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Abstract

The microservices architectural style is quickly becoming the standard for designing continuously
deployed software applications. The concept of small, independently deployable services com-
plements well with today’s possibilities that we have with cloud computing and modern DevOps
practices and all of these trends allow for faster time-to-market cycles. Not only does this en-
able to get earlier feedback from customers, but it also facilitates faster detection of new runtime
faults, performance regressions, or changes in business metrics. However, none of these trends
are silver bullets and building, deploying, and maintaining such systems can become quite com-
plex in environments with a high release frequency. Keeping track of all the currently existing
microservices of an application, the possible multiple versions that exist for the services, and the
dependency structures between them, can become hard to maintain manually. Service combi-
nations can have compatibility issues due to services that explicitly require (or exclude) specific
versions of a certain service and resolving defective service dependencies to ensure valid service
configurations can quickly exceed manual maintenance capabilities. In this paper, we map soft-
ware product line concepts to the microservices domain in order to introduce a formal model
for microservices-based feature models. We present Heimdall as a prototypical Node.js based
application that allows software and DevOps engineers to define microservices applications and
their dependencies as feature models. Automated analysis techniques adopted from the software
product line area enables correctness checking of complex microservices-based applications, the
derivation and validation of service configurations, and the recommendation of fixes for invalid
service configurations. All these methods are based on satisfiability techniques and a quantitative
evaluation of the prototype shows that most of the methods can be performed with a promising
performance, even for microservices-based feature models with hundreds of different services.





Zusammenfassung

Der Microservices Architekturstil wird immer mehr zum Standard beim Entwerfen von kon-
tinuerlich eingesetzten Software Anwendungen. Das Konzept kleiner, unabhängig voneinan-
der veröffentlichbarer Services ergänzt sich hervorragend mit den heutigen Mittel die uns Dank
Cloud Computing und modernen DevOps Praktiken zur Verfügung stehen und all diese Trends
ermöglichen schnellere Produkteinführungszyklen. Damit können nicht nur früher Rückmel-
dungen von Kunden entgegengenommen werden, sondern auch neue Laufzeitfehler, Perfor-
manceeinbussen und Änderungen in Geschäftskennzahlen können schneller festgestellt werden.
Keiner dieser Trends ist jedoch eine Wunderwaffe und das Erstellen, Einsetzen und Warten solcher
Systeme kann schnell sehr komplex werden, vorallem in Umgebungen mit regelmässigen Re-
leases. Das Bewahren des Überblicks über all die momentan existierenden Microservices einer
Anwendung, die verschiedenen Versionen der Services und deren Abhängigkeitsstrukturen un-
tereinander ist nicht einfach und schwer durch manuelle Wartung zu bewältigen. Service Kombi-
nationen können Kompatibilitätsprobleme aufweisen wenn Services explizit eine spezifische Ver-
sionen eines bestimmten Services benötigen (oder ausschliessen) und das Auflösen von fehler-
haften Service Konfigurationen kann schnell das Vermögen Manueller Wartung überschreiten.
In dieser Abhandlung bilden wir Konzepte von Software Product Lines auf die Domäne von Mi-
croservices ab um ein Formales Model von Microservice-basierten Feature Modellen einzuführen.
Wir präsentieren Heimdall als Node.js-basierte Prototyp-Anwendung welche Software und De-
vOps Ingenieure dazu befähigt Microservices Anwendungen und ihre Abhängigkeiten als Fea-
ture Modelle zu definieren. Automatisierte Analyse Techniken, welche vom Software Product
Line Bereich übernommen werden, ermöglichen das Überprüfen der Korrektheit von komplexen
Microservices-basierten Anwendungen, das Ableiten und Validieren von Service Konfiguratio-
nen und das Empfehlen von möglichen Lösungen für ungültige Konfigurationen. All diese Meth-
oden basieren auf Satisfiability Techniken und eine quantitative Evaluierung des Prototypen zeigt
auf, dass die meisten dieser Methoden mit einer vielversprechenden Performance ausgeführt
werden könnnen, auch für Microservices-basierte Feature Modelle mit hunderten von verschiede-
nen Services.
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1

Introduction

The notion of microservices [New15a] solely exists since a few years, but nonetheless this par-
ticular service-oriented architectural style has been able to set a new milestone in the software
architecture domain. It describes a way to build software applications as a set of small, inde-
pendently releaseable services which are using lightweight communication methods and each of
them is running in its own process [FL14]. The microservices architectural style is quickly be-
coming the standard for designing continuously deployed software applications [ZBCS16] since
the concept of these small independent services complements well with today’s possibilities that
we have with cloud computing [AFG+10] and modern DevOps practices [HF10, Wol17]. One
common denominator that these trends share is that they allow for faster releases of new fea-
tures [SSLG16]. Instead of waiting several weeks, months or even years for new releases, new
code can be deployed to production in intervals of days or even hours. Probably the most antic-
ipated advantages that companies desire from these faster time-to-market cycles is to have ear-
lier customer feedback as well as better and faster detection of new runtime faults, performance
regressions, or changes in business metrics (e.g. conversion rate). For this purpose, live experi-
mentation practices such as canary releases, gradual rollouts, A/B testing, or dark launches can
be applied to gather the desired measurements.

Unfortunately, despite all the advantages and promising applications that microservices, cloud
computing, and modern DevOps practices can offer, none of them are silver bullets. There exist
a lot of pitfalls that may come up, since new layers of complexity are quite certain to be added
when designing, building, maintaining and deploying such systems [New15a]. Especially in en-
vironments with a drastically increased release frequency, it can become quite cumbersome to
keep track of all the currently existing microservices for which possibly several versions might
be available [SSLG16]. Furthermore, not all service combinations are compatible since some mi-
croservices might explicitly require (or even exclude) certain microservices of a specific version.
Manually managing the dependencies between the services of microservices-based applications
might be feasible for a small number of services, but the complexity increases drastically with
every service that gets added to an application. The number of potential possible combinations of
microservices with multiple existing versions can quickly exceed the capabilities of software and
DevOps engineers to manually ensure valid global service configurations.

1.1 Motivation and Research Questions
Our approach to deal with this problem relies on the use of software product line concepts
[Nor02], especially on feature models [Bat05] which are utilized to model variability in prod-
uct lines. We map these concepts to the domain of microservice-based applications in order to
model the variability of microservices, their corresponding versions and the different constraints
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between them with the help of feature models. We continue by applying already existing prac-
tices to translate such feature models to propositional formulas. The set of translation rules that
is required to do this defines the formal model of microservices-based feature models. Having
propositional formulas at hand eventually enables the usage of off-the-shelf satisfiability solvers
and these solvers allow us to debug feature models and validate feature configurations for these
models [MWC09]. Therefore, the first research question is formulated as follows:

Research Question 1

How can software product line concepts be mapped to the domain of microservice appli-
cations to enable automated analysis of microservices-based feature models?

Automated analysis of feature models comprises correctness checking and configuration sup-
port and both of these concepts can also be applied in the domain of microservices in order to val-
idate the modelled dependencies of microservice applications. Eventually, the formal model and
the automated analysis concepts are used as a basis for the HEIMDALL application. The prototype
system allows software and DevOps engineers to define feature models for microservices-based
applications and to perform automated correctness checking on these models. It also enables con-
figuration support to interactively describe valid service configurations. Both of these automated
analysis concepts are realized with the help of an existing satisfiability solver. On the one hand,
microservices-based feature models can be validated to verify a model’s consistency, to track in-
consistency causing elements if any exist, and to detect elements that are not applicable due to
specific constraints of the model. On the other hand, the prototype can automatically validate
service configurations against their underlying feature models and the solutions provided by the
solver are then used to determine whether the service configurations are either legal, incomplete
or illegal. In case of illegal configurations, the tool is capable of giving hints on how to resolve
non-valid solutions.

Research Question 2

How can we build tooling that is capable of both validating given service configurations
and recommending fixes for invalid service configurations based on satisfiability-solution
techniques?

