
Master Thesis
September 15, 2017

Deep Learning for
Code Completion

Yury Belevskiy
of Moscow, Russia (15-718-117)

supervised by
Prof. Dr. Harald C. Gall

Carol V. Alexandru

software evolution & architecture lab

Master Thesis

Deep Learning for
Code Completion

Yury Belevskiy

software evolution & architecture lab

Master Thesis

Author: Yury Belevskiy, yury.belevskiy@uzh.ch

Project period: 15th March 2017 - 15th September 2017

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Abstract

We present a novel technique for method call completion in dynamically typed programming
languages. Existing completion systems typically rely on language-specific heuristics or run-
time information, because object types can rarely be identified from plain-text source code alone.
Our approach uses recurrent neural networks for predicting method names based on the pre-
ceding context available in plain-text source code. Using source code of 1, 000 Python projects,
we propose three preprocessor strategies that identify parts of the source code relevant for code
completion and evaluate them quantitatively. We then compare the best of the resulting models
to industry-leading code completion assistants. Our findings show that the proposed approach,
based soley on plain-text source code, offers a level of quality for method name suggestions com-
parable to more complex state-of-the-art techniques. We further demonstrate that our approach
can be applied to other dynamically typed programming languages without significant adapta-
tion effort.

Zusammenfassung

Wir präsentieren eine neuartige Methode zur Auto-Vervollständigung von Methodenaufrufen in
dynamisch typisierten Programmiersprachen. Existierende Vervollständigungssysteme benöti-
gen zumeist sprachen-spezifische Heuristiken oder Laufzeit-Informationen, weil Objekttypen sel-
ten nur auf Basis des Klartext-Quellcodes identifiziert weden können. Unser Ansatz verwendet
Recurrent Neural Networks um Methodennamen allein auf Grund des verfügbaren, vorangehen-
den Kontexts im Quellcode vorherzusagen. Mittels dem Quellcode aus 1000 Python Projekten
erzeugen wir drei Datenverarbeitungs-Strategien, die die für die Vervollständigung relevanten
Quellcodeteile identifizieren, und evaluieren diese quantitativ. Dann vergleichen wir das beste
der resultierenden Modelle mit industrieführenden Code-Vervollständigungs-Assistenten. Un-
sere Ergebnisse zeigen, dass unser Ansatz, basierend allein auf Klartext-Quellcode, eine vergle-
ichbare Qualität der vorgeschlagenen Vervollständigungen aufzeigt wie moderne, komplexere
Ansätze. Des weiteren zeigen wir, dass unser Ansatz ohne signifikanten Arbeitsaufwand für an-
dere dynamisch typisierte Sprachen eingesetzt werden kann.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Related Work . 3

1.2.1 Code Completion Systems . 3
1.2.2 Intelligent Software Productivity Tools . 4

2 Background 7
2.1 Programming Languages . 7

2.1.1 Variable Scope . 7
2.1.2 Abstract Syntax Trees . 8

2.2 Neural Networks . 8
2.2.1 Introduction to Neural Networks . 9
2.2.2 Recurrent Neural Networks . 15
2.2.3 LSTM . 17

3 Approach 23
3.1 Data Acquisition . 23

3.1.1 Data Requirement Analysis . 23
3.1.2 Data Collection . 24
3.1.3 Data Variable Selection . 26

3.2 Preprocessing . 26
3.2.1 AST Visitor . 27
3.2.2 Basic Preprocessor . 28
3.2.3 Advanced Model Preprocessor . 29
3.2.4 N-Chars Model Preprocessor . 30
3.2.5 Discussion . 32

3.3 Training . 32
3.3.1 Overview of Software Tools . 32
3.3.2 Training Process . 33
3.3.3 Training on PyPi dataset . 35

3.4 Code Completion Plugin . 35
3.4.1 Overview of Integrated Development Environments 35
3.4.2 Implementation . 36

vi Contents

4 Evaluation 41
4.1 Evaluation Approach . 41
4.2 Model Performance . 43

4.2.1 Perplexity metric . 43
4.2.2 Results . 43

4.3 Qualitative evaluation . 44
4.3.1 Evaluation Metric . 44
4.3.2 Comparison of Preprocessor Models on Actual Code Examples 45
4.3.3 Comparison of Preprocessor Models on Confusing Code Examples 46
4.3.4 Evaluation against existing state-of-art tools 49

4.4 Generalizability of Approach . 50
4.5 Threats to Validity . 52

5 Future Work 53
5.1 Larger dataset . 53
5.2 Neural Network Architectures . 53
5.3 Preprocessor models . 53
5.4 Generalisation to other programming languages . 54

6 Conclusion 55

Contents vii

List of Figures
2.1 An example of Python class . 8
2.2 An example code snippet . 8
2.3 The AST for the example code snippet . 9
2.4 Structure of biological neuron [syn] . 9
2.5 Structure of artificial neuron [art] . 9
2.6 Sigmoid function . 10
2.7 Tanh function . 11
2.8 2-dimensional artificial neuron . 12
2.9 Neural Network Architecture . 14
2.10 Examples of RNN structures [rnn] . 15
2.11 RNN internal organization . 16
2.12 Structure of an LSTM hidden layer unit . 17
2.13 Graphical notation for LSTM diagrams . 18
2.14 LSTM cell state pathway . 18
2.15 LSTM "forget" gate structure . 19
2.16 LSTM "state update" gate structure . 20
2.17 LSTM "output" gate structure . 21

3.1 Typical usage scenario of Editor Completion API 37
3.2 OpenNMT REST Translation Server . 38
3.3 Class diagram of the code completion assistant . 38

4.1 Perplexity for each model during the training . 43
4.2 Perplexity graph when trainingN -chars model on Python and Javascript repositories 51

List of Tables
3.1 GitHub dataset characteristics . 34
3.2 PyPi dataset characteristics . 35

4.1 Evaluation results of our models on sixteen real-world test cases 45
4.2 Special test cases evaluation results 1 . 47
4.3 Special test cases evaluation results 2 . 47
4.4 Special test cases evaluation results 3 . 48
4.5 Special test cases evaluation results 4 . 49
4.6 Evaluating our approach against industry-leading code completion engines on gen-

eral test cases . 50

viii Contents

Chapter 1

Introduction

1.1 Introduction
The vast majority of modern integrated development environments (IDEs) offer a code com-
pletion feature to assist developers in writing code. Code completion has proven to be one
of the most popular IDE features standing amongst the top 5 most frequently used IDE com-
mands [MKF06]. Reasons behind the wide usage of code completion systems are diverse. First, it
provides "on the fly" suggestions for method names and variable types that are syntactically cor-
rect in the current context. For example, given a variable of a particular type, a code completion
system would suggest methods that are available only to that type and it’s ancestor types. Fur-
thermore, code completion systems in modern IDEs such as Eclipse, IntelliJ or XCode are often
implemented as a pop-up dialogue displaying a list of all available completions which serves as
a compact version of the class documentation and allows for API exploration. Completion assis-
tance does not only save developer’s time, but also promotes the use of encapsulation and more
descriptive method naming [HP11].

Mainstream code completion systems use static type information to generate a list of completion
suggestions such as method names, class names or language-specific keywords. The resulting
list is complete, but possibly unnecessarily large, including rarely used methods and methods in-
herited from superclasses. Existing code completion systems are especially unhelpful when class
definitions are large or there is a long inheritance chain. There has been a lot of research and de-
velopment effort on improving existing code completion systems done in past years [NNN+12]
[BMM09] [RL08]. For example, statistical techniques such as k-nearest-neighbors have been suc-
cessfully applied in intelligent code completion plugins [cod] that have significantly improved
developer experience [BMM09].

Most of the development and research in the field of code completion has been concentrated
around statically typed programming languages such as Java or C++. IDEs for programming lan-
guages with dynamic type system such as Python or Ruby often offer no code completion feature
at all. The reason is that in dynamically typed languages, type information for variables is avail-
able only at runtime, thus making it impossible to make completion prediction based on type
information during writing or editing code. There are few implementations of auto-completion
tools for dynamically typed languages available. For example, PyCharm is a commercial Python
IDE featuring code completion functionality [pyc] or Jedi, open-source auto-completion/static
analysis library for Python, which has been integrated into many popular code editors [jed]. Ex-
isting solutions perform completion task using static code analysis techniques in order to infer
variable types from available context. This approach has proven successful, however, it is subject

2 Chapter 1. Introduction

to many limitations. Firstly, completion suggestions offered are often too broad and irrelevant.
Secondly, the implementation is highly dependent on the language syntax and, therefore, cannot
be easily adopted for to suggest method names for other programming languages with dynamic
type system.

In this paper, we present an intelligent code completion system for dynamically typed program-
ming languages that uses a trained neural network model to make smart completion predictions.
Particularly, this thesis is going to focus on developing a model for predicting method names in
dynamically typed programming languages and, for the rest of the paper, the term ’code comple-
tion’ will refer to method name completion.
Therefore, we aim to answer the following research question:

RQ: Can sequential neural models, trained on plain-text source code, be used to predict function
calls in dynamic programming languages?

In order to train a neural network to predict method name suggestions, it is crucial to identify and
extract parts of the code file that are relevant for method name prediction. This paper is going to
propose and evaluate three different preprocessor strategies for extracting relevant information
from the code. These strategies will be described and explained in detail in Section 3.2. For each
strategy there is a corresponding source code preprocessor script which extracts relevant data
from the dataset containing source code files in accordance with the rules defined by the stragety.
As an output, the script generates source and target datasets that are used for training the neu-
ral network model. To evaluate these models, we have downloaded 1, 000 Python repositories
containing over 100, 000 source code files from the GitHub code-hosting web service (see Section
3.1). The collected data has been processed using the aforementioned preprocessor scripts and
six neural-based models have been trained, one for each model/dataset pair. To demonstrate the
efficiency of the suggested approach, a code completion plugin for NetBeans IDE has been devel-
oped which uses a trained neural network to make intelligent completion predictions.

The suggested approach to use recurrent neural networks to solve method name completion task
benefits over existing attempts that are using static code analysis in multiple ways. Firstly, recur-
rent neural networks are able to accurately capture which methods developers are using more
frequently. For example, given piece of code like presented below and suppose that developer
has a caret after os.:

import os

def important_function():
thesis_folder = "C:\Users\ThesisUser\MyThesis\"
thesis_file = "thesis.txt"

os.path.isfile(os.)

PyCharm code completion library and Jedi that are using static code analysis for method name
completion would offer a long, alphabetically ordered list of methods available in Python os
package. In contrast, the proposed approach would list os module methods that other devel-
opers frequently use if the preceding code was os.path.isfile. Completions suggestions

1.2 Related Work 3

predicted using our model would be sorted based on how frequently they are used within the
training dataset.

This thesis also demonstrates that our approach to the method name completion task can gener-
alize to other programming languages with dynamic type system.

1.2 Related Work
A lot of research has been done in the area of code completion recommender systems. By contrast,
the field of code completion for programming languages with dynamic type systems, specifically,
is relatively new and undiscovered. To our knowledge, there have been no known attempts to
generate method name suggestions using neural network models.
However, there are multiple research papers that apply intelligent statistical techniques including
deep learning to enhance the performance of other productivity tools offered by modern inte-
grated development environments.

1.2.1 Code Completion Systems
In this section, we present an overview of existing approaches on how code completion assistants
can be improved.

An enhanced method completion suggestion system that leverages the information about code
changes was proposed by Nguyen et al. [NHC+16]. The contribution of the paper is a code comple-
tion assistant that can predict the most suitable method name completion given the surrounding
context and a history of code changes. The results show that the suggested approach improves
the quality of top-1 suggestions between 30− 160% compared to existing state-of-art techniques.
The locality property of the source code was exploited in order to increase the accuracy of method
name completion suggestions [TSD14]. Tu et al. argue that a source code is locally repetitive i.e.
it has useful local regularities that can be captured in a locally estimated cache and leveraged
for software engineering tasks. The N -gram statistical language model with the proposed cache
component was demonstrated to outperform the standard version of the N -gram model between
21.91% and 27.38%.
Bruch et al. demonstrated an example based code completion system that aims to improve the qual-
ity of code completion suggestions [BMM09]. The proposed system uses Best Matching Neighbors
algorithm to match current completion context with code examples from the training dataset us-
ing k-Nearest Neighbor machine learning technique. Based on precision, recall and F1 metrics, the
presented approach significantly outperformed the code completion system integrated into the
Eclipse IDE, one of the most popular IDEs for Java programming language.
Lee et al. proposed a novel approach to method name completion by adding a temporal dimen-
sion [LHKM13]. The basic idea is to locate context that is relevant to the completion assistant in
past versions of the software and use that information to make the output of completion engine
more precise.
An example of intelligent code completion system was proposed by Proksch et al. [PLM15]. The
contribution of the paper is a Pattern-based Bayesian Networks technique which leverages structural
context features from a program file to generate context-relevant method suggestions. Indeed,
the approach was demonstrated to offer more accurate and relevant method name suggestions
compared to intelligent code completion assistants that are based on Best Matching Neighbors al-
gorithm.
The novel code completion system, named Abbreviated Completion, supporting completion of mul-

4 Chapter 1. Introduction

tiple keywords, was proposed by Han et al. [HWM09]. The approach is based on a Hidden Markov
Model that was trained on a corpus consisting of many code files. Apart from being capable of
predicting multiple keywords, the proposed completion engine can also make predictions using
non-abbreviated input i.e. given gval(r,c), the system will propose getValueAt(row,col).
Whilst achieving 98.9% accuracy, the system also demonstrated impressive 30.4% in time savings.
An innovative technique called Context Sensitive Code Completion for improving the performance
of a code completion engine was presented by Asaduzzaman et al. [ARSH14]. The proposed al-
gorithm considers four code lines surrounding the line, where the completion prediction should
be generated, as a relevant completion context. Using code examples from the training dataset,
the system is able to suggest relevant method name completions. The approach was evaluated
against five state-of-art intelligent code completion recommenders and was found to outperform
them.
It was demonstrated that leveraging a change-based data from the program history can improve
the accuracy of code completion suggestions [RL08]. By modeling a software evolution process
as a sequence of changes to the program code and archiving those changes, a historical data from
code completion engine could be extracted that contained information which of the previously
suggested method names were chosen in past providing strong hints which methods are best of-
fer given the context. The results show that the proposed system was able to include first choice
method name in top-3 suggestions in 75% of cases.

