the history with increasing dataset size with the Eclipse set instead of
increasing the daterange density within a fixed range with the synthetic sets.
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4.4 Analysis of Runtime of Overlaps
To fully understand the runtime overhead of the overlaps predicate, we split it up into different
parts and measured the runtime for each one. With new insights on how much each part
contributes to the total runtime, we hope to discover potential improvements. The eclipse
dataset was chosen as test data because it provided the highest number of samples and is based
on real-world data. The implementation of the overlaps predicte was defined in algorithm 8 in
the chapter 3.
The first step is the self-join of the dataset with join conditions and deserializing of dateranges.
The following four steps are the computations of the generally valid less-thans. The last three
steps are the generally valid logical conjunction connectives, with a total of eight steps. For
each step, a new test function is defined, which executes the predicate as usual until its step is
finished. It will stop immediately and return nothing.
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Figure 4.9: Runtime breakdown of overlaps predicate

The obvious thing to notice in figure 4.9a is that the first step, the join with itself, is respon-
sible for almost the entire runtime. However, the actual overlaps predicate evaluation is still
responsible for approximately 10% of the runtime on average, which is not an unsignificant
amount.
To visualize the other step in greater detail, the figure 4.9b shows the same values but mea-
sured after finishing joining. From there it can be seen that the ongoing less-than predicates
on the dateranges require more time to finish than the ongoing logical conjunction on the on-
going booleans. Another interesting observation is that the three ongoing logical conjunction
connectors vary significantly in runtime. With a dataset size of 90k, the first and second con-
junctions take about the same time, but the third one is immensely faster than the other two.
11% of the runtime of the second conjunction. A similar trend can be observed with smaller
dataset sizes. One possible explanation would be the sequence in which the conjunctions are
evaluated. In the current implementation, the leftmost and the rightmost conjunctions of the
formula are first evaluated. The results of the two conjunctions are then evaluated again with
the middle conjunction. The difference in runtime between the first two and third conjunction
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might be the input, where the first two gets ongoing booleans from results of less-than pred-
icates, whereas the input of the third conjunction are results of ongoing conjunctions, which
could be easier to evaluate.

4.5 Discussion
In conclusion, the results of our tests show that show that the ongoing approach is never sig-
nificantly worse than the bind approach. For the best case, End set, the runtime of the ongoing
approach was consistently under the runtime of the bind approach across all instantiation dates
and dataset sizes. Based on the tests with the real-world data, the Eclips set, the runtime for the
ongoing approach was only slightly longer than the average of the bind approach. However, if
multiple results are desired at different reference dates, the bind approach must re-evaluate the
query, while the ongoing approach can instantiate the result from a previously cached interme-
diate result. This is possible due result of the ongoing approach being valid for all references
dates. In such scenarios, even with desired results at only two different reference dates, the
ongoing approach is favorable in every tested case in terms of runtime. This advantage is
amplified with each subsequent query with a different reference date.
In terms of result size, results of the ongoing approach is always the same as the worst case
scenario of the bind approach with datasets with only fixed and growing tuples, which is the
case in most of real-world application scenarios. This was expected, as a single result of the
ongoing approach must contain any information retrievable by the bind approach. However,
analogous to runtime, the more requested results at different reference dates, the greater the
combined result sizes of the bind approach becomes while the result of the ongoing approach
always stays the same size.
One interesting thing to notice is that despite our expectations, the ongoing approach can be
faster than the bind approach. We expected that with a result size that is always the worst
case of the bind approach and a complex overlaps predicate to evaluate, the ongoing approach
would always have a longer execution runtime. A possible explanation would be that with the
bind approach, instantiating the ongoing dates before the overlaps evaluation is responsible
for a unexpectedly large runtime overhead.
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5 Conclusions and Future Work