1.2 Structure of the Thesis
The remainder of this work is structured as follows. Chapter 2 provides information on microser-
vices, software product lines, feature models and automated analysis of such models. In Chapter 3
we briefly point out related previous work. In Chapter 4 we map the concepts of software product
lines to the microservices domain in order to gather a formal model for specifying microservices-
based applications and the dependencies between services in feature models. In Chapter 5 we
introduce the prototype application and depict the implementation of the automated analysis
concepts. After that, chapter 6 evaluates the performance of the automated analysis features and
finally, Chapter 7 concludes the paper by summarizing the main learnings and highlights possible
future work.



2

Background

Before presenting the reader to the actual mapping of software product line concepts to the mi-
croservices domain, we first briefly summarize the core points of those topics that the reader
needs to understand to follow the paper. In the first section we introduce the main characteristics
of microservices, their relation to DevOps practices, the role of service versioning, and the bene-
fits of using live experimentation techniques. Section 2.2 shows software product line fundamen-
tals and in Section 2.3 we dive into some essential details of feature models. Finally, Section 2.4
presents the translation of feature models to propositional formulas and how satisfiability solvers
use them to validate feature models.

2.1 From Microservices to Live Experimentation
The term microservices [New15a] is still relatively new. As far it is known, it has been first recorded
in may 2011 at a software architect workshop in Venice [FL14] and the participants used it to de-
scribe some common architectural styles that they had been observing lately when designing soft-
ware applications. In the years that followed, a drastically increasing amount of articles and liter-
ature have been published to present definitions, principles, recipes and best practices [New15a],
patterns and applications [Kra14] as well as implementations of microservices-based applications
as described by le et al. [LNS+15]. Probably one of the most famous and still dense definitions has
been given by Sam Newman in his popular book "Building Microservices" from 2015 [New15a]
and has been carefully extended in his talks [New15b], defining microservices being small au-
tonomous services that work together and that are modelled around a particular business do-
main. His definition of microservices as well as the principles that he introduced exist nowadays
in multiple forms from different authors [DGL+16] [NMMA16], but it is again Sam Newman who
describes some important key points about microservices in a very compact way:

“They are separate processes, they communicate over network ports, but they are all actually
about independent evolution, they are about being able to make a change and deploy them into
production by themselves.”

– Sam Newman (2015), [New15b]

2.1.1 Characteristics of Microservices and DevOps
The benefits that the concepts of microservices bring along the way are numerous and varying
when applied correctly and with care [New15a]. Technology heterogeneity, better resilience,
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independent scalability, enhanced maintainability, composability and replaceability as well as
ease of deployment are often listed when advantages of microservices are covered. These ben-
efits complement well with modern DevOps practices such as continuous delivery and deploy-
ment [HF10, Wol17]. Microservices are the first architecture developed in the post-continuous
delivery era and are essentially meant to be used in environments with fully automated stages
in the delivery pipeline [DGL+16]. On the one hand, the enhanced maintainability, compos-
ability and replaceability of small services allows performing changes easier and faster on the
corresponding code bases of the individual microservices [New15a]. On the other hand, the com-
bination of microservices with fully automated delivery pipeline enables to shorten the time span
between committed changes to code repositories and actually deploying these new microservice
versions to production [BWZ15]. All in all, microservices and the beforementioned DevOps prac-
tices together allow developers to drastically shorten the whole release cycle, with new versions
of individual microservices being released with a much higher frequency than ever before.

2.1.2 Service Versioning

The higher the release frequency, the more crucial becomes the managing of existing microservice
APIs and available service versions. Newman [New15a] has highlighted a few principles that give
some initial aid to cope with the increased complexity of the version landscape of a microservices-
based application; Defer breaking changes for as long as possible, catch them as early as possible,
use semantic versioning and enable coexistence of endpoints or service versions. The former two
are quite self-explanatory whereas the latter two might need some more detailed explanation.

Semantic Versioning. Semantic Versioning1 (SemVer) is a version notation specification that
dictates how version numbers of software packages are assigned and incremented [PW17]. It
can be used for immediate judgment whether a consuming service should break or not because
of changes to the API of a required producer [New15a]. Each service number is notated in the
form of MAJOR.MINOR.PATCH whereas respective changes to the three different parts reflect
the severity that updates to a producer mean for consuming services. Usually a change to PATCH
states that bug fixes have been made to existing functionality and changes to MINOR indicate
that even though new functionality has been added, backward compatibility is preserved. If
the latter is not guaranteed, the MAJOR part is incremented. One popular example of software
using SemVer is NPM2. NPM is the most famous package manager for JavaScript and the world’s
largest software registry [TM17]. It uses SemVer to resolve dependencies between the different
JavaScript packages that are used by a software application.

Coexistence of Endpoints or Service Versions. The main problem to solve here is to avoid
forcing consumers to upgrade in lock-step when breaking changes are introduced by a producer.
The core idea is that both, the old and the new interface, coexist for a certain period in time. Two
main approaches exist; Either both endpoints are incorporated in the same running service or the
different interfaces are available through different versions on concurrently existing instances of
the particular service. As soon as the old interface is not required anymore the interface can be
either removed by a new release of the service or, in case of the second approach, by removing
the instance or process that is running old version.

1http://semver.org/
2https://www.npmjs.com/
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2.1.3 Live Experimentation Techniques
Shorter release cycles do not only allow for faster innovation, they also allow for earlier customer
feedback and insights on how new releases of new service versions are received [SSLG16]. The
microservices architectural style already makes it possible to run multiple instances per service at
the same time, but newly introduced live experimentation methods try to adopt the previously
mentioned co-existence of several different versions of the same service. These live experimen-
tation techniques have the advantage to first introduce new service versions only to a subset of
customers (e.g. canary release) or to introduce and compare two different new versions in par-
allel (A/B testing), before rolling out new changes to the entire customer base. The eventual
goal of having earlier feedback about newly launched service versions is to have detailed metrics
about potential growth in runtime faults, declining performance, or changes in business metrics.
These metrics can then be used to evaluate the impact of specific releases and in case of possible
deterioration, suitable fixes need to be scheduled, such as rollbacks or hotfixes.

2.2 Software Product Line Tenets
In order to cope with the prevalently customer-driven software domain, many software com-
panies try to satisfy the diverse customer needs by creating so called software product lines
(SPLs) [Nor02]. Generally, a product line contains a set of similar products that reuse and share
some common features and functions in order to achieve economics of production. Product lines
are not new in manufacturing and applied by popular companies like Ford, Dell, Boeing, and
McDonald’s, but adapting these principles and practices to the software domain is relatively new.
The idea of building software products from common artifacts aims to sufficiently meet today’s
demands of software mass customization.

“A software product line is a set of software-intensive systems that share a common, man-
aged feature set satisfying a particular market segment’s specific needs or mission and that are
developed from a common set of core assets in a prescribed way.”

– Linda Northrop (2002), [Nor02]

2.2.1 Core Assets
The so called core assets form the foundation of SPLs and represent the common artifacts that the
different systems share with each other [Nor02]. In the software domain, typical examples for
reusable core assets are [McG04]:

• Frameworks
• Libraries
• Components
• Tools
• Development or execution platforms

For each such asset, a process, guide or plan is attached that defines how it can be optimally
used for building a desired product. Additionally, core assets can also include domain models,
requirements, documentations, specifications, test plans, performance models, budgets and other
complementary aspects that help describing how the asset can be used for a product [Nor02].
Generally, there exist two ways to acquire core assets [McG04]. The first option is that existing as-
sets from other products are copied and if necessary modified and extended to the requirements
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of the new product. However, in case that the requirements can not be tackled with existing
means, a new core asset needs to be build up from scratch. The latter is usually more expen-
sive and extensively building brand new assets thus needs to be avoided. After all, maintaining
products that only share a little percentage of the product line’s asset base outweighs the advan-
tages of SPLs and fundamentally contradicts against its core idea. On the other hand, if managed
correctly, companies that use SPL methods to create and maintain software will be able to dra-
matically reduce costs, improve software quality and drastically speed up the time to market for
new applications.