1.2.2 Intelligent Software Productivity Tools
This section presents a brief summary of state-of-art techniques and solutions in a field of intelli-
gent software productivity tools.

Raychev et al. demonstrated that recurrent neural networks can be successfully applied to synthe-
size completion suggestions for gaps in a program file [RVY14]. The shortcoming of the proposed
approach that the hole completion feature is rarely used and, typically, is not a part of the func-
tionality offered by most IDEs.
A decision-tree based approach to make predictions about the program structure was proposed
by Raychev et al. [RBV16]. They have demonstrated that the problem of learning probabilistic
model of code can be reduced to learning a decision tree on the abstract syntax tree generated
from the code. The demonstrated result can be used to augment existing code completion func-
tionality, however, can not completely replace it.
Hellendoorn et al. evaluated widely applied N -gram statistical technique against neural network
based approaches such as RNN and LSTM in the context of source code modeling tasks [HD17].
The results show that theN -gram model that is carefully adapted for source code can outperform
deep learning techniques.
A type inference engine for Python programming language was presented by Xu et al. [XZC+16].
Python features a dynamic type system, therefore, the task of deriving an exact variable type in
the given context is challenging. The innovative technique uses probabilistic inference to leverage
type hints in a program code such as variable naming and accessed attributes in order to obtain
probabilities on potential candidates for a variable type. The results demonstrate that proposed
type inference engine outperforms known solutions by 79.09%.
Gu et al. presented a novel deep learning based approach to produce API usage examples for a
given natural language query [GZZK16]. The proposed system adopts recurrent neural network
with the encoder-decoder architecture that is used to convert an input language query into the
representation of fixed dimensionality and to generate an API usage example from the obtained
representation. The proposed approach was evaluated against existing API learning tools that

1.2 Related Work 5

use statistical techniques demonstrating 264% improvement in the suggestion quality.
The concept of integrating an additional information about the object into pop-up dialogue win-
dows that are used by code completion assistants was proposed by Omar et al. [OYLM12]. The
paper introduces palettes which are highly-specialized, interactive interfaces allowing developer
to receive extra information about the methods for given object type.
Hou et al. presented a set of strategies for organizing method name proposals in code comple-
tion pop-up dialogues [HP11]. Fourteen different strategies were evaluated and analysed on nine
open source Java applications. The contribution of the paper is a set of design recommendations
for future code completion assistant implementations.

Chapter 2

Background

This chapter introduces basic terminology in the source code analysis field and presents an overview
of deep learning and statistical techniques that form the basis of this thesis.

2.1 Programming Languages
This section introduces terminology for relevant topics in the field of source code analysis.

2.1.1 Variable Scope
Variables in a program cannot be always accessed from all parts of the program depending on
where the variable was defined. Scope is a part of a program where a variable is accessible from.
The scoping rules are determined by the programming language semantics. In this section, we
consider scoping rules in the Python programming language because Python is the main pro-
gramming language that we use throughout the project.
The scope resolution in Python is done using LEGB rule. The LEGB rule is defined by [Lut08] as
follows:

– L: Names assigned in any way within a function (def or lambda), and not declared global
in that function.

– E: Names in the local scope of any and all enclosing functions (def or lambda), from inner
to outer.

– G: Names assigned at the top-level of a module file, or declared global in a def within the
file.

– B: Names preassigned in the built-in names module. For example, open, len, RuntimeError.

When a variable is referenced in the code, Python searches for it in the LEGB order starting from
L.
The scope resolution for classes in Python is categorized under the L part of the LEGB rule. How-
ever, the scope resolution rules for instance variables in Python is an unusual case. Consider the
example below:

8 Chapter 2. Background

1 class SomeClass(self):
2

3 def __init__(self):
4 self.list = []
5

6 def do():
7 list = [5,6]
8 list.extend(3)
9 self.list.extend(list)

Figure 2.1: An example of Python class

The list variable declared on the line 7 is accessible only within do() function scope accord-
ing to the LEGB rule. However, the variable list which is declared on line 4 is accessible in the
do() function even though it points to the different underlying object rather than list variable
declared on the line 7. The reason is that the list variable instantiated on the line 4 is an instance
variable of the SomeClass class. To access an instance variable anywhere within a class, it is
sufficient to prepend self. before the variable name.

2.1.2 Abstract Syntax Trees
An abstract syntax tree, AST, is a tree-like data structure that represents the abstract syntactic
structure of the program. One of the advantages of the AST source code representation is that an
AST does not include parts of the original program that do not contribute to the semantic meaning
of the program. These parts include semicolons, braces, comments, dots, spaces and more.
To understand how a sample AST looks like, we consider the following Python code snippet:

list = []

def main():
#adding 5 to list
list.append(5)

Figure 2.2: An example code snippet

The AST corresponding to this code snippet is presented on Figure 2.3. The AST shown on
Figure 2.3 captures full semantic meaning of the code snippet shown on Listing 2.2. We can
observe that the parts of the code snippet that do not add to the semantic meaning of the program,
such as comments, spaces, braces, colons, are removed from the AST representation.

2.2 Neural Networks
This section overviews different types of neural networks that we will be operating in later sec-
tions. In Section 2.2.1, we are going to introduce a basic model of neuron and cover basic operation
principles behind neural networks to form the basis for later discussion. Section 2.2.2 presents recur-
rent neural networks that are specific type of neural networks capable to deal with arbitrary-sized

2.2 Neural Networks 9

ast.Module()

ast.Assign()

ast.Name(id=’list’) ast.List(ctx=ast.Load())

ast.Store()

ast.FunctionDef(name=’main’)

ast.Expr()

ast.Call(starargs=None, kwargs=None)

ast.arguments(vararg=None, kwarg=None)

ast.Attribute(attr=’append’, ctx=ast.Load()) ast.Num(n=5)

ast.Name(id=’list’, ctx=ast.Load())

Figure 2.3: The AST for the example code snippet

input and output vectors. Long Short Term Memory network, also known as LSTM, is a variant of
recurrent neural network adapted to deal with long-term dependencies which performs particu-
larly well on sequence-to-sequence translation tasks. LSTM will be discussed in detail in Section
2.2.3.

2.2.1 Introduction to Neural Networks
2.2.1.1 Basic Model of Neuron

Neural networks have received first mention in scientific literature in early 1943. [MP43] have
discovered that, for any logical expression satisfying certain conditions, called "net" exhibiting
same behavior can be found. The organization and structure of the "net" was inspired from the
neurobiological model of the human brain. The basic unit of the "net", an artificial neuron, has a
similar organization to the biological neuron that is a basic building block of the human brain.
Figure 2.4 and Figure 2.5 showcase diagrams representing the structure of the biological neuron
and the structure of an artificial neuron respectively. In biological neurons dendrites are used

Figure 2.4: Structure of biological neuron [syn] Figure 2.5: Structure of artificial neuron [art]

to receive electrical signals from the axons of other neurons. In artificial neurons these electri-
cal signals are represented as numerical values and act as input values into the neuron. At the

10 Chapter 2. Background

synapses between the dendrite and cell body, incoming electrical signals are modulated in var-
ious amounts. Artificial neuron models the ’modulation’ of incoming signals by storing such a
weight matrix so that every input value has a corresponding entry in the weight matrix. When an
input value is received, it is multiplied by the corresponding weight matrix entry. A neuron in-
side human brain fires an output signal only when the total strength of the input signals exceeds
a certain threshold. Artificial neuron behaves in a similar way to the biological neuron: instead of
storing an activation threshold value, it feeds weighted sum of inputs into the activation function
and outputs a value that is within a fixed numerical range, typically, [0, 1], however, precise range
values depend on the type of activation function. In mathematical form, an artificial neuron can
be expressed:

f − activation function

W − weight matrix

x− vector of input values

c− normalization constant

output = f(Wx+ c)

There are different types of activation functions that are used in practice. The most common
and well-known activation function is a sigmoid function that takes any numerical input and
"squashes" it between zero and one. Figure 2.6 demonstrates a plot of sigmoid function. Despite

y = 1
1+e−x

−4 −2 2 4

−1

1

x

y

Figure 2.6: Sigmoid function

being one of the most popular activation functions, sigmoid function possesses certain disadvan-
tages:

• Gradient saturation problem: the gradient of sigmoid function at tails is nearly zero. This
is undesirable because during the update of neurons weights, known as backpropagation
(discussed in Section 2.2.1.2), when the gradient of gate’s output is multiplied by the local
gradient i.e. the gradient of sigmoid function, low value of the local gradient would "satu-
rate" the value of gradient at the gate’s output, resulting in minor weight updates. In other
words, "saturation" gradient problem significantly slows down the network learning rate.

• Output isn’t zero-centered: Input layer neurons will always output a positive value (recall
that the sigmoid function outputs values in [0, 1] range) resulting in always positive input

2.2 Neural Networks 11

for neurons in successor layers. If a neuron always receives positive input values, then,
during backpropagation, the gradient on the weights will become either all positive or all
negative. This could introduce undesirable zig-zagging dynamics in the gradient updates
for the weights [neu].

Another common choice for an activation function is the tanh function. Tanh function takes any
numerical input and produces an output in [−1, 1] range. The plot representing tanh function is
demonstrated on Figure 2.7. The choice of tanh function as an activation function solves the prob-

y = ex−e−x

ex+e−x

−2 −1 1 2

−1

1

x

y

Figure 2.7: Tanh function

lem of non zero-centered output that has been discussed before, however, the gradient saturation
problem still persists. There are different types of activation functions which solve all of the afore-
mentioned issues, for example, ReLU or maxout activation functions. ReLU non-linearity is widely
applied in convolutional feed-forward neural networks, however, our approach is to use LSTM
cells as a basic building block when constructing a neural network (discussed in Section 2.2.3).
LSTM cells internally use sigmoid and tanh activation functions, so we are not going to consider
alternative activation functions in detail.

2.2.1.2 Backpropagation and Learning

Having discussed the basic structure of artificial neuron in Section 2.2.1.1, this section is going to
explain how neural networks learn during the training process. The process of training a neural
network can be broken down into multiple steps:

1. Feed a data sample into the network and make a forward-pass through the network

2. Once the forward-pass is complete, computed values are collected from the output layer.

3. Output values are compared with expected values from the training dataset and value of
error using chosen metric is computed. There are different error metrics available, but the
most commonly applied metric is mean squared error.

4. Depending on the value of error and sign of the error value, we would like to adjust weights
of neurons in the network in such a way that the value of the error decreases. Importantly,
the amount by how much we would like to reduce an error or so-called step size should
be chosen very carefully. Choosing a large step size results in a trained model with low

12 Chapter 2. Background

predictive ability. On the other hand, if the size is too small, the network would take a long
time to learn.

5. After deciding in which direction and by which amount the error value should be reduced,
the next step is to update weights of neurons throughout the entire network correspond-
ingly so that if the same data sample is fed into the network again, the resulting error value
would be smaller compared to the error value from the previous forward-pass. The pro-
cess of updating neuron weights to reflect desired change on resulting error value is called
backpropagation.

Let’s consider an example to understand how backpropagation works in practice. Suppose we
have a two-dimensional artificial neuron that computes a function f = σ(ax+by+c). An example
of such neuron is shown on Figure 2.8. From Figure 2.8 we can observe that the Σ gate computes

Σ σ

x

y

a

b

output

c

Figure 2.8: 2-dimensional artificial neuron

ax+ by + c and σ gate computes σ(ax+ by + c).
Let’s set weights a, b and c to initial values of 0.5, 1.5, −1.0 respectively and let’s assign x = 4.0
and y = −2.0. Substituting these values into f gives:

f = σ(ax+ by + c)

f = σ(0.5 ∗ 4.0 + 1.5 ∗ (−2.0)− 1.0)

f = σ(−2.0)

f = 0.119

The neuron outputs a value of 0.119, however, our training data tells us that the expected
output value for x = 4.0 and y = −2.0 should be 0.5. We would like to perform weight adjustment
so that the output value of the neuron is closer to 0.5 given x = 4.0 and y = −2.0 as inputs. To
perform adjustment of weights, the value of the gradient needs to be computed first with respect
to weights a, b and c:

∂(ax+ by + c)

∂a
= x

∂(ax+ by + c)

∂b
= y

∂(ax+ by + c)

∂c
= 1.0

∂σ(s)

∂s
= (1− σ(s)) ∗ σ(s)

To find out the gradient of σ(ax+ by+ c) w.r.t to a, b and c, the differentiation chain rule has to be
applied:

∂z

∂x
=
∂z

∂y
∗ ∂y
∂x

(Chain Rule)

2.2 Neural Networks 13

∂σ(ax+ by + c)

∂a
=
∂σ(ax+ by + c)

∂(ax+ by + c)
∗ ∂(ax+ by + c)

∂a
= (1− σ(ax+ by + c)) ∗ σ(ax+ by + c) ∗ x

∂σ(ax+ by + c)

∂b
=
∂σ(ax+ by + c)

∂(ax+ by + c)
∗ ∂(ax+ by + c)

∂b
= (1− σ(ax+ by + c)) ∗ σ(ax+ by + c) ∗ y

∂σ(ax+ by + c)

∂c
=
∂σ(ax+ by + c)

∂(ax+ by + c)
∗ ∂(ax+ by + c)

∂c
= (1− σ(ax+ by + c)) ∗ σ(ax+ by + c) ∗ 1.0

Substituting values for variables:

∂σ(ax+ by + c)

∂a
= (1− σ(−2.0)) ∗ σ(−2.0) ∗ 4.0 = 0.420

∂σ(ax+ by + c)

∂b
= (1− σ(−2.0)) ∗ σ(−2.0) ∗ (−2.0) = −0.210

∂σ(ax+ by + c)

∂c
= (1− σ(−2.0)) ∗ σ(−2.0) ∗ 1.0 = 0.105

Setting step size to 0.1 and updating weight of a:

a += step ∗ gradient
a += 0.1 ∗ 0.420

a = 0.5420

Updating weight of b:

b += step ∗ gradient
b += 0.1 ∗ (−0.210)

b = 1.4790

Updating weight of c:

c += step ∗ gradient
c += 0.1 ∗ 0.105

c = −0.9895

Let’s make another forward-pass using x = 4.0 and y = −2.0 as an input values through the
network with updated weights to make sure that the output value is closer to the expected value
of 0.5:

f = σ(ax+ by + c)

f = σ(0.5420 ∗ 4.0 + 1.4790 ∗ (−2.0)− 0.9895)

f = σ(−1.7795)

f = 0.144 > 0.119

We have demonstrated how gradients propagate backwards through the network to adjust values
of neurons’ weights. As a general case, backpropagation can be applied on the network scale
recursively updating weights of neurons throughout the neural network.