The goal of this thesis was to implement the newly proposed ongoing approach by Y. Mülle
et al [3] into the PostgreSQL kernel and evaluate the new method by comparing it to the
conventional bind approach. The results from queries following the ongoing approach are
generally valid, meaning its valid state remains with passing time. These intermediate results
can be cached and retrieved without re-evaluating the query, even at different reference date,
resulting in minimal computational effort requirements.
The ongoing approach was built upon the PostgreSQL database kernel, which was extended
with additional data types and their respective functions. With only two new data types, the
ongoing date and ongoing boolean, a generally valid overlaps predicate for ongoing date
ranges was usable in SQL queries.
Results from the evaluation with an extensive range of datasets and different reference dates
have shown that the ongoing approach was never significantly worse compared to the bind
approach for the first time a query with overlaps is evaluated. However, with each subsequent
query with a different reference date, the computational effort to retrieve the answer from
the cached intermediate result of the ongoing approach is next to nothing, while the bind
approach takes substantially longer to re-evaluate. In terms of result size, the number of result
tuples from a query following the ongoing approach were always as high as the worst case of
a query of the binding approach, which was expected. However, analogous to the execution
runtime, the result size of the bind approach increases with the number of requested results at
different reference dates, whil the the result size of the ongoing approach stays the same. In
conclusion, the ongoing approach is clearly the favorable method to process ongoing dates if
the same query is evaluated at multiple reference dates.

For the future, we would like to see further development of the ongoing approach. Looking at
the runtime results of breaking the ongoing overlaps predicate in parts, the obvious next chal-
lenge is to optimize the join operation, as it took the highest percentage of the entire runtime.
However, the actual overlaps predicate consisting of ongoing less-thans and ongoing ANDs
taking as much as 10% of the runtime, some improvements could be made by optimizing
these functions.
In this thesis, evaluation results have shown that it is definitely applicable in real-world sce-
narios and has a massive runtime advantage compared against the bind approach in certain
applications. However, most of the commonly used database systems do not even support
ongoing dates or something similar, let alone ongoing predicates. An integration of an imple-
mentation into the an official release of a database system could be very useful to provide the
functions and advantages of the ongoing approach out-of-the-box.
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CD Contents

• Abstract.txt
The abstract in English

• Zusfsg.txt
The abstract in German

• Bachelorarbeit.pdf
The thesis in PDF format

• PostgreSQL-9.4.11.zip A compressed zip file of the PostgreSQL source code. A shell
script is included for installing and starting.
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Code Snippets

In this section, all important changes to the PostgreSQL source code are listed.

Listing 1: date.c.h
/* date_in()

* Given date text string, convert to internal date format.

*/
Datum
date_in(PG_FUNCTION_ARGS)
{
// Possible input dates (with example dates): 2010-01-01,

2010-01-01+, +2010-01-01, 2010-01-01+2011-01-01, -
infinity+infinity

char *input = PG_GETARG_CSTRING(0);
DateADT *result = palloc(sizeof(DateADT));

if (strchr(input, ’+’) != NULL) {
result->isFixed = false;
if (input[0] == ’+’) {

// Limited time point
input++; // Remove plus char
result->ongoingLower = DATEVAL_NOBEGIN;
result->ongoingUpper = parse_single_date(input);

} else if (input[strlen(input)-1] == ’+’) {
// Growing time point
input[strlen(input)-1] = 0; // Remove plus char
result->ongoingLower = parse_single_date(input);
result->ongoingUpper = DATEVAL_NOEND;

} else {
// Capped time point
char *split = strtok(input, "+"); // Get first date
if (split != NULL) {

result->ongoingLower = parse_single_date(split);
}
split = strtok(NULL, "+"); // Get second date
if (split != NULL) {

result->ongoingUpper = parse_single_date(split);
}
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}
// Check if ongoingDate is a fixed date
if (result->ongoingLower == result->ongoingUpper) {

result->isFixed = true;
}

} else if (strcmp(input, "now") == 0) {
// now variable
result->isFixed = false;
result->ongoingLower = DATEVAL_NOBEGIN;
result->ongoingUpper = DATEVAL_NOEND;

} else {
result->isFixed = true;
result->ongoingLower = result->ongoingUpper =

parse_single_date(input);
}

// Check if the lower is smaller than upper date
if (result->ongoingUpper < result->ongoingLower) {

elog(ERROR, "Upper bound is before lower bound");
}

PG_RETURN_DATEADT(result);
}

DateSingleADT
parse_single_date(char* str) {
DateSingleADT date;
fsec_t fsec;
struct pg_tm tt,

*tm = &tt;
int tzp;
int dtype;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + 1];

dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)

dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec
, &tzp);

if (dterr != 0)
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DateTimeParseError(dterr, str, "date");

switch (dtype)
{

case DTK_DATE:
break;

case DTK_CURRENT:
ereport(ERROR,

(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"current\" is no longer

supported")));

GetCurrentDateTime(tm);
break;

case DTK_EPOCH:
GetEpochTime(tm);
break;

case DTK_LATE:
DATE_NOEND(date);
PG_RETURN_DATESINGLEADT(date);

case DTK_EARLY:
DATE_NOBEGIN(date);
PG_RETURN_DATESINGLEADT(date);

default:
DateTimeParseError(DTERR_BAD_FORMAT, str, "date");
break;

}

if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
ereport(ERROR,

(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: \"%s\"", str)));

date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) -
POSTGRES_EPOCH_JDATE;

return date;
}
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/* date_out()

* Given internal format date, convert to text string.