2.2.2 Shared Architecture of Core Assets
In a specific product line, each core asset shares an architecture that all products have in com-
mon [McG04]. Typically, the architecture used for the product line is built from the quality-
attribute requirements, e.g. performance, scalability, and security. The quality attributes need
to be identified when establishing the new product line. Changes to the architecture are allowed
since new products may have different requirements than the products already integrated in the
product line. An architecture change might be needed for example if a new product needs to
be scalable to millions of users instead of the few thousands that are currently supported by the
existing products. Yet it must be considered that the new product might be not a candidate to be
included in the product line in case the architectural adjustments requires too rigorous changes.

2.3 Feature Models
In the previous section we have briefly introduced SPLs and also described the importance of
reusable core assets. However, in order to be able to develop such reusable assets, commonalities
as well as variabilities of the different products need to be identified [LKL02]. A central technique
to put SPL engineering into practice is variability modelling [PBvDL05] and feature modelling
has become a very popular modelling notation to serve this particular purpose [MWC09].

“Feature modeling is the activity of identifying externally visible characteristics of products
in a domain and organizing them into a model called a feature model”

– Lee et al. (2002), [LKL02]

The notion of features is used to represent the mutual or differing externally visible character-
istics that differentiate the products from each other from a stakeholders perspective [LKL02]. The
term "feature" is chosen by purpose since it is the general case that engineers and customers tend
to speak of product characteristics with respect to features that a particular product has and/or
delivers. A feature configuration is a particular set of features whereas a product of the SPL com-
prises a feature only if the feature is in its feature configuration [Bat05]. A feature configuration
can be either compliant to the constraints of a feature model and represents a legal product or it
violates the constraints and is therefore illegal [MWC09].

2.3.1 Structural Relationships
A feature model is a hierarchically arranged set of features and feature diagrams can be used to
graphically represent these feature models and to capture structural or conceptual relationships
among the different features of a product line. The starting point of the hierarchy is given by
the so called root feature which represents the domain concept being modelled, the actual SPL.
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The relationships of parent features to child features can be categorized into five different types
[LKL02] [Bat05] as shown in Table 2.1.

Categories Description

Mandatory The feature is required; This is needed to model common features among dif-
ferent products of a product line.

Optional The feature is optional; This allows to model variability for specific single fea-
tures among the products.

And The subfeatures must be selected with respect to the mandatory or optional in-
dicators; This is used to model a set of mandatory and/or optional subfeatures.

Or At least one of the subfeatures is required; This enables to model a set of op-
tional subfeatures where at least one needs to be selected.

Alternative Exactly one of the subfeatures needs to be selected; This is useful to model
mutually exclusive subfeatures and thus needed to model features that can
substitute each other.

Table 2.1: Types of Structural Relationships Between Features

Figure 2.1 shows an example of a feature model representing a graphical hierarchy of features
with relationships between the features according to the five types described in Table 2.1. In this
hierarchical graph, features are represented by nodes and the relationships between features are
represented by edges. The feature A is the root feature and comprises the subfeatures B, C, D, and
E whereas the first one is an optional feature and the latter three features are mandatory among
all products. Feature C requires feature F but subfeatures G and H are optional for the products
of this exemplary SPL. Feature D requires at least one of the features I, J, and K to be present
whereas feature E requires that exactly only one of its subfeatures, either L or M, exists in each of
the products of the current model.

A

B C

F G H

D

I J K

E

L M

Legend

Mandatory

Optional

And

Or

Alternative

(B → F ) ∧ (G → J) ∧ ¬(H ∧ M) ∧ (G ∧ H → ¬L)

Figure 2.1: Constraints in Feature Models
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2.3.2 Cross-Tree Constraints

In order to further refine the constraints among the features [MWC09], additional complementary
constraints can be defined to the basic structural relationships between features in feature models.
These additional constraints are called cross-tree constraints since they are not restricted to being
solely used for modelling parent-child relations, but they also allow the modelling of arbitrary
constraints between any nodes of a model. Eventually, the set of all relations of a feature model
is defined by conjoining all the relations of its hierarchical graph of features with the conjunction
of its cross-tree constrains. Notice that parent-child relations themselves do not reveal inconsis-
tencies. Only the usage of cross-tree constraints may introduce contradictions [TBC06] because of
badly defined relationships among features. Cross-tree constraints make it necessary to check for
correctness of feature models, which is explained later on.

As shown in Figure 2.1, cross-tree constraints are typically listed at the bottom of the actual
feature diagram. In this particular example we have the definitions of four cross-tree constraints.
The first constraint B → F depicts the fact that the optional feature B requires feature F and the
second constraint G → J illustrates that G requires J . The third constraint ¬(H ∧M) states that
H and M exclude each other and the fourth constraint G∧H → ¬L defines that whenever G and
H get selected, feature L is prohibited. The first three cross-tree constraints are quite common
in feature modelling, thus specific graphical notations are available to represent this constraints
[BSRC10]. Figure 2.2 shows this alternative graphical notation on the same model as seen in
Figure 2.1. The requires constraint is represented as a dotted arrow that is drawn from the feature
that requires a feature to the feature that it actually requires. The excludes constraint is visualized
as a dashed line with arrows pointing to the features that exclude each other. The constraint
G ∧ H → ¬L is still written out as a Boolean formula since no appropriate graphical notation
exists for it.
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Mandatory
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And
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Requires

Excludes

(G ∧ H → ¬L)

requires

requires
excludes

Figure 2.2: Modelling Requires and Excludes Constraints in Feature Models
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2.3.3 Extended Feature Models
Feature Models have also been extended in such a way that attributes can be assigned to features
[BMAC05]. These attributes can hold values defined by their attribute domain and extra-functional
features can be specified to establish relations between one or more attributes of a feature. This
enables to model complex constraints, e.g. if attribute A of feature X is higher than a value V, then
feature B can not be part of the product. Such models are called extended, advanced, or attributed
feature models [BSRC10], but they are not required for this thesis and therefore won’t be discussed
any further.

2.4 Automated Analysis of Feature Models
When modeling SPLs using feature models, it is important to check for the correctness of the
model [TBC06]. As previously indicated, errors may be introduced because of badly defined
constraints among features. Also during the product derivation process [MWC09], illegal combi-
nations of features are easily possible. Often, feature models are becoming quickly big enough to
avoid a manual handling of them [TBC06], therefore an automation of analyzing feature models
is necessary. In order to be able to automatically debug feature models and to validate whether
feature configurations comply with the defined constraints of a given feature model, specific
translation rules have been introduced to reduce a feature model to its propositional formula
representation [BBRC06]. This has opened the possibility to make use of logic-based systems,
including off-the-shelf tools such as satisfiability (SAT) solvers [MWC09] whose underlying rep-
resentational formalism is propositional logic [GKSS08]. Essentially, these tools are capable of
providing generic combinatorial reasoning, but their maximum potential is exploited when us-
ing them in domains that are not normally viewed as propositional reasoning tasks, in this case,
analyzing feature models.

2.4.1 Categories in Feature Model Analysis
Existing analysis of feature models fall into two main categories: correctness checking and con-
figuration support [MWC09]. The former focuses solely on debugging a feature model itself,
whereas the latter involves to additionally incorporate a given feature configuration to the fea-
ture model analysis.

Correctness Checking. Correctness checking is used to analyze a feature model regarding its
consistency or if dead features exist. A feature model is regarded as inconsistent if no single
valid feature configuration can be established. Dead features on the other hand, are features
that do not belong to any legal product. Such features can not be part of a feature configuration
without violating constraints of the feature model. Both of these problem types can be resolved
by applying SAT solvers correspondingly.

Configuration Support. Configuration Support represents the second category of automatic
analysis with SAT solvers and it is used to support the derivation process of products. Thus,
SAT solvers are not only able to compute whether a certain feature configuration is legal or il-
legal, but they also support two distinct types of guided product configuration techniques. The
first type is termed interactive configuration where the configuration system guides users with
consistent choices during the decision process by validating and propagating the user’s decision.
Eventually, this ensures that the user always has a legal product configured at the end of a prod-
uct configuration. The second product configuration type is called offline or batch configuration
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and it automatically tries to complete a partial configuration without requiring any intermediate
interaction from the user.