2.2.1.3 Neural Network Architectures

The neurons of a neural network form a directed acyclic graph where the edges represent the
flow of information. A common architecture of neural networks is a layer-wise structure where

14 Chapter 2. Background

neurons are grouped in layers with an output of one neuron layer acting as an input to the next
neuron layer. The most common layer type is a fully-connected layer: neurons within a single
layer share no connections, however, two adjacent neuron layers form a fully connected bipartite
graph.
A 2-layer sample neural network is shown on Figure 2.9. Even though it may seem counterintu-

input layer

hidden layer

output layer

Figure 2.9: Neural Network Architecture

itive as the network depicted on Figure 2.9 has three layers, the standard naming convention for
neural networks assumes that the input layer is not counted. N -layer neural network has single
input layer, N − 1 hidden layers and single output layer.
The input layer is an entry point of any neural network where the input values from training or
real data are being fed to. Consider training a neural network for image classification, pixel in-
tensity values of images from the training dataset will be fed to the input layer.
Hidden layers are transforming input data into the output data by applying transformations to the
input values at every layer. For instance, if building a simple face detector, we can setup a 3-layer
neural network where each hidden layer will be responsible to detect certain feature of a human
face. First hidden layer can represent a nose detector whereas second hidden layer can represent
a mouth detector. Such face detector would be much more effective compared to a face detector
that passes weighted pixel intensity value vectors from input layer directly to the output layer
attempting to learn how to detect faces using single layer of weight matrices .
The goal of the output layer is to represent the output of the neural network which comes in form
of real-valued numbers. A neural network classifier that, given an image, is trained to determine
whether the input image depicts cat, dog or none of the above, would have an output layer con-
sisting of three neurons where each neuron would output a score how likely the input image is to
belong to one of three aforementioned classes.

2.2 Neural Networks 15

2.2.1.4 Limitations of traditional neural networks

Traditional neural networks are widely applied in the field of image recognition, can be trained
to solve classification problems, however, they rely on two basic assumptions:

• Input samples are independent of each other

• Input and output are represented by fixed-size vectors

These assumptions significantly reduce the scope of problems that ordinary neural networks can
solve. For example, if we want to build a neural network that predicts next word in a sentence,
we cannot assume that previous words in that sentence are independent of each other. Therefore,
we cannot apply traditional neural networks to solve the problem of code completion: context
information from the source code such as variable declarations, previous use of the variable and
preceding lines of code are highly relevant for accurate method name completion.

2.2.2 Recurrent Neural Networks

Traditional neural networks accept a fixed-size vector as an input and produce a fixed-size vec-
tor as an output which significantly limits their application scope. In contrast, recurrent neural
networks, known as RNNs, allow to operate on sequences of vectors for both input and output.
Figure 2.10 illustrates examples of possible RNN organizations. The leftmost network structure in

Figure 2.10: Examples of RNN structures [rnn]

Figure 2.10 represents a traditional neural network which accepts a single, fixed-size input vector
and produces a single, fixed-size output vector. The other 4 network structures depicted in Figure
2.10 represent different RNN structures. For instance, one-to-many RNN can be useful to build an
application that generates a textual image description by taking a single image as an input and
generating a multi-sentence description as an output. Many-to-many RNNs are widely used for
sequence-to-sequence translation tasks.
Consider a time step, t, and an input vector that is fed into RNN during t denoted as x. During
the forward-pass at t, the RNNs takes, in fact, two inputs: the first input is an input vector repre-
senting new data, x, whereas second source of input is a hidden state vector which the RNN has
learned during the previous t − 1 steps. Figure 2.11 illustrates the internal organization of RNN
in detail.

16 Chapter 2. Background

RNN logic during forward-pass at time t is presented below:

x− input vector at time t

h− hidden state vector

y − output vector at time t

ht = tahn(Wh ∗ ht−1 +Wx ∗ xt)
yt = Wy ∗ ht

An RNN hidden layer unit, shown on Figure 2.11, uses tanh activation function that has been
discussed in detail in Section 2.2.1.1.
To improve the learning ability of a neural network, the typical deep learning approach is to
increase the number and the size of hidden neuron layers. To increase the learning capability
of an RNN, one could stack up multiple RNNs on top of each other: one RNN receives input
vectors and it’s output vectors are the input to the next RNN. Using that way, we could connect
any number of RNNs between each other.
Like traditional neural networks, RNNs also learn using backpropagation. Weights of neurons in
the network update as gradients propagate from the topmost RNN layer, which produces output
vectors, through hidden RNN layers towards the RNN input layer.

tahn

Xt

Yt

tahn

Yt-1

Xt-1

tahn

Yt+1

Xt+1

Figure 2.11: RNN internal organization

Despite a high degree of flexibility that RNNs provide, allowing to process input sequences
of arbitrary size, [BSF94] demonstrated that RNNs using tanh hidden layer units fail to capture
long-term dependencies. For instance, the RNN based on tanh hidden layer units could easily
predict that blank space in sentence "My name is ..." should be filled with one of names that
occurred in the training dataset. However, given a chunk of text "Most of my life I have spent
in Russia. I have been actively studying language and culture of that beautiful country. After
years of practice, I can speak ... fluently.", the RNN is likely to fail to predict word "Russian"
for the blank space, because relevant context which is "Russia" in this case has occurred many
words ago. Theoretically, one could tweak the RNN hyper-parameters in order for it to be able
to make correct prediction for specific scenario demonstrated above, however, it is not a practical
approach for most applications.
In Section 2.2.3, we are going to discuss special kind of RNNs, called Long Short Term Memory

2.2 Neural Networks 17

networks (LSTM), that have been specifically designed to learn long-term dependencies.

2.2.3 LSTM
2.2.3.1 Introduction into LSTM

Long Short Term Memory networks, also known as LSTM, were introduced by S. Hochreiter and
J. Schmidhuber in 1997 [HS97]. LSTM networks were developed to avoid long-term dependency
problem that traditional RNNs suffer from: recurrent nets fail to learn if the gap between rele-
vant information and the place where that information is needed becomes large. LSTM structure
is very similar to RNN structure, however, the key difference, which allows LSTM to handle
long-term dependencies, is an organization of a hidden layer units which have a much more so-
phisticated structure in LSTM compared to RNN. Figure 2.12 shows the internal organization of
the LSTM hidden layer unit:

Xt

Yt−1

Mt−1

σ σ σ ×

×

×

tanh

tanh

Yt

Yt

Mt

+

+

+ ++

Figure 2.12: Structure of an LSTM hidden layer unit

2.2.3.2 LSTM structure

To assist the understanding of the diagrams presented later in this section, relevant notations are
shown on Figure 2.13. The LSTM hidden layer unit shown on Figure 2.12 takes three input vectors
and produces two output vectors. The input vector Yt−1 represents the output of previous LSTM
unit. Xt represents the input vector at the current time instance t. Mt−1 represents the internal
state of previous LSTM unit. Output vectors, denoted as Yt and Mt, represent LSTM cell output
and LSTM cell state respectively. On Figure 2.12, there is an arrow at the top of the cell that
takes Mt−1 as an input on the left side of the diagram and outputs Mt on the right side of the
diagram. Later on, we will refer to this arrow as cell state pathway. The cell state is transmitted
along the cell state pathway and gets modified at two gates, the multiply gate and the addition
gate, until it is outputted as Mt. The cell state pathway is highlighted on Figure 2.14. The multiply

18 Chapter 2. Background

σ

×

tanh

+
- multiplication gate

- addition gate

- sigmoid layer

- tahn layer

Figure 2.13: Graphical notation for LSTM diagrams

Xt

Yt−1

Mt−1

σ σ σ ×

×

×

tanh

tanh

Yt

Yt

Mt

+

+

+ ++

× +

Figure 2.14: LSTM cell state pathway

gate receives two vectors as an input: Mt−1 and F which is an output vector of the forget gate
shown on the Figure 2.15. The forget gate accepts Yt−1, Xt and Mt−1 vectors as an input and is
represented by a single layer neural network. The forget gate is responsible to decide how much
of the previous cell state, Mt−1, to keep and how much to forget. The sigmoid activation function
used in the forget gate produces an output vector containing values between zero and one. If
the output vector, F , contains values that are close to zero, the previous cell state, Mt−1, will be
mostly discarded because values of Mt−1 will be saturated by F during vector multiplication at
the multiply gate. In contrast, previous cell state, Mt−1, would be kept if values in F are close
to one. A typical application of forget gate is when we are confident that the previously learned
information is independent of the current input. For example, if we train an LSTM on a dataset
containing independent text articles and, during the training, the LSTM has reached the end of
an article and is about to start processing another article, it is useful to be able to forget previous
state.

2.2 Neural Networks 19

The equation representing the operation of "forget" gate is shown below:

Wf − weight matrix of the "forget" gate

bf − bias value of the "forget" gate

F = σ(Wf × (Mt−1 +Xt + Yt−1) + bf)

The addition gate receives Mt−1 and N ′ vectors as an input and outputs the updated cell state

Xt

Yt−1

Mt−1

σ σ σ ×

×

×

tanh

tanh

Yt

Yt

Mt

+

+

+ ++

F

σ

+

Figure 2.15: LSTM "forget" gate structure

vector, Mt. N ′ is the output vector of the "state update" gate which is depicted on Figure 2.16.
The "state update" gate is responsible for adding new state information to the old cell state, Mt−1.
The "state update" gate is composed of two layers, a sigmoid layer and a tanh layer. The sigmoid
layer has the same structure as the "forget" gate which we have discussed previously. This layer
is responsible for filtering which candidate values from the newly generated state, denoted as N ,
can pass onto the multiply gate and become a part of the updated cell state, Mt. The tanh layer
is responsible to generate a list of candidate values to be included in the updated cell state. N ′,
the dot product of the output vector from the sigmoid layer and the output vector from the tanh
layer, is the vector representing a filtered list of candidate values to be included into the updated

20 Chapter 2. Background

cell state. The equation below represents the computation performed by the "state update" gate:

Wfs − weight matrix of the sigmoid layer inside of the "state update" gate

bfs − bias value of the sigmoid layer inside of the "state update" gate

Ws − weight matrix of the tanh layer inside of the "state update" gate

bs − bias value of the tanh layer inside of the "state update" gate

S = σ(Wfs × (Mt−1 +Xt + Yt−1) + bfs)

N = tanh(Ws × (Xt + Yt−1) + bs)

N ′ = S ×N

The rightmost gate inside the LSTM unit depicted on Figure 2.17 represents the "output" gate.

Xt

Yt−1

Mt−1

σ σ σ ×

×

×

tanh

tanh

Yt

Yt

Mt

+

+

+ ++ +

σ

S N’
×

N
tanh

+

Figure 2.16: LSTM "state update" gate structure

The "output" gate is responsible to generate an output vector, yt, which is an input to the next
LSTM unit. The output vector is a filtered version of Mt because, typically, only few elements
of the entire state information vector should be output. Recall our previous example of training
LSTM on the chunk of text articles. The cell state may store contextual information from past
sentences in the text chunk, but the LSTM is expected to output only a single word.
The sigmoid layer decides which parts of the cell state should be included in yt. The tanh layer
"squashes" Mt values between [−1, 1] so that the output vector contains only normalized values.
As a result of dot product between the sigmoid and tanh layer output vectors, yt contains only
filtered, normalized values. The mathematical expression computed by the "output" gate is pre-

2.2 Neural Networks 21

sented below:

Wo − weight matrix of the "output" gate

bo − bias value of the "output" gate

yt = tanh(Mt) ∗ σ(Wo × (Mt +Xt + yt−1) + bo)

Xt

Yt−1

Mt−1

σ σ σ ×

×

×

tanh

tanh

Yt

Yt

Mt

+

+

+ ++ +

σ ×

tanh

Figure 2.17: LSTM "output" gate structure

2.2.3.3 Neural Machine Translation

Neural Machine Translation, NMT, is a learning approach based on neural networks for auto-
mated translation tasks. NMT techniques have been shown to outperform existing machine trans-
lation algorithms on sequence-to-sequence learning problems [WSC+16] [SVL14].
The problem of proposing method name completions can be seen as a sequence-to-sequence
translation task: the input sequence is a list of tokens obtained from the source code that con-
tains useful contextual information and the method name to be predicted is the output sequence
consisting of a single word.
Often, in sequence-to-sequence translation tasks, such as speech recognition or language trans-
lation, the dimensionality of the input and output vectors is not known in advance. To apply
neural networks on the set of problems where the dimensionality of input and output sequences
is variable, the encoder-decoder neural network architecture was proposed by [CVMG+14].
The basic outline of the encoder-decoder architecture is explained below:

• The encoder is represented by the RNN which reads every symbol of the input sequence
step-by-step. Once the end-of-sentence symbol is reached, the encoder stops reading
the data. The hidden state of the RNN, which represents the encoder, is a fixed-size vector

22 Chapter 2. Background

representing the input sequence. Thus, the encoder allows mapping variable-length input
sequences to the fixed-size representation.