*/
Datum
date_out(PG_FUNCTION_ARGS)
{
DateADT *date = PG_GETARG_DATEADT(0);
char *result;
DateSingleADT lower = date->ongoingLower;
DateSingleADT upper = date->ongoingUpper;

if (date->isFixed) {
char *buffer;
buffer = (char*) compose_single_date(lower);
result = pstrdup(buffer);

} else {
char buf[MAXDATELEN*2 + 1]; // Buffer double the size of a

single date
if (lower == DATEVAL_NOBEGIN && upper == DATEVAL_NOEND) {

strcpy(buf, "now");
} else if (lower == DATEVAL_NOBEGIN) {

// limited date
strcpy(buf, "+");
strcat(buf, (char*) compose_single_date(upper));

} else if (upper == DATEVAL_NOEND) {
// growing date
strcpy(buf, (char*) compose_single_date(lower));
strcat(buf, "+");

} else {
// capped date
strcpy(buf, (char*) compose_single_date(lower));
strcat(buf, "+");
strcat(buf, (char*) compose_single_date(upper));

}
result = pstrdup(buf);

}

PG_RETURN_CSTRING(result);
}

Listing 2: gv_predicates.h
OngoingBoolean *
gv_internal_date_lt(DateADT *date1, DateADT *date2){
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OngoingBoolean *first = NULL, *second = NULL;

if (date1->ongoingUpper < date2->ongoingLower) {
first = make_ongoing_bool(DATEVAL_NOBEGIN, DATEVAL_NOEND);

} else if (date1->ongoingLower < date2->ongoingLower &&
date2->ongoingUpper <= date1->ongoingUpper) {
first = make_ongoing_bool(DATEVAL_NOBEGIN, date2->

ongoingLower);
} else if (date1->ongoingLower < date2->ongoingLower &&

date2->ongoingLower <= date1->ongoingUpper && date1->
ongoingUpper < date2->ongoingUpper) {

first = make_ongoing_bool(DATEVAL_NOBEGIN, date2->
ongoingLower);

second = make_ongoing_bool(date1->ongoingUpper + 1,
DATEVAL_NOEND);

} else if (date2->ongoingLower <= date1->ongoingLower &&
date1->ongoingUpper < date2->ongoingUpper) {
first = make_ongoing_bool(date1->ongoingUpper + 1,

DATEVAL_NOEND);
}

if (second) { first->next = second; }
return first;

}

OngoingBoolean *
gv_internal_date_overlaps(DateADT *firstLower, DateADT *

firstUpper, DateADT *secondLower, DateADT *secondUpper) {
OngoingBoolean *a = gv_internal_date_lt(firstLower,

secondUpper);
OngoingBoolean *b = gv_internal_date_lt(secondLower,

firstUpper);
OngoingBoolean *c = gv_internal_date_lt(firstLower,

firstUpper);
OngoingBoolean *d = gv_internal_date_lt(secondLower,

secondUpper);

OngoingBoolean *x = gv_internal_logical_and(a, b);
OngoingBoolean *y = gv_internal_logical_and(x, c);
return gv_internal_logical_and(y, d);

}

Listing 3: gv_ongoing_bool.h
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OngoingBoolean*
deserialize_ongoingBoolean(ArrayType *array) {
// ArrayType variables
int nitems;
Datum *datumElements;
bool *nulls;
int i; // for loop

// RangeType variables
OngoingBoolean *first = NULL, *latest = NULL, *current;
RangeBound lowerBound, upperBound;
bool empty;
TypeCacheEntry *typcache = lookup_type_cache(DATERANGE_OID,

TYPECACHE_RANGE_INFO);

deconstruct_array(
array, DATERANGE_OID, DATERANGE_SIZE, false,

DATERANGE_ALIGNMENT,
&datumElements, &nulls, &nitems);

for (i=0; i<nitems; i++) {
if (nulls[i]) { continue; }

range_deserialize(typcache, (RangeType*) datumElements[i],
&lowerBound, &upperBound, &empty);