2.4.2 Translation to Propositional Formulas
Translating feature models to propositional formulas have been subject of thorough research
[Man02] [Bat05] [CW07] and an accumulated list of translation rules is shown in Table 2.2, as
derived from Mendonca et al. [MWC09] and Benavides et al. [BSRC10]. Formula variables rep-
resent the features of the model whereas the root feature is defined by a simple formula r. The
second rule depicts that every optional subfeature is defined with an implication to its parent
feature and the third table row delineates that a mandatory feature is additionally implied by its
parent. Benavides et al. [BSRC10] define a mandatory feature simply with a logical equivalence
operator between the feature and its parent since implications that go in both directions between
two variables can be replaced by a logical equivalence. The two rules that follow describe the or
and alternative structural relationships by an implication from the parent feature to the respective
cardinality relation [MWC09]. The [1..n] and [1..1] cardinalities of these grouped features simply
define the respective ratio between the parent and the subfeatures, i.e. at least one subfeature for
the or grouped features and exactly one subfeature for the alternative grouped features. The sixth
table row depicts the fact that cross-tree constraints are generally already Boolean formulas. In
Figure 2.2 however, we have shown that specific notations exist for the two popular cross-tree
constraints, requires and excludes, and thus the two last rows of Table 2.2 show the Boolean for-
mulas for the corresponding constraints. The Boolean formula representation of the excludes
constraint introduced in Figure 2.1 is actually a shorthand notation for one feature prohibiting the
other and vice versa, which is also appropriately depicted in the last row of Table 2.2.

Relation Feature model context Corresponding formula

root r is the root feature r

optional c is subfeature of parent p c→ p

mandatory m is subfeature of p m→ p
p is parent feature of m p→ m
shorthand: m is mandatory subfeature of p m↔ p

or p is the parent of [1..n] grouped features g1, ..., gn p→ (g1 ∨ ... ∨ gn)

alternative p is parent of [1..1] grouped features g1, ..., gn p→ 1-of -n(g1, ..., gn)

constraints cross-tree constraints already Boolean formulas

requires feature a requires feature b a→ b

excludes a prohibites b a→ ¬b
b prohibites a b→ ¬a
shorthand: a and b exclude each other ¬(a ∧ b)

Table 2.2: Feature Models as Boolean Formulas

In order to get a full propositional formula representation for the configuration possibilities
of a feature model, the formulas for the corresponding syntactic elements need to be conjoined
together with the conjunction of all the cross-tree constraints [BSRC10]. A SAT solver can then
take the propositional formula and determine if the formula is satisfiable, i.e. there is a variable
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assignment that makes the formula evaluate to true. One predetermined constraint for such as-
signments is that the variable representing the root gets assigned with true, i.e. r ↔ true.

Figure 2.3 represents the appropriate propositional formula of the feature model shown previ-
ously in Figure 2.1. The first line (1) defines feature A as the root element and the second line
(2) represents its optional feature B as well as its mandatory subfeatures C, D and E. The third
line (3) states that regarding feature C, only the subfeature F is mandatory. The fourth line (4)
depicts that at least one of feature D’s subfeatures needs to be selected and line (5) defines that
only either feature L or feature M can be selected as a subfeature for feature E. Finally, the last
line (6) demonstrates that cross-tree constraints can be adopted from the feature model either
without any changes, or in case of graphical notations for excludes and requires constraints, with
the appropriate translation formulas.

(A) ∧ (1)
(B → A) ∧ (C ↔ A) ∧ (D ↔ A) ∧ (E ↔ A) ∧ (2)
(F ↔ C) ∧ (G → C) ∧ (H → C) ∧ (3)

(I → D) ∧ (J → D) ∧ (K → D) ∧ (D → (H ∨ J ∨ K)) ∧ (4)
(K → D) ∧ (L → D) ∧ (D → (K ∧ ¬L) ∨ (¬K ∧ L)) ∧ (5)

(B → F ) ∧ (G → J) ∧ ¬(H ∧ M) ∧ (G ∧ H → ¬L) (6)

Figure 2.3: Feature Model as Propositional Formula

2.4.3 Correctness Checking of Feature Models
In Section 2.4.1 we have introduced the notion of correctness checking and that basically two dif-
ferent aspects of feature models can be analyzed with the help of a SAT solver: the consistency
of Feature models and dead features. In Figure 2.4 we show two graphical examples where a
SAT solver would detect flaws in feature models in case correctness checking would have been
performed on the respective propositional formulas of the feature models.

Inconsistent Feature Models. Figure 2.4(a) shows an example of an inconsistent feature model
by slightly adjusting the feature diagram introduced by Figure 2.2. The excludes constraint be-
tween the features H and M has been removed, but two new excludes constraints have been
added; One between feature F and feature L, the other between feature F and feature M . A
SAT solver is able to detect that this feature model is inconsistent since no legal feature config-
uration can be computed for it. On the one hand, the feature F is mandatory for each feature
configuration of the feature model. On the other hand, the alternative relation between Feature
E and its child features makes it mandatory that either feature L or feature M are also part of
the configuration, but both conflict with the feature A because of the newly added excludes con-
straints. Figure 2.4(a) represents the conflicting elements with purple color.

Dead Features. In contrast to inconsistent feature models, Figure 2.4(b) shows an example with
a dead feature, again by slightly adjusting the exemplary feature model from Figure 2.2. This time,
the feature H is not optional anymore, but has been changed to be mandatory. Due to the excludes
constraint between the features H and M , feature M can never be selected for a legal feature
configuration. Therefore feature M can not exist in any product and represents a dead feature.
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Figure 2.4(b) highlights the dead feature M and the corresponding excludes constraint and the
feature H that cause this flaw in the feature model with pink color.
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(a) Inconsistent Feature Model
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(b) Feature Model with Dead Feature

Figure 2.4: Correctness Checking of Feature Models

2.4.4 Validating Feature Configurations
As previously mentioned, a feature configuration is a set of selected features that is used to de-
scribe a product in a product line [MWC09]. In terms of the propositional formula representation
of feature models, a feature configuration represents the set of variables that get assigned with a
Boolean true value. In order to validate whether a given configuration is legal, a SAT solver re-
quires the propositional formula of the feature model as well as the set of variables that have been
selected. Thus it is recommended to ensure that the feature model is consistent before performing
any configuration validation on it, else the validation can never be successful. The possible results
returned by a SAT solver evaluation are implementation specific, but usually some indicators are
returned that declare whether a feature configuration is either legal or illegal.

Legal Feature Configurations. In Figure 2.5 we show two examples of legal feature configura-
tions. Figure 2.5(a) shows that the features {A,B,C,D,E, F,G, J,M} have been selected, which
are highlighted accordingly as gray boxes in the feature model. A SAT solver that validates the
given feature configuration against the propositional formula would confirm the configuration to
be legal since no constraints are violated by the selected features, thus these features have been
accordingly visualized with green borders. Figure 2.5(b) shows that we would still obtain a legal
configuration if we would remove feature B from the selection. Feature B is optional and thus no
constraints of the feature model are harmed.

Illegal Feature Configurations. Figure 2.6 introduces two examples of feature configurations
that are illegal. The first example Figure 2.6(a) shows the impact of selecting feature H instead of
feature G, leading to a feature configuration that comprises the features {A,C,D,E, F,H, J,M}.
Since the features H and M conflict each other, the SAT solver would mark the configuration
as illegal. Figure 2.6(b) also shows an illegal configuration, but this time too few features have
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Figure 2.5: Legal Feature Configurations

been selected. The relationship constraints of the feature model requires features C and F to be
incorporated into all software products of the given product line. Depending on the implementa-
tion and use of SAT solvers, it is possible to evaluate missing features, thus we mark the missing
features of this illegal configuration with orange instead of red. Later in Chapter 5 we will see
an actual implementation of such a mechanism where configurations with missing features are
called incomplete feature configurations.
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Figure 2.6: Illegal and Incomplete Feature Configurations
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Related Work

As far as we know, using SPL techniques to model and manage dependencies in microservices-
based applications haven’t been subject of research so far and thus no directly related work exists
for this particular topic. Section 3.1 shows some general research that has been recently conducted
in the domain of microservices and in Section 3.2 we introduce previous work which have tackled
challenges that are related to the task of modelling and managing microservice dependencies. In
Section 3.3 we highlight some research that has also adopted SPL practices to overcome challenges
in current trends of the software engineering landscape and in Section 3.4 important research
regarding automated analysis of feature models is presented.