• The decoder is another RNN that maps the fixed representation created by the encoder to the
output sequence. Unlike traditional RNN, the decoder output depends on the previously
outputted words and the context vector. The context vector is obtained by applying non-
linearity to the sequence of hidden states.

• Encoder and decoder are, typically, trained together in order to maximize the probability of
correctly predicting an output sequence given a source sentence.

The common choice for a hidden layer unit when using the encoder-decoder architecture is LSTM.
The LSTM unit was discussed in detail in Section 2.2.3.
The performance of the encoder-decoder approach was demonstrated to significantly deteriorate as
the length of input sequence increases [CVMBB14]. The reason is that the encoder layer needs to
compress the entire input sequence into the fixed-size internal representation before starting to
produce an output sequence using decoder.
To overcome this limitation, the attention-based RNN model was proposed [BCB14]. The key dif-
ference between the attention-based model and the encoder–decoder approach is that the attention-
based model, instead of encoding a whole input sentence into a fixed-size representation, encodes
every word from the input sequence into the separate vector. When producing an output se-
quence, the decoder searches the list of vectors generated during the encoding stage, where each
vector corresponds to a single word in an input sequence. The decoder picks the subset of vec-
tors from the list in order to generate an output sequence based on the relevance of each vector
for producing an output sequence. It is advantageous to apply an attention-based model to the
sequence-to-sequence translation problems where certain parts of the input sequence carry more
information that can be used when generating an output sequence.

Chapter 3

Approach

This chapter presents the novel method for proposing method name completion suggestions de-
veloped throughout this project. Section 3.1 will describe the data gathering procedure. The
models that we have used to preprocess the collected data are thoroughly explained in Section
3.2. The process of training the neural network model is described in Section 3.3. Section 3.4
presents the prototype code completion plugin that we have developed to demonstrate the via-
bility of the proposed approach.

All source code files and scripts that we discuss in this Section are available at http://tiny.
uzh.ch/Kg.

3.1 Data Acquisition
To tackle the problem of data collection, we have applied the structural approach proposed
by [YWL06]. The suggested data preparation scheme consists of three phases: data pre-analysis,
in which target data is identified and collected; data preprocessing, in which previously collected
data is examined and analyzed and in which some data may be tailored to specific application
via transformation or restructuration; and data post-analysis, in which some data is validated and
re-adjusted. In this section, we are going to focus only on the first phase of the integrated data
preparation scheme, namely, data pre-analysis. The following subsections will be structured ac-
cording with the discussed data preparation scheme.

3.1.1 Data Requirement Analysis
The requirement analysis during the data preprocessing phase proposed by [YWL06] includes fol-
lowing steps:

• What information we would like to have: The information required, in order to train a
neural network capable of predicting accurate method name suggestions, should feature
multiple components. Firstly, an exhaustive list of method names available both, in core
Python libraries and third-party libraries, should be gathered. Secondly, we should collect
all context information available in the source code file which can be potentially relevant
for the method name prediction task. In case of the code completion problem, the relevant
information is a part of the source code file which precedes the position in the file where the
prediction is to be inserted;

24 Chapter 3. Approach

• Which data is required for a specific task: to obtain the information described in the pre-
vious requirement, a large amount of Python source code files needs to be gathered. The
collected Python source code files should contain no duplicated data in order to have highly
diversified training dataset. To capture various naming conventions and usage patterns of
third-party libraries, the source code files should be obtained from different projects written
by different developers;

• Where can the data be found: there are many code-hosting web-based services such as
GitHub, BitBucket, GitLab and many more, which host thousands of open-source Python
repositories.

• Which format is the data in: When cloning a code repository from one of the aforemen-
tioned web-based code-hosting services, you download an entire project folder. Apart from
the source code files, the project folder often contains configuration files, auxiliary scripts,
text files with setup instructions and many other files, which are irrelevant for our problem.

3.1.2 Data Collection

During the data acquisition phase, we have downloaded two datasets. The first dataset contains
1, 000 Python source code repositories collected from GitHub code-hosting web service. Section
3.1.2.1 describes the methodology and software tools we have applied to extract code repositories
from GitHub. The second dataset contains 96, 091 Python package sources crawled from Python
Package Index, known as PyPi. The detailed description of how we approached the crawling of
PyPi data is presented in Section 3.1.2.2.

3.1.2.1 GitHub Data Collection

GitHub, the web-based development platform for collaborations on software projects, provides
a public Application Programming Interface, API [gitb]. The GitHub API allows to browse and
search hosted source code repositories using HTTP REST calls.
To extract 1, 000 most starred Python repositories, we have used the following API call:

api.github.com/search/

links to
repositories

repositories ?q =

return only Python
repositories

language : python &

most starred repositories
returned first

sort = stars&order = desc

The response, returned by the API, is in JSON format and contains the information about re-
quested repositories. The extract from a sample JSON response returned by the GitHub API is
presented below:

3.1 Data Acquisition 25

1 {

2 ...,

3 "created_at": "2015-03-18T18:22:31Z",

4 "updated_at": "2017-09-08T13:12:47Z",

5 "pushed_at": "2017-09-06T20:59:08Z",

6 "git_url": "git://github.com/google/yapf.git",

7 "ssh_url": "git@github.com:google/yapf.git",

8 "clone_url": "https://github.com/google/yapf.git" ,

9 "svn_url": "https://github.com/google/yapf",

10 "homepage": "",

11 "size": 1481,

12 "stargazers_count": 5483,

13 "watchers_count": 5483,

14 "language": "Python",

15 ...

16 }

Listing 3.1: Extract from GitHub API JSON response

A GitHub repository can be downloaded by cloning it using it’s clone URL. The clone_url of
sample GitHub repository is highlighted on Listing 3.1.2.1 [gita].
We developed a simple utility script used to crawl GitHub repositories. In order to be able to
clone Git repository on a local machine using clone URL, we have used third-party Python library,
GitPython, which allows to interact with Git repositories from Python [gitc].
Despite the fact that GitHub is the one of the largest code-hosting web platforms providing conve-
nient API to access hosted source code repositories, the API usage is subject to limitations. GitHub
Search API returns at most 1, 000 search results for any API call, thus, significantly limiting the
number of repositories that we could extract.

3.1.2.2 PyPi Data Collection

As presented in Section 3.1.2.1, we have managed to extract only 1, 000 source code repositories
from GitHub due to GitHub Search API limitations. One of the research questions we are aiming
to answer is how does the training dataset size affect the quality of method name suggestions.
Therefore, alternative sources of data are required to prepare a larger dataset.
The Python Package Index, known as PyPi, is a repository of software for the Python program-
ming language [pyp]. On 19/05/2017, it featured 112, 054 Python packages. PyPi doesn’t offer an
API, however, it provides a simple search index which lists links to the archives of all hosted pack-
ages on a single web page. In order to download the Python packages available at PyPi search
index, we have developed a custom web crawler based on Scrapy, an open-source web crawling
framework [scra].
A spider is a class which defines custom crawling behavior. Scrapy uses user-defined spiders to
decide which websites to scrape, which links to follow, how to scrape the data from the website
and many more. The overview of the operation principle of the spider is shown below:

1. Scrapy makes an initial HTTP request to the PyPi simple search index URL defined by
start_urls variable inside the spider. The default callback function when making an

26 Chapter 3. Approach

initial HTTP request is parse(self, response).

2. When a response from PyPi is received, parse callback function is invoked with response
parameter representing the received HTTP response.

3. Our implementation of the parse function extracts values from HTML href attributes using
selectors [scrb]. The HTML href attribute specifies the URL of the web page the link goes to.
After collecting URLs listed on the PyPi search index web page, the spider makes a single
HTTP request to each of the collected URLs setting get_package_url(self, response) function as
a callback. Each of those URLs represent a link towards the web page which contains links
for downloading different versions of the certain Python package.

4. get_package_url function extracts links only to those packages which are in .zip, .tar.gz
or .tar.bz2. The package web page often contains auxiliary files, such as readme files or
setup scripts, that are irrelevant to our research. Then, the link to the latest package version
is identified and URL of that link is added to the links.txt file.

5. The output of the spider is links.txt file which stores a list of URL where each URL is
pointing to the location of certain Python package archive.

6. To download the packages on our local machine using the list of links from the previous
step, we use wget command-line tool utility

7. In the extracted dataset, we maintain the folder structure of the original project, however,
only Python files with .py extension are kept.

We have managed to extract 96, 091 Python packages containing 1, 534, 528 Python source files
with .py extension. The total size of the dataset is 14GB.

3.1.3 Data Variable Selection
The data variable selection stage of the integrated data preparation scheme is concerned about se-
lecting variables for modeling. The selection process will be discussed in detail in Section 3.2.

3.2 Preprocessing
In Section 3.1.1, we have stated that in order to train a neural network model capable of predicting
accurate method name suggestions, we need the following information:

• What to predict: we are aiming to provide method name completion suggestions, therefore,
the exhaustive list of method names available in Python core and third-party libraries is
required.

• How to predict: relevant context information from the source code file should be used to
make a prediction.

In this section, we will often refer to the position in a source code file where a method name
suggestion would be inserted, if chosen. Therefore, we introduce the following definition:

Definition. Completion position is an index in a source code file where the method name comple-
tion suggestion, if chosen, would be inserted.

3.2 Preprocessing 27

The first assumption that we make, when considering which data from the source code file is
useful for purposes of predicting method name completion suggestions, is that the relevant data is
always before the completion position. On Listing 3.3 the green box highlights the part of the source
code file which we consider as relevant. The assumption may seem restrictive, but there are two

1 import os
2

3 def some_function():
4 my_string = "Car"
5 my_string.<completion_suggestion>
6 my_string = "C:/Users/ThesisUser/"
7 my_string = os.path.join(my_string,"MasterThesis")

Listing 3.3: An example code snippet

fundamental reasons behind it:

• The code after the completion position might not be available: the completion position in
the code snippet on Listing 3.3 is on the line 5 and there are two other code lines below.
Consider the scenario when a developer would be writing the presented piece of code and
lines 6,7 wouldn’t be there yet, however, the developer would expect a list of completion
suggestions to be presented when writing the code in line 5.

• The target variable type may change: as demonstrated on Listing 3.3, the type of the vari-
able my_string has changed on the line 6, right after the line where the code completion
system was invoked. From now on, it is an irrelevant piece of information to the code com-
pletion assistant because the completion system was invoked before the type change has
occurred.

This section presents three different source code preprocessors that extract relevant informa-
tion for method name prediction from the datasets we have obtained using tools discussed in
Section 3.1.2. The main goal of the proposed preprocessors is to answer two questions that we
have previously set: what to predict and how to predict.

3.2.1 AST Visitor
Each of the source code preprocessors presented in the next sections performs two tasks. Firstly,
every preprocessor extracts the context from the source code that is, according to the model im-
plemented by the preprocessor, relevant for the method name prediction problem. Secondly, the
preprocessor extracts names of the method calls that are used in the given source code file. While
the realisation of the first task, namely, the extraction of the relevant context from the input file,
is based on the preprocessor type, the implementation of the second task is shared across all the
preprocessor types.
To acquire the list of method names used in the given source code file, a preprocessor builds an
abstract syntax tree representation, AST, of the source code file. The concept of abstract syntax
tree was discussed in Section 2.1.2. To build an AST representation of the source code file, the
built-in Python ast library is used [pyt].
The ast module offers NodeVisitor class that, once an AST representation was built, walks the
AST and calls a visitor function for every node found. We have subclassed the base NodeVisitor
implementation and overriden visit_Call method which is invoked every time an AST node

mitarbeiter
Rechteck

mitarbeiter
Rechteck

28 Chapter 3. Approach

of type Call is visited. Additionally, we introduced call_nodes class attribute that stores a
triple for every node of type Call visited. The triple has the following format: (caller_name,
callee_name, ast_node). The caller_name is a piece of code, typically, a variable, which
invoked the method call. The callee_name is the name of the method call which was invoked
by the caller_name. The ast_node is an instance of the AST Node class of type Call where
the method call invocation was found.

3.2.2 Basic Preprocessor
The underlying assumption behind the basic preprocessing model is that the part of the code line
preceding the completion position is the only relevant piece of information for the method name
prediction problem. Listing 3.4 illustrates presented assumption. Consider the developer just

1 import os
2

3 def some_function():
4 my_string = "C:/Users/ThesisUser/"
5 os.path.<completion_suggestion>

Listing 3.4: Basic source code preprocessor model

typed os.path. and expects to receive a list of method name completion suggestions. The basic
preprocessor extracts the part of the code line preceding the completion position as illustrated on
Listing 3.4 and forwards it to the next processing step which is discussed in later sections.
The outline of the operation for the basic preprocessor is presented below:

1. The preprocessor takes a path to the directory as an input and scans a directory for Python
files with .py extension.

2. For each of the acquired .py files, if any, the preprocessor builds an abstract syntax tree,
AST, representation using Python built-in ast library.

3. The preprocessor uses CallVisitor class described in Section 3.2.1 to visit all nodes of
type Call in the generated AST and to build the list of triples storing the information about
the Call node.

4. Once the CallVisitor object finished iterating over the AST nodes, the acquired list of
triples is passed onto the next function for further processing.

5. During the next processing stage, the list of triples is iterated over. At each iteration, the
line number and the line of code corresponding to that line number, where the respective
AST Call node was found, is obtained. Then, the part of the code line, which precedes
the completion position, is extracted. Next, the extracted line is tokenized using NLTK
word_tokenize function [nlt].