// Only using ongoingLower attribute as the dates should
be fixed

current = make_ongoing_bool(
((DateADT*) lowerBound.val)->ongoingLower,
((DateADT*) upperBound.val)->ongoingLower

);

// Link current to the latest or to the returned pointer
if (latest) {

latest->next = current;
} else {

first = current;
}
latest = current;

}

if (latest) {
latest->next = NULL;

47



}

return first;
}

ArrayType*
serialize_ongoingBoolean(OngoingBoolean *ongoingBoolList) {
ArrayType *result;
TypeCacheEntry *typcache = lookup_type_cache(DATERANGE_OID,

TYPECACHE_RANGE_INFO);
DateADT *lowerDate, *upperDate;
Datum *elems;
int counter = 0;
int i; // for loop

// empty list
if (!ongoingBoolList) {

return construct_empty_array(DATERANGE_OID);
}

OngoingBoolean *boolCounter = ongoingBoolList;
while (boolCounter) {

counter++;
boolCounter = boolCounter->next;

}

elems = palloc(sizeof(Datum)*counter);
for (i=0; i<counter; i++) {

lowerDate = palloc(sizeof(DateADT));
upperDate = palloc(sizeof(DateADT));
RangeBound lowerBound;
RangeBound upperBound;

lowerDate->ongoingLower = ongoingBoolList->lower;
lowerDate->ongoingUpper = ongoingBoolList->lower;
lowerDate->isFixed = true;
upperDate->ongoingLower = ongoingBoolList->upper;
upperDate->ongoingUpper = ongoingBoolList->upper;
upperDate->isFixed = true;

lowerBound.val = (Datum) lowerDate;
lowerBound.infinite = false;
lowerBound.inclusive = true;
lowerBound.lower = true;
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upperBound.val = (Datum) upperDate;
upperBound.infinite = false;
upperBound.inclusive = false;
upperBound.lower = false;

elems[i] = (Datum) make_range(typcache, &lowerBound, &
upperBound, false);

ongoingBoolList = ongoingBoolList->next;
}

result = construct_array(elems, counter,
DATERANGE_OID, DATERANGE_SIZE, false, DATERANGE_ALIGNMENT);

return result;
}

bool
gv_internal_bind_ongoing_boolean(OngoingBoolean *list, DateADT

*ref) {
if (!ref->isFixed) {

elog(ERROR, "Reference date is not fixed");
}
DateSingleADT fixedDate = ref->ongoingLower;

while (list) {
if (list->upper < fixedDate) {
return false;

} else if (list->lower <= fixedDate) {
return true;

}
list = list->next;

}
return false;

}

OngoingBoolean *
gv_internal_logical_not(OngoingBoolean *input) {
OngoingBoolean *current, *first = NULL, *latest = NULL;

if (!input) {
return make_ongoing_bool(DATEVAL_NOBEGIN, DATEVAL_NOEND);

}
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if (input->lower != DATEVAL_NOBEGIN) {
current = make_ongoing_bool(DATEVAL_NOBEGIN, input->lower)

;
first = current;
latest = current;

}

for (;;) {
if (input->upper == DATEVAL_NOEND) { break; }

current = palloc(sizeof(OngoingBoolean));
current->lower = input->upper;

if (latest) {
latest->next = current;

} else {
first = current;

}
latest = current;

if (input->next) {
input = input->next;
current->upper = input->lower;

} else {
current->upper = DATEVAL_NOEND;
break;

}
}

if (latest) { latest->next = NULL; }
return first;

}

OngoingBoolean *
gv_internal_logical_and(OngoingBoolean *input1, OngoingBoolean

*input2) {
OngoingBoolean *current, *first = NULL, *latest = NULL;

while (input1 && input2) {
while (input1->lower >= input2->upper || input2->lower >=

input1->upper) {
if (input1->lower >= input2->upper) {

input2 = input2->next;
} else {
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input1 = input1->next;
}
if (!input1 || !input2) {

if (latest) { latest->next = NULL; }
return first;

}
}

current = make_ongoing_bool(
max(input1->lower, input2->lower),
min(input1->upper, input2->upper)

);

if (latest) {
latest->next = current;

} else {
first = current;

}
latest = current;

if (input2->upper < input1->upper) {
input2 = input2->next;

} else if (input1->upper < input2->upper) {
input1 = input1->next;

} else {
input1 = input1->next;
input2 = input2->next;