3.1 Current Research in Microservices
Literature that presents basic definitions, principles, and practices of microservices [Kra14] [New15a]
[NMMA16] is likely to remain quite valid for a longer period of time, but research that is trying
to facilitate the diverse challenges of microservices is steadily adapting to the increasing findings
in the microservice area. Two surveys have been recently published [DGL+16] [DFML17] that try
to reflect the current state of research in the microservice domain.

Dragoni et al. [DGL+16] present the past, current state, and future challenges of microservices-
based applications. With respect to the past, they emphasize that the microservice architecture is
an immediate successor of service-oriented architecture (SOA). Well known names have under-
pinned this, such as Cockraft [NMMA16] talking about fine grained SOA or Newman [New15b],
claiming that the microservices architecture is nothing more and nothing less than an opinionated
form of SOA. Regarding the current state, the basic characteristics and benefits of microservices
are summarized and the impact on quality attributes, such as availability, reliability, maintainabil-
ity, performance, security and testability are briefly recapped [DGL+16]. The outlook on future
challenges focuses on the problem of microservices being distributed systems and therefore inher-
ently harder to program than monoliths. Two key areas are identified, dependability and security.
Dragoni et al. highlight research that address issues in these two topics in order to answer ques-
tions such as, how can changes to a producing service with side-effects on the consuming services
be managed and how can attacks be prevented that exploit network communications. We hope
that the findings of this thesis help to enhance practices of the former aspect.

Francesco et al. [DFML17] apply a systematic mapping study methodology to identify, clas-
sify, and evaluate the current state of the art of research on microservices. Publication trends,
focus of research, and potential for industrial adoption are considered and used for classification
purposes. One example is the research-contribution category that lists the frequency distribution
of the outcomes of the investigated papers. Since the microservices trend emerged from the in-
dustrial field, "application" leads the ranking ladder of research outcomes. Another example cat-
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egory is the analysis of research strategies whereas "solution proposal" is the clear winner. This
has been explained with microservices being in its infancy and not consolidated in any standards,
tempting many researchers to propose their own solutions for recurrent or specific problems. One
further interesting category deals with the most frequent problems that are targeted by current
research. The leading terms have been identified to be "complexity", "low flexibility", "resources
management", and "service composition". Francesco et al. argue that this results confirm that on
the one hand microservices can help in achieving a good level of flexibility but on the other hand
may bring higher complexity, mainly because they imply a high number of distributed services
to operate. "Service decomposition" addresses the problem of breaking down existing monolithic
systems into the prominent small services of microservices-based applications. This is of course a
natural consequence of having in the past few years a lot of software applications becoming huge
unmaintainable legacy software structures and thus the software industry is trying to resolve this
issue.

Actually, a lot of work [AAE16], [KMK16], [LTV16] has been presented in the past years to fa-
cilitate breaking down existing monolithic systems in order to enjoy the benefits that come along
with the microservices architectural style. Alshuqayran et al. [AAE16] have focused on identify-
ing challenges, the architectural diagrams/views and quality attributes related to microservices
systems. Kecskemeti et al. [KMK16] have introduced a methodology for decomposing mono-
lithic services to multiple microservices whereas the methodology applies several outcomes of a
real-life project called ENTICE. Similarly, Levcovitz et al. [LTV16] have described a technique to
identify and define good candidates to become microservices on a monolithic enterprise system.
Despite the hype and popularity of microservices, a multitude of software systems still endure
in their monolithic shape. The challenge stays real and recent research persistently tries to fur-
ther facilitate the process of transforming these big software systems into microservices-based
applications [DDLM17], [GT17], [MCL17]. Dragoni et al. [DDLM17] use a real world case study
in order to demonstrate how scalability is positively affected by reimplementing a monolithic
architecture into microservices using specific techniques. In a similar manner, Gouigoux and
Tamzalit [GT17] present technical lessons learned from a migration of a real world monolith to
microservices by addressing the granularity, deployment, and the orchestration of microservices.
One further very recent, but especially notable and noteworthy research has been introduced
by Mazlami et al. [MCL17]. They present a formal microservice extraction model to allow algo-
rithmic recommendation of microservice candidates. Thus, instead of solely relying on informal
migration patterns techniques that already exist, a foundation for automated support tools is
given and a web-based prototype is provided to demonstrate adequate performance evaluations.
Due to the formal model, they are the first to provide a semi-automated approach that covers
recommendation of microservices from the monolithic codebase without the need of heavy user
input.

3.2 Modelling and Managing Service Dependencies
A lot of research has been carried out for deploying and operationally managing microservices,
but there has rarely been strong focus on modelling the dependencies between the services and,
above all, to introduce automated analysis of service dependencies before deploying services. We
recap on three carefully selected research papers that in some way or the other, try to overcome
aspects of this particular problem area.

Since the microservice architecture is an immediate successor of SOA, managing services and
their dependencies was already of potential interest for the latter architectural style. One inter-
esting work has been delivered by Ensel et al. [EK02] who describe an approach for managing
service dependencies with the combined help of several XML technologies, such as XML, XPath,
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and RDF. By relying on these general-purpose technologies it is possible to represent dependency
graphs in such a way that they can be parsed by common off the shelf XML parsers. No previ-
ous work has dealt with describing dependency information in a uniform way before, so this has
been the first time that management systems in general could make use of it. Since no formal
model has been provided, this approach is limited to manage dependencies without the possi-
bility for automated analysis and it mainly focused on querying and visualizing the services and
their dependencies. Also, even though the use of XML technologies has its advantages, it already
prescribes a specific part of the technology stack.

Uhle [UT14] presents in his thesis a way to model the dependability of microservice archi-
tectures by using dependency graphs that are transformed to fault trees. For the dependency
graphs, vertices represent applications and directed edges indicate the dependencies. As part of
the thesis, multiple methods have been introduced on how to construct dependency graphs from
a deployed microservice architecture, i.e. manual creation, from service interface modules, from
deployment configuration, or from network connections. Dependency graphs have been defined
to be directed, acyclic, and rooted in order to be able to be transformed to a fault tree. The main
idea is that the fault trees are then used to model failure propagation of microservice architectures
in order to obtain an overview of which parts of the architecture are more crucial than other ones.
The thesis is limited to already deployed systems and focuses mainly on computing failure prop-
agation probabilities of services. Automated consistency checking and correctness validations of
dependencies are neglected since the approach has not been developed from the perspective to
ensure valid service configurations before deploying them. A further limitation of this work is
that dependency graphs have been investigated on the granularity level of applications and their
services, but particular versions of microservices are not taken into account. Nevertheless, the dif-
ferent methods for constructing dependency graphs are also applicable to the prototype system
of our thesis. Since there is plenty of research available in this area, we will not further emphasize
this aspect in our work.

Schermann et al. [SSLG16] introduced a formal model for multi-phase live experimentation
and presented a prototype implementation that allows release engineers to define and automat-
ically enact complex live experimentation strategies on microservices-based applications. Their
concept is based on a traffic routing mechanism using lightweight proxy components. The proto-
type is non-intrusive and thus, it does neither need any feature toggles nor any other code-level
changes. However, one key requirement is that requests are correctly forwarded between the vari-
ous service instances and versions. Thus, the approach relies on the coexistence of service versions
as described in Section 2.1.2 and for that the formal model involves modelling the different ver-
sions of the available microservices. Release strategies are defined in a domain specific-language
and include the configuration of which metrics and thresholds should be considered to help de-
ciding whether a release is successful or needs to be rolled back. The approach of this paper
drastically helps to automate experimentation in the scope of microservices-based applications
and enables version controlling, sharing, and reusing strategies between changes or even teams.
Some of the goals are related to the goals of this thesis. On the one hand, the approach of Scher-
mann et al. deals, among other things, with the problem of automatically validating whether new
deployments of services are successful or not. On the other hand, the current thesis has as one
of its goals to automatically validate service dependencies in order to ensure that a given service
configuration is valid in the first place before it is rolled out in form of an experiment.