6. The output of the tokeniser, a list of tokens, is filtered removing self keyword in Python
language indicating an instance variable. After the filtering step, the list of tokens is joined
in a single line using space delimiter.

7. Finally, the line joined from the filtered list of tokens during previous step and the name of
the respective method call are stored to the local data structures which are, once the input
file finished processing, written into the output files on a disk.

mitarbeiter
Rechteck

3.2 Preprocessing 29

3.2.3 Advanced Model Preprocessor
The advanced preprocessor is an evolution of the basic preprocessor that we discussed in Section
3.2.2. Apart from extracting the part of the code preceding the completion position, the advanced
preprocessor also searches for all occurrences of the caller within a scope according to the LEGB
rule. The only limitation of the advanced preprocessor is that it doesn’t search for the caller
occurrences at the global scope referenced as G in the LEGB rule. The LEGB rule and the concept
of scope in the Python programming language were discussed in Section 2.1.1.
Listing 3.5 illustrates the operational principle of the advanced preprocessor. In order to be able to

1 import os
2

3 def some_function():
4 some_number = 5
5 my_string = "Some content here"
6 other_string = my_string.lower()
7 my_string.<completion_suggestion>

Listing 3.5: An example of the advanced preprocessor operation

track the caller occurrences within it’s scope, the advanced preprocessor implements two visitor
classes, namely, ClassNodeVisitor and FunctionNodeVisitor.
The ClassNodeVisitor class, given an AST representation of a source code file, extracts and
stores all AST nodes of type ClassDefwhich represent the definition of the class in AST notation.
The FunctionNodeVisitor class keeps the track of AST nodes of type FunctionDef, that
represent the function definition in AST syntax, in the given file, however, avoids entering an
AST branch that is rooted at the node of type ClassDef. Thus, only the FunctionDef nodes
outside of class definitions are tracked.

After discussing implementation details of the visitor classes used in the advanced preproces-
sor, the algorithm of the advanced preprocessor is presented:

1. The preprocessor takes a path to the directory as an input and scans a directory for Python
files with .py extension.

2. For each of the acquired .py files, if any, the preprocessor builds an abstract syntax tree,
AST, representation using Python built-in ast library.

3. The preprocessor uses an instance of the ClassNodeVisitor class to walk the AST in
order to collect all AST nodes of type ClassDef.

4. Once ClassNodeVisitor finished walking the AST, the acquired list of AST ClassDef
nodes is passed onto the next processing phase.

5. During the next processing stage, for every ClassDef node in the list collected by the
ClassNodeVisitor, an instance of CallVisitor is created. The CallVisitor iterates
over an AST rooted at the ClassDef node searching for Call nodes.

6. For every Call node collected during step 5, there a corresponding (caller_name, callee_name,
ast_node) triple. The preprocessor script searches for all occurrences of the caller_name
within enclosing ClassDef node. Every line containing the object referenced by the caller_name
within ClassDef node is treated as relevant and added to the output file.

mitarbeiter
Rechteck

mitarbeiter
Rechteck

30 Chapter 3. Approach

7. Once the relevant context from the class definition nodes is extracted, the list of FunctionDef
nodes collected by the FunctionNodeVisitor goes into the processing pipeline. For ev-
ery FunctionDef node, an instance of CallVisitor is created. The CallVisitor iter-
ates over an AST rooted at the FunctionDef node looking for Call nodes.

8. This processing step is identical to the processing step 6. The only difference is that the
enclosing, top-level node is FunctionDef node.

To gain a better understanding of the operation principle behind the advanced preprocessor
script, the code snippet on Listing 3.6 is presented. The green box highlights the code that is
processed by the ClassNodeVisitor. The red box indicates the code that is handled by the
FunctionNodeVisitor.

1 import os
2

3 class Foo(object):
4

5 def __init__(self):
6 self.foos = []
7

8 def add_foo(self, foo):
9 self.foos.append(foo)

10

11 class AnotherFoo(object):
12

13 def _init_(self):
14 self.description = ""
15

16 def set_description(self, desc):
17 self.description = desc
18

19 def foo():
20 thesis_path = "C:/Foo/MasterThesis"
21 source_code_path = thesis_path.lower()
22 full_path = os.path.join(thesis_path, source_code_path)
23

24 def another_foo():
25 list = [5,6]
26 list.remove(5)
27 list.append(5)
28 list = list.extend([2,3])

Listing 3.6: The operational flow of the advanced preprocessor script

3.2.4 N-Chars Model Preprocessor
The N -chars preprocessor operates on the character level opposed to the preprocessors presented
in Section 3.2.2 and Section 3.2.3. The reason for that is to introduce another level of granularity

mitarbeiter
Rechteck

mitarbeiter
Rechteck

3.2 Preprocessing 31

for the neural network model. Consider variables named my_list and his_list. From the perspec-
tive of a word-level model, these variables are two different tokens. However, for a character-level
model, these variables appear as m y _ l i s t and o t h e r _ l i s t input sentences. The character-level
model would be able to detect that both input sequences share some portion of tokens and, as a
consequence, when a new sequence like n e v e r _ s e e n _ l i s t would be encountered, the model
would treat it as similar and is more likely to generate sensible outputs.
The N -chars preprocessor model assumes that the relevant context for the method name predic-
tion problem is a collection of N or fewer characters before the completion position where N is
an adjustable parameter. In our research, we set N = 1000. It is important to mention that the
n-chars preprocessor counts every character before the completion position regardless whether it
is a delimiter symbol, a user-defined comment or a newline character.
The code snippet on Listing 3.7 presents an example, which outlines the part of the source code
file, the N -chars preprocessor treats as the relevant context for N = 10: As demonstrated on List-

1 import os
2

3 def some_function():
4 some_string = "blablabla"
5 str = some_string + "xy"
6 str.<completion_suggestion>

Listing 3.7: An example of the N -chars preprocessor operation

ing 3.7, the N -chars preprocessor extracts ten characters before the completion position: ’" x y
" \n \t s t r .’ where \n and \t denote newline and tab characters respectively.
Key highlights of the N -chars preprocessor operation are presented below:

1. The preprocessor takes a path to the directory as an input and scans a directory for Python
files with .py extension.

2. For each of the acquired .py files, if any, the preprocessor builds an AST representation
using Python built-in ast library.

3. The preprocessor uses CallVisitor class described in Section 3.2.1 to visit all nodes of
type Call in the generated AST and build the list of triples storing the information about
found Call nodes.

4. For every Call node collected during step 3, there is a corresponding (caller_name,
callee_name, ast_node) triple. Next, the preprocessor extracts N characters starting
one index before the position, where the callee_name occurs in the source code file, mov-
ing towards the beginning of the file. If the amount of characters in the file before the
callee_name is less than N , the preprocessor takes whatever amount is available. In ad-
dition to that, the preprocessor does not break source code tokens in between. Consider
following scenario: the N -chars preprocessor with N = 20 has already acquired fifteen
characters and the next source token is string which is six characters long. The prepro-
cessor can foresee that by including all characters from the string token, the total number
of acquired characters would exceed N . To avoid exceeding the limit, it would ignore the
string token and stop execution collecting fifteen characters in total.

5. Once finished extracting N or less characters, the preprocessor joins the collected characters
into the single string and replaces all occurrences of tab and newline characters by Unicode

mitarbeiter
Rechteck

mitarbeiter
Rechteck

32 Chapter 3. Approach

symbols that are not recognized by the Python compiler. This is done in order to ensure
that the Unicode symbol representing space or tab character does not occur in the dataset.
Finally, every character in the resulting string is separated by space so that the output string,
when appears in the output file, is a sequence of space separated characters.

3.2.5 Discussion
In this section, we presented three different models of the source code preprocessors that extract
relevant information for the method name completion problem from the input Python program
files. Each preprocessor makes different assumptions about which information from a given code
file is relevant for the problem. Before looking at the results, we can hypothesize how the models
are going to perform relative to each other.

The advanced preprocessor is very likely to outperform the basic preprocessor because it extracts
additional information such as occurrences of the caller name within a scope. The extra contextual
information about the caller variable can give strong hints about the type of the caller variable.
However, given a piece of code like os.path.<completion_suggestion>, both models are
expected to behave similarly.

TheN -chars preprocessor, in majority of the cases, captures the same context as the advanced pre-
processor, especially if N is set to a large value. In addition to that, the N -chars model acquires
other pieces of the program file: their relevance for the method name prediction problem is ques-
tionable. On one hand, theN -chars model could capture user-defined comments and declarations
of other variables that might be completely unrelated for the method name to be predicted. On
the other hand, the model is likely to acquire file imports, the name of the enclosing function and
other parts of the source code that may provide strong cues which method name to predict.

Since the N -chars model is provided with plain source code and does not receive any preprocess-
ing hints, we expect it to perform worse than the advanced model, but it may be that the hidden
layers of a neural model are able to capture all relevant clues on their own.

3.3 Training
This section presents an overview of available neural machine translation kits and describes the
procedure we used to train a neural network model capable of predicting method name sugges-
tions.

3.3.1 Overview of Software Tools
In Section 2.2.3.3, we covered state-of-art techniques in a field of neural machine translation, NMT,
and stated that the problem of predicting method name completions can be seen as a sequence-
to-word translation task.
There are many open-source NMT toolkits such as seq2seq, GroundHog that were developed for
research purposes [gro] [seq]. These toolkits support particular research projects and are not de-
signed for public use offering little or no documentation which makes them difficult to adopt.
However, there are two open-source NMT implementations that are fairly mature and have a
solid documentation.
The NMT toolkit, called Nematus, was proposed by the Natural Language Processing Group at

3.3 Training 33

the University of Edinburgh [SFC+17]. Nematus supports state-of-art neural network architec-
tures that have been proposed in the field of NMT such as the attention-based model and the
encoder-decoder architecture that we discussed in Section 2.2.3.3. In addition to that, Nematus
offers large number of options and configuration parameters for training a neural network. These
options include choosing the type of hidden layer unit, LSTM or GRU, setting the number and
the size of neural network layers, multi-GPU training and many others.
Alternative solution is an Open Machine Translation toolkit developed by the Harvard Natural
Language Processing group with a support of SYSTRAN. Similar to Nematus, OpenNMT sup-
ports state-of-art neural network architectures and offers an extensive list of configuration op-
tions. On top of that, OpenNMT has an extensive documentation and an active user community.
There is also an official OpenNMT forum where OpenNMT developers and maintainers discuss
open issues with the community on the regular basis. Furthermore, OpenNMT offers various
utility tools, such as C++ Translate and REST Translation Server, that allow to integrate trained
neural network models into the existing product. The technical report describing OpenNMT fea-
tures can be found at [KKD+].
In our research project, we used OpenNMT toolkit mainly because it offers mature documentation
and provides utility tools for model deployment.

3.3.2 Training Process
The process of training a neural network model using OpenNMT toolkit is two-stage.
First part, the preprocessing stage, is concerned with building the word and feature vocabularies
from the given input files. Each word in the vocabulary file is assigned an index which is used
later during the training phase. The input to the OpenNMT preprocessor are two file pairs, source
and target training files and source and target evaluation files, where files within a pair must be
aligned with each other. The OpenNMT framework uses evaluation files to detect convergence
of training. In our case, the source file, produced by one of the preprocessor scripts described in
Section 3.2, contains the information which we assume is relevant for the method name predic-
tion problem. The target file contains a list of corresponding method names. To generate a pair
of evaluation files, we developed a little utility script that, given a pair of files (source and target)
and number of lines to include in evaluation files, generates source and target evaluation files. To
ensure the data in the evaluation files is uniformly distributed, the utility script uses randomly
generated indexes to select which lines from the input files should go into the evaluation files.
Extracts from aligned source and target files generated by the advanced preprocessor are pre-
sented on Listing 3.8 and Listing 3.9 respectively. The OpenNMT framework offers a vast num-

lines = [] lines

string = "Car" split_string = string

file = open ("f.txt", "r") lines = file

Listing 3.8: An extract from sample source file

append

split

readlines

Listing 3.9: An extract from sample target file

ber of configuration options to parametrize a neural network architecture. These options include
different encoder and decoder types, various types of hidden layer units. In our work, we chose
to use a unidirectional RNN encoder implementation and a decoder that uses an attention model
which are default parameters proposed by the OpenNMT toolkit.
In Section 3.1.2.1 and Section 3.1.2.2, we explain how we trained a neural network model on each
of the collected datasets, namely, GitHub dataset and PyPi dataset. The approach that we used to

34 Chapter 3. Approach

collect these datasets is described in Section 3.1.

3.3.2.1 Training on GitHub dataset

The data collected from the GitHub code-hosting web service contains 1, 000 Python repositories
that include 157, 772 Python source code files in total. We have processed the data with each of
the preprocessor implementations presented in Section 3.2 and obtained three different training
datasets.

Type of preprocessor Size of source training file (in MB)
Basic 51.8

Advanced 1, 931
N -chars 9, 917

Table 3.1: GitHub dataset characteristics

From Table 3.1 we observe that the amount of information which is treated as a relevant con-
text significantly differs for every preprocessor model.
The next step is to use a preprocessor built into the OpenNMT toolkit in order to obtain source
and target dictionary files. We used the OpenNMT preprocessor with the following parameters:

th preprocess.lua

path to
source

training file

−train_src . . .

path to
target

training file

−train_tgt . . .

path to
source

evalution
file

−valid_src . . .

path to
target

evaluation
file

−valid_tgt

. . .

maximum source
sequence length

−src_seq_length . . .

path to save
generated
dictionary

files

−save_data . . .