}
}

if (latest) { latest->next = NULL; }
return first;

}

OngoingBoolean *
gv_internal_logical_or(OngoingBoolean *input1, OngoingBoolean

*input2) {
OngoingBoolean *current, *first = NULL, *latest = NULL;

// Each iteration creates a new OngoingBoolean
while (input1 && input2) {

// Swap pointers so the input1 always starts first
if (input2->lower < input1->lower) {

swap(&input1, &input2);
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}

current = palloc(sizeof(OngoingBoolean));
current->lower = input1->lower;

// Join a group of continuously overlapping intervals
while (input1 && input2) {

if (input2->lower <= input1->upper) {
// input2 starting inside input1
if (input2->upper > input1->upper) {

// input2 is extendind input1. Repeat loop swapped.
input1 = input1->next;
swap(&input1, &input2);

} else {
// input2 is countained inside input1
input2 = input2->next;

}
if (!input2) {

current->upper = input1->upper;
input1 = input1->next;

}
} else {

// End of overlapping intervals
current->upper = input1->upper;
input1 = input1->next;
break;

}
}

if (latest) {
latest->next = current;

} else {
first = current;

}
latest = current;

}

// Add any remaining intervals
while (input1 || input2) {

current = palloc(sizeof(OngoingBoolean));

if (input1) {
memcpy(current, input1, sizeof(OngoingBoolean));
input1 = input1->next;
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} else {
memcpy(current, input2, sizeof(OngoingBoolean));
input2 = input2->next;

}

if (latest) {
latest->next = current;

} else {
first = current;

}
latest = current;

}

if (latest) { latest->next = NULL; }
return first;

}

Listing 4: pg_proc.h
DATA(insert OID = 6000 ( gv_bind_ongoing_boolean PGNSP PGUID

12 1 0 0 0 f f f f f f i 2 0 16 "3913 1082" _null_ _null_
_null_ _null_ gv_bind_ongoing_boolean _null_ _null_ _null_
));

DESCR("negation operator for ongoing booleans");
DATA(insert OID = 6001 ( gv_logical_not PGNSP PGUID 12 1 0 0

0 f f f f f f i 1 0 3913 "3913" _null_ _null_ _null_ _null_
gv_logical_not _null_ _null_ _null_ ));

DESCR("negation operator for ongoing booleans");
DATA(insert OID = 6002 ( gv_logical_and PGNSP PGUID 12 1 0 0

0 f f f f f f i 2 0 3913 "3913 3913" _null_ _null_ _null_
_null_ gv_logical_and _null_ _null_ _null_ ));

DESCR("conjunction operator for ongoing booleans");
DATA(insert OID = 6003 ( gv_logical_or PGNSP PGUID 12 1 0 0 0

f f f f f f i 2 0 3913 "3913 3913" _null_ _null_ _null_
_null_ gv_logical_or _null_ _null_ _null_ ));

DESCR("disjunction operator for ongoing booleans");

DATA(insert OID = 6004 ( gv_date_lt PGNSP PGUID 12 1 0 0 0 f
f f f f f i 2 0 3913 "1082 1082" _null_ _null_ _null_
_null_ gv_date_lt _null_ _null_ _null_ ));

DESCR("less than operator for DateADT");
DATA(insert OID = 6005 ( gv_date_overlaps PGNSP PGUID 12 1 0

0 0 f f f f f f i 2 0 3913 "3912 3912" _null_ _null_ _null_
_null_ gv_date_overlaps _null_ _null_ _null_ ));
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DESCR("ovelaps operator for DateADT ranges");
DATA(insert OID = 6006 ( date_bind PGNSP PGUID 12 1 0 0 0 f f

f f f f i 2 0 1082 "1082 1082" _null_ _null_ _null_ _null_
date_bind _null_ _null_ _null_ ));

DESCR("binds an ongoing Date to a reference time");
DATA(insert OID = 6007 ( daterange_bind PGNSP PGUID 12 1 0 0

0 f f f f f f i 2 0 3912 "3912 1082" _null_ _null_ _null_
_null_ daterange_bind _null_ _null_ _null_ ));

DESCR("binds a daterange to a reference time");

Listing 5: pg_type.h
DATA(insert OID = 1082 ( date PGNSP PGUID 9 f b D f t

\054 0 0 1182 date_in date_out date_recv date_send - - - d
p f 0 -1 0 0 _null_ _null_ _null_ ));

DESCR("date");
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