3.3 SPLs in Related Application Areas
Instead of using the SPL techniques to model and manage service dependencies, recent research
has been conducted by Sousa et al. [SRD16c] [SRD16a] to apply SPL practices in the cloud com-
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puting area. Even though the problem domain is different then from the one that we address here
in this thesis, it nicely illustrates that SPL practices can be reused and adjusted in multiple ways
to overcome challenges in a multitude of application areas.

Sousa et al. [SRD16c] have proposed an approach to automatically build a multi-cloud envi-
ronment for microservices-based applications while still reasonably handling the heterogeneity
and variability of cloud providers and the multi-cloud requirements of microservices-based ap-
plications. In detail, the heterogeneity of providers needs to be taken into account in order to deal
with the different levels of functionality abstractions that cloud providers offer, such as IaaS, PaaS,
and SaaS. Tackling cloud provider variability helps to deal with complex constraints regarding a
cloud provider’s configurations, e.g. which functionality is provided to which regions and for
what price plan. Finally, the multi-cloud requirements need to be addressed in order to cope with
the profoundly differing requirements of microservices as well as to consolidate private and pub-
lic clouds. Sousa et al. rely on the idea to use feature models (FMs) to define the features that are
offered by a provider and how these features are related. The application requirements are then
matched against these FMs and an automated analysis of these FMs is used to find a valid and
complete configuration for a specified set of cloud providers.

In order to be able to model cloud provider variability as FMs, Sousa et al. also needed to ex-
tend FMs with relative cardinalities [SRD16b]. Feature cardinalities have been already introduced
before [CBUE02] in order to model features that can be selected multiple times for a specific prod-
uct. However, the approach has been limited in the way that it only allowed feature cardinalities
in relation to the parent feature or the global product configuration. Sousa et al. [SRD16b] gener-
alized the existing interpretations of feature cardinalities in such a way that cardinalities can be
applied to features relative to any other feature in the feature model.

One of the most recent work by Sousa et al. [SRD17] carefully examines the problematic nature
when requirements of a cloud system change and the complex constraints that this change often
exhibit. Their goal is to guarantee a safe transition from a valid initial configuration to a target con-
figuration while satisfying any constraints that exist for the transitions. Their previous approach
of automatically setting up multi-cloud environments for microservices applications is extended
with variability modelling for a dynamic SPL approach by extending FMs with temporal con-
straints and reconfiguration operations. Temporal constraints are required to define aspects such
as when choosing a feature makes another feature unavailable for all further prospective configu-
rations. The reconfiguration operations are needed to allow modelling of multiple reconfiguration
paths and their impact on reconfiguration time, costs, and performance.

3.4 Automated Analysis of Feature Models
There exist numerous works in the literature that propose the usage of propositional formulas for
the automated analysis of feature models. Benavides et al. [BSRC10] have made a neat summary
of the evolution regarding the connection of propositional formulas with feature models. In doing
so, Mannion et al. [Man02,MC03] have been identified to be the first that connected propositional
formulas with feature models and Batory [Bat05] has been depicted as the first one to use a SAT
solver for analysing feature models. Benavides et al. [BSRC10] also have made a thorough listing
of the most innovative contributions with respect to automated analysis of feature models. For
example, Yan et al. [YZZM09] have been mentioned for proposing an optimization method to
reduce the size of the logic representation of feature models by removing irrelevant constraints.
The work by Benavides et al. [BSRC10] also comprises a comprehensive list of analysis operations
on feature models and a multitude of literature is referenced that tackle one or more of these
analysis operations.

With respect to correctness checking as part of the automated analysis, there are some works
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in the literature that analyze approaches and possible optimizations of this aspect. Trinidad et
al. [TBC06] analyze the detection of dead features based on previous work by Benavides et al.
[BSRC10] and propose a way to detect relationships that cause dead features to appear. Trinidad
et al. [TBD+08] also introduce further automated analysis methods that help to detect contradic-
tions in feature models as well as so called full-mandatory features. The latter are features that
actually have not been explicitly defined to be mandatory, but cross-tree constraints implicitly
cause them to be present in possible feature model configurations. Full-mandatory features have
also named to be false optional features by Rincón et al. [RGMS14] who propose an ontological
rule-based approach for analyzing dead and false optional features in feature models. For that
they formalize first-order logic rules to identify dead features and false optional features and
these formal rules further enable to identify the relationships that cause the respective issues.
Hemakumar [Hem08] focuses on finding contradictions statically using model checking and an
incremental consistency algorithm and Wang et al. [WXH+10] introduce a dynamic-priority based
approach to fix inconsistencies in feature models. Mendonça [Men09] provides explanations for
the space and time (in)tractability of techniques for reasoning on feature models and additionally
enhances the algorithmic performance of these techniques.

Configuration support for feature models has also been subject in a multitude of works and
different proposals have been made to tackle and optimize this process. We briefly introduce a
few selected research papers that depict different aspects of it. Mendonça et al. [MBC09] introduce
S.P.L.O.T., a Web-based reasoning and configuration system for SPLs. Their system provides ef-
ficient reasoning and interactive configuration services to SPL researchers and practitioners. The
interactive configuration support automatically validates every single configuration decision to
enforce their consistency. This results in a backtrack-free configuration process directly bene-
fiting users that are never forced to revisit past decisions. Botterweck et al. [BSP09] depict in-
teractive techniques to support the configuration of complex feature models. These techniques
include visual interaction with a formal reasoning engine, visual representation of multiple inter-
related hierarchies, indicators for configuration progress, and filtering of visible nodes. Barreiros
et al. [BM11] propose the use of soft constraints and categorize possible semantics for such con-
straints. Soft constraints can help to improve configuration support by highlighting more com-
mon configuration options.

Even though all of these concepts might be used in a beneficial manner for microservices-
based feature models, adopting them is out of this scope of the work and mainly rudimentary
concepts are used to perform the different aspects of automated feature model analysis.
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Applying SPL Techniques on
Microservice Based

Applications

In this chapter we present how the principles of microservices-based applications fit into the
domain of SPLs. Establishing a proper mapping between this particular architectural style and
the software development paradigm makes it possible to reuse techniques of SPLs, such as feature
models, for the microservices area. Modelling a microservice application and its dependencies as
a feature model facilitates the translation of this feature model to a propositional formula. This in
turn allows us to use SAT solvers for automatically verifying the correctness of the feature model
as well as for validating specific microservice configurations.

4.1 Mapping SPL Artifacts to Microservice Apps
In Section 2.1 we have briefly introduced the main concepts of microservices-based applications
and in Section 2.2 we have briefly introduced some SPL tenets where core assets form the basis
of SPLs. Comparing the principles of both domains shows that microservices align well with the
ideas of SPL. For the core assets in SPLs we have emphasized that all products of a product line
share a certain architecture that they have in common [McG04]. The microservices architectural
style fits perfectly as an application of such an architecture since it is shared among all microser-
vices, the actual core assets, in a microservices-based application. Microservices are specific kind
of components, units of software that are independently replaceable and upgradeable [FL14] and
in Section 2.2 we have already listed that components are a typical example of core assets. This com-
parison is further underpinned by the idea of reusability that microservices and core assets have
in common. By trying to further derive appropriately mapped artifacts, a microservice-based ap-
plication proves to be a product in SPLs, since microservices are used to develop microservice
applications and core assets are used equally to develop products. This association leads to the
final mapping of having a set of microservices-based applications being the counterpart for a
generic SPL. This allows us to model the versatile service landscape that exists in environments
which apply live experimentation techniques. Only with that we can model microservices-based
applications to potentially exist in different combinations of available microservices and multiple
versions of microservices. Furthermore, a set of microservices-based applications can have its
applications reuse and share services amongst each other which reflects the typical characteristic
of SPLs, where core assets are reused in the products of the product line. Table 4.1 shows the
mapping of artifacts from SPLs and microservices.
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SPLs Microservices

Software product line Set of microservices-based applications

Product Microservices-based application

Core Asset Microservice

Table 4.1: Mapping Artifacts of SPLs to the Microservices Domain

4.2 Microservice Applications as Feature Models
After thorough analysis of microservices in general, and by adopting the existing concepts of fea-
ture models from Section 2.3 as well as the artifact-mapping of Section 4.1, we have derived the
building blocks that are required to define a feature model which represents our desired software
product line, a set of microservices-based applications. We can distinguish between practices that
are used to model the structural relationships of microservices-based applications (i.e. applica-
tions, services, and service versions) and practices to model the constraints among the services of
such applications (e.g. one service depends on another service).