Most of the preprocessor parameters are paths to file system locations where training and eval-
uation files are stored. Unlike others, the src_seq_length configuration option represents the
maximum allowed length of an input sequence with a default value set to 50. If a sequence
contains more words than permitted by src_seq_length, the preprocessor does not include it
into the training dataset. When preprocessing the data files generated by the N -chars preproces-
sor script, the most of the input sequences from these files were ignored. This is because each
input sequence is a bag of 1, 000 or less characters which the OpenNMT preprocessor treats as
separate tokens, ignoring all sequences that have more than 50 characters. To avoid that, we set
src_seq_length= 1000 when processing data files generated by the N -chars preprocessor.
Once OpenNMT finishes preprocessing stage, the next step is training. To train a neural network
model, we used the OpenNMT train.lua script with following parameters:

3.4 Code Completion Plugin 35

th train.lua

path to
the

train-
ing

data

−data

number
of layers

−layers . . .

number of
neurons
per layer

−rnn_size . . .

which
GPU(s)
to use

for
training

−gpuid . . .

path to save
trained model

−save_model . . .

We set neural network parameters, namely, layers and rnn_size, to 2 and 600 respectively. The
research literature suggests that deep neural network models i.e. neural networks having multi-
ple hidden layers apart from input and output layers, outperform two-layer networks [SVL14].
Unfortunately, we are bound by the hardware limitations when choosing neural network param-
eters. The amount of memory on the graphical processing unit, GPU, provided for our project is
too small to fit larger neural network into the memory.

3.3.3 Training on PyPi dataset
We managed to download 96, 091 Python repositories that contain 1, 534, 528 Python source code
files in total using the crawler discussed in Section 3.1.2.2. A training dataset was prepared by
every preprocessor model that we presented in Section 3.2. As a result, three training were gener-
ated. The figures reported in Table 3.1 and Table 3.2 follow similar trend: the simple preprocessor

Type of preprocessor Size of source training file (in MB)
Basic 402

Advanced 10, 582
N -chars 68, 200

Table 3.2: PyPi dataset characteristics

extracts very little context from the given code files compared to the N -chars preprocessor.
Due to hardware limitations, we were unable to carry out the training process using the dataset
collected from PyPi. The reason is that parameters representing dimensionality of a neural net-
work could not be increased. A two-layered neural network with each layer consisting of 600
neurons that we used to train on the datasets generated from GitHub data is insufficient to cap-
ture properties of this dataset.

3.4 Code Completion Plugin
This section describes the implementation details of the code completion plugin that uses a neural
network model trained according to the approach described in Section 3.3.

3.4.1 Overview of Integrated Development Environments
There are many integrated development environments, IDEs, on the market, both free and paid,
that support Python programming language. For example, PyCharm is a popular commercial
Python IDE by JetBrains offering a lot of productivity features such as intelligent code completion,
refactoring assistant and others [pyc]. Eric, Wing, Netbeans are all examples of free, open-source

36 Chapter 3. Approach

integrated development environments that also offer an extensive list of productivity features
including code completion assistant [eri] [win] [net].
The choice of the IDE, for which we were to develop a code completion plugin, was dictated by the
presence of API functionality that is necessary to detect when the code completion plugin should
be invoked. In most IDEs, a code completion feature is built into the core libraries, making it
impossible to provide the desired API functionality. The only software development environment
that offers this functionality is NetBeans IDE. Therefore, NetBeans platform served us as a basis
for a code completion plugin implementation. To implement a module for NetBeans platform,
the Java programming language is to used.

3.4.2 Implementation
3.4.2.1 NetBeans Completion API

The NetBeans integrated development environment offers an Editor Code Completion API
allowing to integrate custom code completion assistants into the IDE [edi]. There are two inter-
faces, CompletionItem and CompletionProvider, that must be implemented by the soft-
ware component aiming to provide code completion suggestions.
CompletionProvider interface offers following methods:

– createTask: when user requests a list of completion suggestions, the corresponding task
is created and executed. During the task execution, a list of instances of classes implement-
ing the CompletionItem interface should be generated where each instance represents a
single completion suggestion. The task can be synchronous or asynchronous.

– getAutoQueryTypes: determines whether code completion window is brought up auto-
matically or by user action.

An instance of class conforming to the CompletionItem interface represents single completion
suggestion. Highlight of key methods available in CompletionItem interface is shown below:

– defaultAction: specifies the action to execute when user presses Enter key or double-
clicks mouse cursor on the item

– getSortPriority: returns the priority of the item. The higher the priority, the closer to
the top of suggestion list the item appears.

– getSortText: returns a text which used when sorting items alphabetically.

– getInsertPrefix: returns a text used for finding a longest common prefix

– render: render the item into graphics context

– getPreferredWidth: returns visual width of the item

The flow chart diagram on Figure 3.1 demonstrates the typical usage scenario of Editor Completion
API.

3.4.2.2 Neural Network Model Integration

To interface with the neural network model that translates relevant context from the source code
file into method name suggestions, we used an utility tool provided in the OpenNMT toolkit
called REST Translation Server.
A HTTP request is sent to a translation server running on fixed IP address and port specifying

3.4 Code Completion Plugin 37

User enters dot symbol and expects

Did user press getAutoQueryTypes()
returns 1?Ctrl+space?

to see a list of completion suggestions

do nothing

createTask()

generate a list of CompletionItem

present list of completions to user

no no

yes

yes

Figure 3.1: Typical usage scenario of Editor Completion API

what is the data to be translated. The translation server responds with a JSON containing trans-
lation results. The principle of operation of the OpenNMT translation server is demonstrated on
Figure 3.2.

3.4.2.3 Architecture

In this section, we present an overall outline of the code completion plugin operation.
PythonCompletionProvider is a class which implements CompletionProvider interface
and interconnects system components such as module responsible for communication with the
OpenNMT translation server or the module which extracts relevant information from the source
code file to be later sent for translation.
The implementation of createTask method is presented below: Note that request to the trans-
lation server is not sent every time createTask method is called. Suppose a developer in-
voked the completion assistant on an object and, once a list of suggestions is presented, he types
’a’ expecting to see only suggestions beginning from ’a’. The NetBeans engine would invoke
createTask method twice: once when the developer initially invoked the code completion as-
sistant and once when the developer typed ’a’ expecting to see only suggestions beginning with
’a’. To avoid making duplicate translation requests, we introduced intermediate cache for stor-
ing translation results. When a completion assistant is initially invoked on an object, the transla-
tion request is sent to the REST server, returned results are stored in the cache. Later, if a filtered

38 Chapter 3. Approach

OpenNMT REST
translate "list=[] list"

"append
extend
insert
..."

Translation server
Client

Figure 3.2: OpenNMT REST Translation Server

version of method name list is needed, the suggestions matching the filter criteria are obtained
from the cache.

Netbeans
Platform

«interface»

CompletionProvider

PythonCompletionProvider

NCharsCode
Preprocessor

«interface»
CodePreprocessor

PythonCompletionItem

TranslationServerConnector

TranslationResultsCache

OpenNMT

«interface»

CompletionItem

Translation Server

TranslationRequest

TranslationResponse

Figure 3.3: Class diagram of the code completion assistant

3.4 Code Completion Plugin 39

1 @Override

2 public CompletionTask createTask(int queryType, JTextComponent jtc) {

3 if (queryType != CompletionProvider.COMPLETION_QUERY_TYPE) {

4 return null;

5 }

6
7 return new AsyncCompletionTask(new AsyncCompletionQuery() {

8
9 @Override

10 protected void query(CompletionResultSet resultSet, Document doc, int caretOffset){

11 try {

12 List<TranslationResult> translationResults;

13 String relevantContext = doc.getText(0, caretOffset);

14 int dotIndex = relevantContext.lastIndexOf(".");

15 if (doc.getText(caretOffset-1, 1).compareTo(".") == 0) {

16 String processedCode = preprocessor.processCode(relevantCode);

17 translationResults = serverConnector.translate(

18 new TranslationRequest(processedCode));

19 } else {

20 String prefix = doc.getText(dotIndex+1, caretOffset - dotIndex - 1);

21 translationResults = cache.getStartsWith(prefix, 0);

22 }

23 for (TranslationResult translationResult: translationResults) {

24 String suggestion = translationResult.getMethodNameSuggestion();

25 /* filter out <unk> results */

26 if (suggestion.compareTo("<unk>") != 0) {

27 resultSet.addItem(

28 new PythonCompletionItem(translationResult, dotIndex));

29 }

30 }

31 } catch (BadLocationException ble) {

32 Logger.getLogger(PythonCompletionProvider.class.getName()).

33 log(Level.SEVERE, null, ble);

34 }

35 resultSet.finish();

36 }

37 }, jtc);

38 }

Listing 3.10: The createTask method implementation

Chapter 4

Evaluation

In this chapter, we perform a quantative and qualitative comparison of neural network models.
They were trained using the datasets produced by the preprocessor implementations discussed
in Section 3.2. In addition to that, we evaluate the code completion plugin presented in Section
3.4 against state-of-art code completion engines.

4.1 Evaluation Approach
The evaluation process is divided up into three stages.
Firstly, we compare how neural network models, trained on different datasets, perform against
each other during the training process using the perplexity evaluation metric. Secondly, we eval-
uate the neural network models based on the relevance of completion suggestions they generate.
Apart from using model assessment based on theoretical evaluation metric such as perplexity, it
is important to evaluate how code completion models perform on real-world test cases. Since
each model makes different assumptions about code parts that are relevant for the method name
suggestion task, we hypothesize that every model will exhibit distinct behaviour when applied
on a real-world problem. To evaluate proposed the code completion engine on actual data, we
propose four constraining criteria:

– Amount of relevant context: we would like to analyze how much code i.e. relevant context,
every model needs in order to make sensible completion suggestions. If little context is
needed, the model should be capable of suggesting suitable method names even when the
program file has only couple of code lines.

– Proximity of relevant context: this criterion is concerned with the distance from a comple-
tion position to the code parts which provide information about the method name to be
predicted. While this criteria is not helpful to assess the performance of the simple prepro-
cessor model which uses only the part of a code line before the completion position, the
N -chars preprocessor model, which considers N or fewer characters before the completion
position, is highly dependent on the distance of the relevant content within the code file
relative to the completion position.

– Variable naming: this criterion is used to assess how much does an inadequate variable
naming affect the quality of method name suggestions. For example, variable with a name
string referencing an object of type listmay confuse a context-based completion engine.

– Prevalence of the variable type: variables of built-in Python types such as string or list
occur within our training datasets much more frequently compared to variable types that

42 Chapter 4. Evaluation

are introduced by third-party libraries. Therefore, we would like to estimate the effective-
ness of our model in predicting method names for infrequent variable types.

To assess described criteria, we prepared twenty test cases which are code snippets extracted from
actual Python software projets. Listing 4.1 demonstrates one of the evaluation cases which is de-
signed to test the quality of method name suggestions on a varible type from BaseHTTPServer
library given fair amount of context and adequate variable naming. With the use of above-

1 import time
2 import BaseHTTPServer
3

4 HOST_NAME = 'example.net' # !!!REMEMBER TO CHANGE THIS!!!
5 PORT_NUMBER = 80 # Maybe set this to 9000.
6

7 class MyHandler(BaseHTTPServer.BaseHTTPRequestHandler):
8 def do_HEAD(s):
9 s.send_response(200)

10 s.send_header("Content-type", "text/html")
11 s.end_headers()
12 def do_GET(s):
13 """Respond to a GET request."""
14 s.send_response(200)
15 s.send_header("Content-type", "text/html")
16 s.end_headers()
17 s.wfile.write("<html><head><title>Title goes here.</title></head>")
18 s.wfile.write("<body><p>This is a test.</p>")
19 # If someone went to "http://something.somewhere.net/foo/bar/",
20 # then s.path equals "/foo/bar/".
21 s.wfile.write("<p>You accessed path: %s</p>" % s.path)
22 s.wfile.write("</body></html>")
23

24 if __name__ == '__main__':
25 server_class = BaseHTTPServer.HTTPServer
26 httpd = server_class((HOST_NAME, PORT_NUMBER), MyHandler)
27 print time.asctime(), "Server Starts - %s:%s" % (HOST_NAME, PORT_NUMBER)
28 try:
29 httpd.serve_forever()
30 except KeyboardInterrupt:
31 pass
32 httpd.server_close() <completion>

Listing 4.1: An example of evaluation test case (<completion> marks the method name ex-
pected to be predicted)

mentioned test cases, we compare the proposed approach for predicting method names with
state-of-art techiques that are currently applied in modern IDEs. The detailed procedure and ob-
tained results are presented in Section 4.3.4.
Furthermore, we demonstrate that our approach can be generalized to other dynamic progam-
ming languages by training a method completion model on the Javascript, another widely used
programming language with dynamic type system.

4.2 Model Performance 43

Finally, we discuss threats to validity of our experiments in Section 4.5.

4.2 Model Performance
In this section, we discuss how each of the models performed during the training process.

4.2.1 Perplexity metric
To measure how models perform during the training process, we apply perplexity evaluation met-
ric. The perplexity is a way to evaluate a language model which can be explained as an average
number of choices per word. The higher the perplexity value, the more choices a language model
has when predicting the next word.
The OpenNMT framework that we use for training neural network models calculates perplexity
as follows:

perplexity = e
− 1

N

N∑
i=1

ln q(xi)

whereN is the total number of test samples and q(xi) represents how well the probability model q
predicts a test sample xi. When the model q predicts samples with the highest level of confidence
i.e. q(xi) = 1 ∀i, the value of perplexity is 1. In contrast, when confidence of the model predicting
samples is at the lowest point i.e. q(xi) = 0 ∀i, the value of perplexity is +∞.
The OpenNMT toolkit trains a neural network model over a number of epochs reporting the
value of perplexity after every epoch. The perplexity of the model is calculated using a validation
dataset that contains previously unseen data.