4.2.1 Features and Structural Relationships
Regarding the features and the structural relation between the features in feature models of mi-
croservices applications, we have identified the following building-blocks.

Microservices-based applications. In a feature model that represents microservices-based ap-
plications, the root node plainly illustrates the domain concept of microservice applications being
configurable for the current product line. The feature configurations that are enabled by such
models represent each a particularly compiled set of microservices with specific constraints be-
tween services. Eventually the feature model and a corresponding service configuration are used
together to be validated with the help of a SAT solver in order to get a clear assertion about the va-
lidity of the configuration. Essentially, as introduced in Section 2.4.4, valid feature configurations
constitute the products of our microservice applications product line.

Microservices. The immediate child features of the feature model’s root feature are modelled
as an and relation and depict the microservices that are available for the current model. Typically,
services are defined as optional features since it should be usually allowed to select arbitrary sub-
sets of the microservices that are available for a specific product line. Eventually, this offers more
flexibility when developing microservices-based products. But in case a service is absolutely re-
quired to be comprised in each product of a specific product line, it can be alternatively modelled
as a mandatory subfeature of the root feature.

Versions. Versions are modelled as alternative subfeatures of services since the goal is to eventu-
ally obtain feature configurations that explicitly state which distinct versions of which microser-
vices should be used for a particular microservices-based application. From a practical point of
view this means that we do not need to enable feature configurations representing runtime envi-
ronments where potentially multiple different versions of a microservice could exist in parallel.
We’re just interested in modelling and validating the dependencies of microservices at build-time
and for this purpose exactly one distinct version needs to be selectable for each service in a spe-
cific service configuration.
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Based on the identified characteristics, we derived a formal representation for the parent-child
feature relations of microservices-based feature models. To begin with, a feature model for mi-
croservices applications consists of a finite set S of n services s1, s2, . . . , sn ∈ S:

Microservices-BasedApplications S = {s1, s2, . . . , sn}

Services sx themselves are available in different versions, thus every service sx leads to a finite
set V of n versions vx1, vx2, . . . , vxn for each service sx ∈ S:

V ersions V (sx) = {v1, v2, . . . , vn}

With the notion of microservice-based applications, microservices, versions, and the relation-
ships between these features, we already have the main building blocks that allow us to model
feature models of microservice applications. The structure of these models yield a certain symme-
try and some neat properties. Such feature models of microservices-based applications have not
only in common that just three levels exist in the feature hierarchy, but also that every path from
the root to an arbitrary leaf feature has the exact same depth. Each level represents an abstraction;
The topmost level illustrates the domain concept of modelling a set of microservice applications,
the second level lists all the available services and the lowest level shows the versions that are
available for every single service.

From the overall available types of parent-child relationships in the domain of feature models,
only the or-group relation is not relevant and thus not used for modelling microservice applica-
tions; Neither for microservices nor for versions exist practical implementations of having an "at
least one" dependency that is reasonable for parent-child relationships.

microservices-based applications

frontend

f -1 .2 .7 f -1 .3 .0 f -2 .0 .0

backend

b-1 .5 .1 b-2 .0 .3

new -backend

nb-1 .0 .4

Figure 4.1: Structural Composition in Feature Models of Microservices-Based Applications

Figure 4.1 shows an example of a feature model for microservices-based applications that
comprises three different services frontend , backend , and new -backend . The microservice frontend
has been marked as a mandatory feature to indicate that it needs to exist in all possible service
configurations. Furthermore, there exist three different versions for service frontend , two for
backend , and one for new -backend , whereas the labels of the version features are prefixed with
the corresponding initials of their service names to clearly distinguish the versions of different
microservices from each other.
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4.2.2 Cross-Tree Constraints
With respect to cross-tree constraints among the features in feature models of microservices appli-
cations, we have identified three different constraint types that are required to sufficiently model
the possible dependencies between microservices.

Requires. In Section 2.3 we have already introduced the requires constraint that evidently indi-
cates that a particular feature requires a specific other feature. Such constraints also typically exist
for microservices-based applications and thus it makes sense to reuse them in this current context
to represent services that depend on the existence of another service.

Excludes. Similarly to the requires constraint, the excludes constraint has been also already in-
troduced in section 2.3. Apparently these constraints are used to model features that are not
allowed to coexist for the same product. Even though this constraint is less common that the
requires constraint, they can be useful to highlight microservices that conflict with each other, e.g.
microservices obtaining the same network ports.

Alternative. Even though cross-tree constraints give the possibility to model very sophisticated
relationships between any features in the model, we only need one further possible constraint that
makes sense in the domain of microservice-applications. The alternative parent-child relationship,
as introduced in Section 2.2, is adopted as a cross-tree constraint to illustrate that a feature specif-
ically depends on one feature from a particular set of different possible options. This is useful
to represent microservices that have a specific dependency which can be potentially satisfied by
more than one service, but only exactly one of them is required to fulfill the job. Excludes con-
straints can potentially appear in conjunction with alternative constraints in order to explicitly
define that specific microservice alternatives conflict with each other. Such structures are espe-
cially needed in case an alternative constraint originates from a non-mandatory microservice. If
such a service is not selected for the service configuration, the excludes constraints still ensures
that the conflicting alternatives can not be selected simultaneously for the current configuration.

Since dependencies between services can change due to version upgrades, we decided to model
constraints between the features that represent versions instead of modelling them between mi-
croservices. Of course one could argue that defining constraints between the microservices itself
should be enabled too, since constraints between services might not alter that frequently. But
eventually it would only add unnecessary complexity to the feature model and actually, it can be
individually resolved in the corresponding implementations of such feature models in case such
a property is desired at all.

Based on the identified characteristics, we derived a formal representation for the cross-tree con-
straints of microservices-based feature models. Constraints cx always originate from specific ver-
sions, thus every version vx leads to a finite set C of n constraints cx1, cx2, . . . , cxn for each version
vx ∈ V :

Constraints C(vx) = {c1, c2, . . . , cn}

In Figure 4.2 we have extended the feature model of Figure 4.1 with some constraints between
the individual versions of microservices. This feature model, or slight alterations of it, will be
used throughout the remainder of the thesis as a running example. Microservice version f -1 .2 .7



4.3 Automated Analysis of Microservice Apps 25

requires microservice version b-1 .5 .1 and microservice version f -2 .0 .0 requires microservice ver-
sion nb-1 .0 .4 . For each version of microservice backend , i.e. b-1 .5 .1 and b-2 .0 .3 , excludes con-
straints to nb-1 .0 .4 are modelled to indicate that these specific service versions would conflict
with each other. Finally, an alternative constraint is defined at the bottom of the feature hierarchy,
indicating that f -1 .3 .0 depends either on b-2 .0 .3 or on nb-1 .0 .4 . The Boolean formula shows
the small difference of alternative cross-tree constraints compared to the alternative parent-child
relations of feature models. The latter requires that for every subfeature an implication is de-
fined from the subfeature to its parent, but the former has no such parent-child relation since the
constraints are drawn between the versions of services. The features are on the same level and
therefore no implications need to be defined from the version options to the version from which
the alternative cross-tree constraint actually originates.

microservices-based applications

frontend

f -1 .2 .7 f -1 .3 .0 f -2 .0 .0

backend

b-1 .5 .1 b-2 .0 .3

new -backend

nb-1 .0 .4

f -1 .3 .0 → 1-of -n( b-2 .0 .3 , nb-1 .0 .4 )

alternative cross-tree constraint

requires requires

excludes

excludes

Figure 4.2: Constraints in Feature Models of Microservices-Based Applications

4.3 Automated Analysis of Microservice Apps
The proper mapping of feature models to the microservices domain makes it possible to adopt the
practices and techniques that have been introduced in Section 2.4 and to apply them appropriately
for microservices-based feature models.