4.2.2 Results
We trained each of our models for thirteen epochs capturing the value of validation perplexity af-
ter every epoch for each model. The results presented on Figure 4.1 demonstrate how perplexity

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12
13

epoch number

p
e
r
p
l
e
x
i
t
y

Basic
Advanced
N -chars

Figure 4.1: Perplexity for each model during the training

44 Chapter 4. Evaluation

value has evolved. The basic model has a nearly flat learning curve starting with perplexity value
of 3.94 at epoch 1 and finishing with the value of 2.61 at epoch 13. We hypothesize that the basic
model exhibits slow learning pace because it uses too little information for method name predic-
tion. As we discussed in Section 3.2.5, the advanced model is expected to outperform the basic
model and the results confirm our prediction. The advanced model demonstrates final value of
perplexity of 1.85 at epoch 13. Despite the poor performance in the beginning, the N -chars model
was capable of achieving final perplexity of 1.52 at epoch 13, which is the lowest value across all
the models.

Therefore, it appears that the model which requires least amount of processing i.e. N -chars
demonstrates best performance.

4.3 Qualitative evaluation

To analyze performance of the models when applied on the actual problem and assess how it
aligns with the theoretical results, this section presents a qualitative evaluation of the models on
twenty real-world test cases.

4.3.1 Evaluation Metric

To quantatively assess the proposed method for suggesting completions, we use an accuracy
metric that is commonly applied in the field of code completion [RVY14] [RL08] [NHC+16]. If
a target method name is within top N suggestions where N is a variable parameter, we say that a
completion engine fulfiled the task and give it a score of one. The target name that appears in the
list of suggestions but isn’t in top N proposals is considered irrelevant and the code completion
assistant receives a score of zero. The final score is calculated as a sum of scores on individual
test cases and used as a basis for calculating the accuracy metric. For example, given N = 10,
a code completion assistant included the target method name in top ten suggestions five times
when evaluated on twenty test cases. The system achieved a score of five and the accuracy of the
system is 5

20 = 25%.
A second type of assessment technique that we use is a precision performance metric. Precision
is the ratio of relevant elements to the total number of presented elements. This metric is rarely
used to evaluate code completion engines. The reason is that the majority of code completion
assistants are designed for statically typed programming languages as we discussed in Section
1.2. In programming languages with static type system, the information about variable type is
available as code is being edited, thus, the complete list of methods for the given object type is
accessible at any moment. In contrast, the type information in dynamically typed programming
languages is available only at runtime. Therefore, our code completion engine might misinterpret
the context and propose irrelevant suggestions as a consequence of being unable to access the
information about object types.
We calculate the value of precision metric as follows: for each test case, the value of precision is
a ratio of the number of suggested methods that can be used on a given variable type to the total
size of suggestions list. To assess overall precision for a given set of test cases, mean value of
individual results is computed.

4.3 Qualitative evaluation 45

4.3.2 Comparison of Preprocessor Models on Actual Code Ex-
amples

Even though the N -chars model has proven to be superior to other models from theoretical
prospective, we perform a quantitative comparison of the models on real-world test cases. The
reason is that we believe that the characteristics of the context i.e. source code file, highly affect
the quality of results predicted by the model.
We prepared twenty test cases which are actual code extracts from real Python repositories that
did not appear neither in the training dataset nor in the validation dataset. These test cases were
carefully picked in order to test how characteristics of the source code, presented in Section 4.1,
affect the method name suggestions. There are four characteristics that we aim to test, namely,
amount of relevant context, proximity of relevant context, variable naming and prevalence of the vari-
able type. For each characteristic, there are two possible values, for example, variable naming =
{adequate, inadequate} or prelevance of variable type = {often used, rarely used}. Every combina-
tion of characteristics and their values has a corresponding test case resulting in sixteen test cases
in total. In addition to that, we have prepared another four code snippets which were designed
to assess our models in edge case situations. A replication package containing all test cases can
be found at http://tiny.uzh.ch/Kg.
We use two evaluation metrics to quantatively assess the performance of the models, namely,
a target method name in top-N suggestions and precision, described in Section 4.3.1. The target
method name in top-N suggestions metric is used with three different values of N : 3, 5 and 10.

Table 4.1 shows evaluation results of our models on sixteen test cases described above:

top-3(%) top-5(%) top-10(%) precision(%)
Basic 50.0 56.25 62.5 55.0
Advanced 56.25 62.5 68.75 63.75
N -chars 62.5 75.0 81.25 63.75

Table 4.1: Evaluation results of our models on sixteen real-world test cases

The actual figures presented in Table 4.1 partially confim the hypothesis that we stated in Sec-
tion 3.2.5 and align with the theoretical results demonstrated in Section 4.2.2: the advanced model
outperforms the simple processor strategy.

Interestingly, it appears that the N -chars preprocessor strategy, which we expected to demon-
strate rather average performance, reported the lowest perplexity value. Since the input to the
model is just a plain source code which may contain comments or empty lines, the model has to
learn how to weigh an input i.e. which parts of the input sequence are relevant for the prediction
and which should be discarded.

During the testing procedure, we observed that the basic model is very sensitive to the inadequate
variable naming, however, on a source code file with informative variable names, the quality of
method name suggestions is in line with the advanced model.

The advanced model demonstrates superior performance when the distance between the com-
pletion position and the relevant context is large. Yet, it cannot always interpret the context sur-
rounding the completion position correctly and predict the method name appropriate for a given

46 Chapter 4. Evaluation

situation. The model often offers a target method name in the lower part of the suggestion list.
The possible reason is that the model has enough knowledge about the caller variable in order to
predict the list of correct method names, however, due to the inability to assess the nearby con-
text, the target method name often appears at the bottom of the suggestion list and, therefore, the
model receives a score of 0.

The N -chars model demonstrated strong positive performance across the most of the test cases.
By analyzing the context above the completion position, the model can often correctly predict
not only the list of method suggestions, but also the order of presentation. However, the main
limitation of the model appears to be the size of N i.e. how many characters does it look behind.
Often, variable declarations are at the top of a function body, whilst method invocations on those
variables are at the bottom of the function. In a relatively long program file, the N -chars model
with N = 1, 000 would be unable to lookbehind enough to capture the relevant context resulting
in irrelevant method name suggestions.

In addition to the described above, we noticed that all models perform significantly better when
predicting completion suggestions on built-in Python types and modules. This phenomenon is
clearly related to the popularity of built-in libraries that can solve the most of common tasks.

4.3.3 Comparison of Preprocessor Models on Confusing Code
Examples

We also assess the behaviour of the proposed approaches on a set of test cases that were specifi-
cally designed to confuse our models.

4.3.3.0.1 Import Renaming Consider the import statement at the top of Listing 4.2 which
demonstrates the usage of a syntatic feature in Python called aliasing which allows to refer to
imported modules using any name. Interestingly, this specific case uses sys, which is a widely

import os as sys

def get_correct_path(path_extension):
path_1 = "C:/MasterThesis/project"
path_2 = "project/scripts/"
return sys.path.join(path_1, path_2) <completion>

Listing 4.2: Special test case 1 (<completion> marks the method name expected to be predicted)

used module to interact with the parameters of Python interpreter, as an alias for os, another pop-
ular Python library. Table 4.2 demonstrates the performance of our models in described scenario:

4.3 Qualitative evaluation 47

top-3(%) top-5(%) top-10(%) precision(%)
Basic 100.0 100.0 100.0 50.0
Advanced 100.0 100.0 100.0 40.0
N -chars 0.0 0.0 0.0 10.0

Table 4.2: Special test cases evaluation results 1

Despite showing a strong performance on the conventional test cases, theN -chars model have
failed to propose meaningful suggestions in this scenario. For some reason, it interpreted from
the context, that the type of sys.path is list, and proposed corresponding method names. The 10%
accuracy value is a lucky co-incidence: os and list share methods with same names e.g. remove.
The simple model was able to figure out that sys is an alias and proposed join as a top suggestion.
The advanced model, despite reporting nearly same score as the basic model, was actually con-
fused by the example and included in the prediction method names for three types, namely, os,
list and str luckily including join in top-3 methods.

4.3.3.0.2 Change of Variable Type The example program presented on Listing 4.3 is aimed
to test whether our models weighs the relevant context based on proximity from the completion
position. The evaluation results are presented in Table 4.3:

my_list = [4]
my_list.append(5)
my_list.extend(1)
my_list.remove(4)
print("List length: {0}".format(len(list)))
my_list = "CAPS LOCKED SENTENCE"
my_list.lower() <completion>

Listing 4.3: Special test case 2 (<completion> marks the method name expected to be predicted)

top-3(%) top-5(%) top-10(%) precision(%)
Basic 0.0 0.0 0.0 50.0
Advanced 0.0 0.0 0.0 20.0
N -chars 0.0 0.0 0.0 0.0

Table 4.3: Special test cases evaluation results 2

None of the models managed to predict the target method name even within top 10 sugges-
tions. Clearly, the models do not put more importance on those parts of relevant context that are
closer to the completion position. The attention-based model described in Section 2.2.3.3 could
be a potential remedy. We can specify which parts of the input sequence carry more importance,
therefore, the model will learn that the most recent use of the variable is the most crucial.

4.3.3.0.3 Instance Variables With the next test case presented on Listing 4.4, we aim to eval-
uate the quality of method name suggestions for instance variables within a class definition. The

48 Chapter 4. Evaluation

test case was designed in such a way that the variable name i.e. my_foos, does not provide any
hints about the type of underlying object. Table 4.4 presents evaluation results on the test case

class Foo(object):

TOO_MANY_FOOS = 10

def __init_(self):
self.my_foos = []
self.description = ""

def add_foo(foo):
if "nice" in foo.description:

if len(self.my_foos) > TOO_MANY_FOOS:
pass

else:
self.my_foos.append(foo) <completion>

Listing 4.4: Special test case 3 (<completion> marks the method name expected to be predicted)

described above:

top-3(%) top-5(%) top-10(%) precision(%)
Basic 100.0 100.0 100.0 30.0
Advanced 100.0 100.0 100.0 90.0
N -chars 100.0 100.0 100.0 60.0

Table 4.4: Special test cases evaluation results 3

The figures demonstrated in Table 4.4 speak for themselves: all three models were able to
recognize the type of my_foos instance variable and suggest relevant method name completions.
However, we cannot confidently claim that these results will generalize to other code completion
scenarios involving instance variables: the presented example is elementary and was included
in order to demonstrate that our models can also generate method name predictions for instance
variables.

4.3.3.0.4 Inadequate Variable Naming The final test case presented on Listing 4.5 is designed
to assess how our models deal with an extreme case of inadequate variable naming. This example
demonstrates two variables, my_list and other_list. Each of them represents an underlying object
of type set. Variable names were picked in such a way that they give our models false hints about
their types. Furthermore, list and set built-in types share many method names in common such
as pop and remove.
Results are presented in Table 4.5:

4.3 Qualitative evaluation 49

my_list = {1,2,3}
print("Length of list: {0}".format(len(my_list)))
my_list.remove(2)
my_list.pop()
print("Length of list: {0}".format(len(my_list)))
other_list = {3,4}
is_contained = my_list.issubset(other_list) <completion>

Listing 4.5: Special test case 4 (<completion> marks the method name expected to be predicted)

top-3(%) top-5(%) top-10(%) precision(%)
Basic 0.0 0.0 0.0 10.0
Advanced 0.0 0.0 0.0 50.0
N -chars 0.0 0.0 0.0 50.0

Table 4.5: Special test cases evaluation results 4

Reported precision values show that the advanced and N -char models actually captured that
there was a variable of type set within a program file. In fact, the list of suggesstions generated
by both models consists of method names applicable to list and set object types only. However,
the target method name, issubset, was not in top-N suggestions for any of the models. The most
likely reason is that issubset did not appear repeatedly within the training dataset. Therefore, it is
not likely to be amongst top predictions.

4.3.4 Evaluation against existing state-of-art tools

In this section, we evaluate the N -chars model, which was shown to outperform other presented
models, against industry-leading Python code completion assistants.
PyCharm is a commercial Python IDE developed by JetBrains which offers intelligent code com-
pletion system [pyc]. Jedi, a state-of-art code completion and static code analysis library for
Python programming languages, has been integrated in many popular text editors, such as Vim,
Sublime Text or Atom [jed]. Finally, we evaluate our system against the Kite, cloud-powered
software productivity tool for Python which offers smart code completion amongst other fea-
tures [kit]. We apply the same evaluation approach and performance metrics as demonstrated in
Section 4.3.2.

We perform evaluation on the general test set which consists of sixteen test cases. The analysis
of four special test cases is omitted because they were specifically designed to demonstrate on
which real-world cases neural networks may struggle.
Table 4.6 presents evaluation results of theN -chars code completion model against PyCharm, Jedi
and Kite on sixteen different test cases.

50 Chapter 4. Evaluation

top-3(%) top-5(%) top-10(%) precision(%)
Our model 62.5 75.0 81.25 63.75
PyCharm 25.0 31.25 31.25 54.375
Jedi 18.75 25.0 31.25 65.0
Kite 37.5 37.5 56.25 87.5

Table 4.6: Evaluating our approach against industry-leading code completion engines on general test cases

The results presented in Table 4.6 clearly demonstrate that our model is considerably superior
to other presented code completion assistants. During the testing we observed that the analyzed
code completion engines, producing the list of alphabetically ordered suggestions, included the
target method name in the bottom part of the list. As the result in spite of being among suggested
options, target method name, was not taken into account for the top-N metric value calculation
in such cases. Another tendency that we spotted during the testing process is that analyzed com-
pletion engines often do not generate any method name suggestions at all. For example, one of
the test cases involved predicting a method name on the variable of built-in Python type dict. All
of analyzed completion engines failed to generate a suggestion list. However, when these code
completion engines do generate suggestions, they often have a precision value of 100%.
We have demonstrated that our system has the potential to outperform existing industry leading
code completion engines. Even though the evaluation dataset was rather small and potentially
not representative (see Section 4.5 for further discussion), we are confident in the approach, since
the perplexity values on the entire validation data indicate high performance. Furthermore, we
demonstrate in next section that our model can be generalized to other dynamically typed pro-
gramming languages such as Javascript. In contrast, discussed code completion engines rely on
static language analysis tools and, therefore, cannot be easily adopted for application to other
programming languages.

4.4 Generalizability of Approach

The industry-leading completion assistants that were discussed in Section 4.3.4 heavily rely on
static code analysis tools when suggesting method name completions. An implementation of
these tools for a given programming language is specific to the semantic and syntactic structure
of the language. Therefore, discussed code completion engines cannot be easily adapted to sup-
port other dynamic programming languages.
We hypothesize that the proposed approach to the method name completion problem can be eas-
ily generalized to other programming languages. To test our hypothesis, we apply the approach
presented in Chapter 3 to train a code completion model on 1, 000 Javascript software repositories
collected from GitHub. To prepare the corpus for training, we adapted the N -chars preprocessor
script so that the preprocessor knows how to generate an AST for a given Javascript program.

The final value of perplexity reported at the end of the training is aligned with results presented
in Section 4.2. Figure 4.2 demonstrates how perplexity evolved:

4.4 Generalizability of Approach 51

1 2 3 4 5 6 7 8 9 10 11 12 13
0
2
4
6
8

10
12

15

20

30

35

epoch number

p
e
r
p
l
e
x
i
t
y

Javascript
Python

Figure 4.2: Perplexity graph when training N -chars model on Python and Javascript repositories

The graph presented on Figure 4.2 shows that, for first 3 epochs, the Javascript model was
struggling to learn, however, from epoch 7, the value of perplexity is aligned with the Python
model. The potential reason for it is that the Javascript syntax allows use of closures i.e. inner
functions that have access to the variables within an enclosing function [jav]. The code written
inside a closure is often irrelevant for the method call that follows after the closure. This language-
specific feature may not be immediately captured during the training.

We present two test cases on Listing 4.6 and Listing 4.7 to demonstrate that the Javascript model
generates method name suggestions suitable for a given context.

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200,{'Content-Type':

'text/html'});

res.write(req.url);

res.end();

}).listen(8080); <completion>

listen

on

end

pipe

addListener

address

installHandlers

attach

writeHead

createServer

Listing 4.6: Javascript test case 1 (<completion> marks the method name expected to be pre-
dicted)

In this section, we demonstrated that our approach can be used to train a method name com-
pletion engine for Javascript. Although it is uncertain whether similar results can be achieved for
other programming languages with dynamic type systems, positive evaluation results suggest

52 Chapter 4. Evaluation

exports.toCamelCase = function(str, upper) {

str = str.toLowerCase().

replace(/(?:(^.)|(\s+.)|(-.))/g,

function(match) {

return match.charAt(match.length - 1).

toUpperCase();

});

if (upper) {

return str;

}

return str.charAt(0).toLowerCase()

+ str.substr(1); <completion>

};

slice

substr

substring

charAt

toUpperCase

replace

charCodeAt

search

toString

join

Listing 4.7: Javascript test case 2 (<completion> marks the method name expected to be pre-
dicted)

that our approach has some potential.

4.5 Threats to Validity
In the following section, we present risks and threats to validity that we identified.
Although the dataset collected from GitHub is large and contains diverse projects, our findings
may not generalize for other corpus. To mitigate the risk we demonstrated how our approach
can scale to another dynamically typed programming language in Section 4.4. However, the
dataset containing Javascript repositories was also extracted from the same code hosting facility
i.e. GitHub. The results may also be affected because all software repositories in our training
corpus are open-source, therefore, we cannot claim that our approach can be generalized to in-
dustrial projects.
The number of evaluation cases may also pose a threat. Our models were evaluated only on the
set of twenty test cases that covers only a fraction of real-world tasks that code completion engines
may face.

Chapter 5

Future Work

This chapter summarises a select number of further relevant ideas and objectives along with brief
explanations of how these can be achieved.

5.1 Larger dataset
In our work, we have used a dataset consisting of a thousand software repositories collected
from the GitHub code-hosting service. This data may be insufficient for evaluation purposes (see
Section 4.5) as results based on a single source are likely to be biased. To mitigigate this risk, we
have collected a larger dataset from PyPi, (see Section 3.1.2.2) which we were not able to process
due to hardware limitations and constraints imposed by the OpenNMT framework (see Section
3.3.3). Training our code completion models on the PyPi dataset using more powerful hardware
or a less resource-demanding framework may produce more accurate results.

5.2 Neural Network Architectures
We presented several types of neural machine translation systems and their architectures (see
Section 2.2.3.3). The parametrisation space is large and has not been explored sufficiently. Further
experimentation with different neural network architectures, including combinations of various
types of encoders and decoders could have a positive impact on the overall performance. In
addition, we can vary the parameters of the neural network such as number of layers and size of
each layers in terms of neurons in order to achieve better performance.

5.3 Preprocessor models
Certain amounts of preprocessing may aid the overall process of code completion. We presented
three different preprocesor models that extract relevant context for code completion from a source
code file (see Section 3.2). As this has shown positive results (see Section 4.3.2), it may be helpful
to revise these models and introduce additional features. For example, replace import aliases in
Python with actual module names throughout the file before the preprocessing begins.
Another extension could be to combine the advanced model with the N -char model by extract-
ing N chars preeceding the place where prediction should go along with all occurrences of the
method invoker variable found throughout the code. There is a lot of room for improvement and
experimentation with preprocessor models.

54 Chapter 5. Future Work

5.4 Generalisation to other programming languages
We demonstrated that our approach can be generalized to other dynamically typed program-
ming languages such as Javascript (see Section 4.4). To prove the point of generalizability even
further, it is needed to obtain the datasets consisting of software repositores for other dynamically
typed programming languages such as Ruby or PHP and test our assumption of generalisability
even further by training a method completion model on these datasets and comparing the results
against the state-of-the-art static analysis technique.
If the system can be shown to scale well to other porgramming languages where types are dy-
namic, a software tool could be developed, which could train on any input given. That is, given a
number of repositories and a scheme for method extraction, for example, an AST parser, a ready-
to-go method completition plugin could be produced as output.

Chapter 6

Conclusion

To summarise the contribution of this project, we have proposed and implemented a novel ap-
proach for code completion in programming languages with dynamic type systems. Our ap-
proach is based on recurrent neural networks and makes no assumptions about the syntactic and
semantric structure of the underlying programming language. Therefore, it is able to generalise
well to other dynamically typed programming languages.

As a basis for training of our neural-based method name completion model, we have developed
three different preprocessor strategies. A preprocessor strategy is a set of rules responsible to de-
termine which parts of the program file are relevent for a method name at certain position to be
completed. For example, one of our preprocessor strategies, N -chars , uses N characters before
the method-invoking object in order to estimate the method name to be completed.

The evaluation of our model has yielded positive results. We demonstrated that our models
can actually offer sensible method name suggestions in typical codefiles given ordinary but also
edge-case code, for example, given inadequate variable naming or heavy reliance on third-party
libraries.

The proposed method is promising, but is far from perfect, nevertheless. Training a neural net-
work is often associated with multiple challenges. These include data acquisition, demanding
training resource requirements in terms of both hardware and the large hyperparametrisation
space. Exploration is extremely time consuming as testing new ideas and configurations requires
training models from scratch. Given sufficient time and hardware resources, significant progress
can be made in this area.

56 Chapter 6. Conclusion

Bibliography

[ARSH14] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing Hou.
CSCC: Simple, efficient, context sensitive code completion. In Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on, pages 71–80. IEEE,
2014.

[art] A diagram of an artificial neural network. https://tex.stackexchange.com/
questions/132444/diagram-of-an-artificial-neural-network. Ac-
cessed: 2017-06-11.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to
improve code completion systems. In Proceedings of the the 7th joint meeting of the Eu-
ropean software engineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pages 213–222. ACM, 2009.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–
166, 1994.

[cod] Eclipse Code Recommenders. http://www.eclipse.org/recommenders/.
Accessed: 2017-08-21.

[CVMBB14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[edi] NetBeans Editor Code Completion API Documenta-
tion. http://bits.netbeans.org/dev/javadoc/
org-netbeans-modules-editor-completion/overview-summary.html.
Accessed: 2017-08-05.

[eri] The Eric Python IDE. https://eric-ide.python-projects.org/. Accessed:
2017-08-21.

58 BIBLIOGRAPHY

[gita] Cloning a repository. https://help.github.com/articles/
cloning-a-repository/. Accessed: 2017-08-01.

[gitb] GitHub API v3. https://developer.github.com/v3/. Accessed: 2017-06-22.

[gitc] GitPython is a python library used to interact with Git repositories. https://
github.com/gitpython-developers/GitPython. Accessed: 2017-05-10.

[gro] GroundHog: library for implementing RNNs with Theano. https://github.
com/lisa-groundhog/GroundHog. Accessed: 2017-09-03.

[GZZK16] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API learn-
ing. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 631–642. ACM, 2016.

[HD17] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the
best choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 763–773. ACM, 2017.

[HP11] Daqing Hou and David M Pletcher. An evaluation of the strategies of sorting, fil-
tering, and grouping API methods for code completion. In Software Maintenance
(ICSM), 2011 27th IEEE International Conference on, pages 233–242. IEEE, 2011.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. LSTM can solve hard long time lag prob-
lems. In Advances in neural information processing systems, pages 473–479, 1997.

[HWM09] Sangmok Han, David R Wallace, and Robert C Miller. Code completion from ab-
breviated input. In Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM
International Conference on, pages 332–343. IEEE, 2009.

[jav] Understand JavaScript Closures With Ease. http://javascriptissexy.com/
understand-javascript-closures-with-ease/. Accessed: 2017-07-14.

[jed] Jedi, auto-completion/static analysis library for Python. https://github.com/
davidhalter/jedi. Accessed: 2017-08-21.

[kit] Kite: the smart copilot for programmets. https://kite.com/. Accessed: 2017-
09-06.

[KKD+] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source
Toolkit for Neural Machine Translation. ArXiv e-prints.

[LHKM13] Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and Darko Marinov. Temporal
code completion and navigation. In Proceedings of the 2013 International Conference
on Software Engineering, pages 1181–1184. IEEE Press, 2013.

[Lut08] Mark Lutz. Learning python, 3rd edition. In Tatiana Apandi, editor, Learning Python,
3rd Edition, chapter 16, pages 310–314. O’Reilly Media, 2008.

[MKF06] Gail C Murphy, Mik Kersten, and Leah Findlater. How are Java software developers
using the Eclipse IDE? IEEE software, 23(4):76–83, 2006.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[net] NetBeans IDE: fits the pieces together. https://netbeans.org/. Accessed:
2017-08-21.

BIBLIOGRAPHY 59

[neu] Convolutional Neural Networks for Visual Recognition. http://cs231n.
github.io/neural-networks-1/. Accessed: 2017-08-31.

[NHC+16] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N Nguyen, and Danny Dig. API code recommendation using
statistical learning from fine-grained changes. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 511–
522. ACM, 2016.

[nlt] NLTK 3.2.4 documentation: nltk.tokenize package. http://www.nltk.org/
api/nltk.tokenize.html. Accessed: 2017-07-05.

[NNN+12] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Graph-based pattern-
oriented, context-sensitive source code completion. In Proceedings of the 34th Inter-
national Conference on Software Engineering, pages 69–79. IEEE Press, 2012.

[OYLM12] Cyrus Omar, YoungSeok Yoon, Thomas D LaToza, and Brad A Myers. Active code
completion. In Proceedings of the 34th International Conference on Software Engineering,
pages 859–869. IEEE Press, 2012.

[PLM15] Sebastian Proksch, Johannes Lerch, and Mira Mezini. Intelligent code completion
with Bayesian networks. ACM Transactions on Software Engineering and Methodology
(TOSEM), 25(1):3, 2015.

[pyc] PyCharm: Python IDE for Professional Developers by JetBrains. https://www.
jetbrains.com/pycharm/. Accessed: 2017-08-21.

[pyp] PyPI - the Python Package Index. https://pypi.python.org/pypi. Accessed:
2017-05-19.

[pyt] The Python Standard Library Documentation: ast — Abstract Syntax Trees. https:
//docs.python.org/3/library/ast.html. Accessed: 2017-06-19.

[RBV16] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with
decision trees. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 731–747.
ACM, 2016.

[RL08] Romain Robbes and Michele Lanza. How program history can improve code com-
pletion. In Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 317–326. IEEE Computer Society, 2008.

[rnn] Unreasonable Effectiveness of Recurrent Neural Networks. http://karpathy.
github.io/2015/05/21/rnn-effectiveness/. Accessed: 2017-04-15.

[RVY14] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical
language models. In ACM SIGPLAN Notices, volume 49, pages 419–428. ACM, 2014.

[scra] Scrapy - An open source and collaborative framework for extracting the data you
need from websites. https://scrapy.org/. Accessed: 2017-06-11.

[scrb] Scrapy Selectors. https://doc.scrapy.org/en/latest/topics/
selectors.html. Accessed: 2017-06-11.

60 BIBLIOGRAPHY

[seq] seq2seq: a general-purpose encoder-decoder framework for Tensorflow. https:
//github.com/google/seq2seq. Accessed: 2017-09-03.

[SFC+17] Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Had-
dow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde. Nematus: a Toolkit for Neural Ma-
chine Translation. In Proceedings of the Software Demonstrations of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, pages 65–68,
Valencia, Spain, April 2017. Association for Computational Linguistics.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

[syn] Neural Networks: The synapse. https://www.doc.ic.ac.uk/~nd/
surprise_96/journal/vol4/cs11/report.html. Accessed: 2017-05-28.

[TSD14] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of soft-
ware. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 269–280. ACM, 2014.

[win] Wing Python IDE: the intelligent development environment for Python program-
mers. https://wingware.com/. Accessed: 2017-08-21.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[XZC+16] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python proba-
bilistic type inference with natural language support. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
607–618. ACM, 2016.

[YWL06] Lean Yu, Shouyang Wang, and Kin Keung Lai. An integrated data preparation
scheme for neural network data analysis. IEEE Transactions on Knowledge and Data
Engineering, 18(2):217–230, 2006.