4.3.1 Microservice Apps as Propositional Formulas
We adopt the Boolean formulas discussed in Section 2.4 with respect to the concepts of feature
models for microservices-based applications from Section 4.2. Table 4.2 shows the Boolean formu-
las that need to be defined for the three different types of features and the three different cross-tree
constraints in such feature models. The root feature can be adopted without any changes and thus
the feature is represented by a simple formula a. An optional microservice s is modelled as a being
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the parent of s, thus the formula is s → a. A mandatory microservice needs the implication also
in the other direction, thus we additionally define a→ s. As already highlighted in Section 2.4.2,
implications in both directions can be replaced by the logical equivalence operator, so we can de-
fine a mandatory microservice also simply just with the single formula a ↔ s. For representing
a version we use the corresponding Boolean formulas of the alternative relationship. Thus, for
every version v1, ..., vn available for a microservice s, we need to state an implication from the
version to the microservice, i.e. v1 → s ∧ , ..., ∧ vn → s. Furthermore, the parent to child relation-
ship from service s to the [1..1] grouped features v1, ..., vn is defined with s → 1-of -n(v1, ..., vn)
in order to complete the definition for the alternative relationship from microservices to versions.
As described in Section 4.2.1, the or relation between features and subfeatures is not feasible in
the microservices domain and therefore we also can not reuse the corresponding translation rule
in a meaningful manner. The Boolean formulas for representing cross-tree constraints of feature
models for microservice applications are given in the same way as by general feature models;
The constraints are already formulated as Boolean formulas at the bottom of the models. The
formulas for defining the requires and excludes constraints have been already presented before in
Section 2.4.2 and also the alternative cross-tree constraint has been already defined in Section 4.2.2,
thus the constraints are shown without further ado by the three last rows of Table 4.2.

Relation Feature model context Boolean formula

Microservice apps Domain concept of modelling microser-
vice applications a is the root feature

a

Optional service s is subfeature of application a s → a

Mandatory service s is subfeature of a s → a
a is parent feature of s a → s
shorthand: s is mandatory service of a s ↔ a

Version The version v1 is a subfeature of s v1 → s
The version vn is a subfeature of s vn → s
s is parent of [1..1] grouped features
v1, ..., vn

s → 1-of -n(v1, ..., vn)

Requires v1 of s1 requires v1 of s2 s1v1 → s2v1

Excludes v1 of s1 prohibits v1 of s2 s1v1 → ¬s2v1
v1 of s2 prohibits v1 of s1 s2v1 → ¬s1v1
shorthand: v1 of s1 and v1 of s2 exclude
each other

¬(s1v1 ∧ s2v1)

Alternative v1 of s1 is parent of [1..1] grouped fea-
tures s2v1 , ..., smvn

s1v1 → 1-of -n(s2v1 , ..., smvn)

Table 4.2: Translation Rules for Microservices-Based Feature Models

In Section 2.4 we have already defined that by conjoining the Boolean formulas for all ele-
ments of a feature model, we get the corresponding propositional formula. Figure 4.3 shows the
appropriate propositional formula of the feature model shown in Figure 4.2. The first line (1) de-
fines modelling of microservices-based applications (MBA) as the root element. The second line
(2) describes the services comprised in the MBA whereas an equivalence operator is used to ap-
propriately define frontend as a mandatory service. Line (3) represents the alternative relationship
between service s1 and its three available versions f -1 .2 .7 , f -1 .3 .0 and f -2 .0 .0 . Line (4) shows
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the same relationship between service backend and its versions b-1 .5 .1 and b-2 .0 .3 and similarly
line (5) shows the same for service new -backend for which only one version nb-1 .0 .4 exists. The
remainder of the propositional formula, lines (6) to (10), represents the different cross-tree con-
straints that have been captured in the feature model. Line (6) defines a requires constraint from
microservice version f -1 .2 .7 to b-1 .5 .1 and line (7) does it likewise from f -2 .0 .0 to nb-1 .0 .4 .
Line (8) shows the excludes constraint between the service versions b-1 .5 .1 and nb-1 .0 .4 and line
(9) does the same for b-2 .0 .3 and nb-1 .0 .4 . Finally, line (10) defines the alternative cross-tree
dependency from service f -1 .3 .0 to the two possible options b-2 .0 .3 or nb-1 .0 .4 .

(mba) ∧ (1)

(frontend ↔ mba) ∧ (backend → mba) ∧ (new -backend → mba) ∧ (2)

(f -1 .2 .7 → frontend) ∧ (f -1 .3 .0 → frontend) ∧ (f -2 .0 .0 → frontend) ∧
(frontend → (f -1 .2 .7 ∧ ¬f -1 .3 .0 ∧ ¬f -2 .0 .0 )

∨ (¬f -1 .2 .7 ∧ f -1 .3 .0 ∧ ¬f -2 .0 .0 )
∨ (¬f -1 .2 .7 ∧ ¬f -1 .3 .0 ∧ f -2 .0 .0 )) ∧ (3)

(b-1 .5 .1 → backend) ∧ (b-2 .0 .3 → backend) ∧
(backend → (b-1 .5 .1 ∧ ¬b-2 .0 .3 ) ∨ (¬b-1 .5 .1 ∧ b-2 .0 .3 )) ∧ (4)

(nb-1 .0 .4 → new -backend) ∧ (new -backend → nb-1 .0 .4 ) ∧ (5)

(f -1 .2 .7 → b-1 .5 .1 ) ∧ (6)

(f -2 .0 .0 → nb-1 .0 .4 ) ∧ (7)

¬(b-1 .5 .1 ∧ nb-1 .0 .4 ) ∧ (8)

¬(b-2 .0 .3 ∧ nb-1 .0 .4 ) ∧ (9)

(f -1 .3 .0 → (b-2 .0 .3 ∧ ¬nb-1 .0 .4 ) ∨ (¬b-2 .0 .3 ∧ nb-1 .0 .4 )) (10)

Figure 4.3: Feature Model as Propositional Formula

4.3.2 Correctness Checking and Configuration Validation
Adopting feature models for modelling product lines of microservices-based applications and ap-
propriately reusing the demanded translations rules makes it possible to apply automated analy-
sis of feature models in the microservices domain. Correctness checking as well as validating fea-
ture configurations of microservices-based feature models do not differ from the general feature
model approaches introduced in Section 2.4, thus we illustrate the concepts by giving examples
that are based on Figure 4.2.

Correctness Checking. Figure 4.4 shows that slight adjustments to the feature model of Fig-
ure 4.2 can quickly turn it into an inconsistent model. This time, all microservices are defined to be
mandatory. This results in conflicts between the versions of the services backend and new -backend .
Both versions b-1 .5 .1 and b-2 .0 .3 of service backend have each an excludes constraint defined that
conflicts with nb-1 .0 .4 which also needs to be comprised in each service configuration of every
microservice-based application of the product line. The feature model in Figure 4.4 is clearly in
an inconsistent state, whereas the corresponding conflicting items are highlighted appropriately.

Even less adjustments to the original microservices-based feature model of Figure 4.2 are nec-
essary to yield dead features. In Figure 4.5 only service new -backend has been additionally defined
to be mandatory. This results to the problem that neither backend nor one of its versions b-1 .5 .1
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f -1 .2 .7 f -1 .3 .0 f -2 .0 .0

backend
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f -1 .3 .0 → 1-of -n( b-2 .0 .3 , nb-1 .0 .4 )
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Figure 4.4: Verifying Inconsistencies of Microservices-Based Feature Models

or b-2 .0 .3 can be selected for valid feature configurations. Since new -backend is mandatory for all
products, and with that also its only existing version nb-1 .0 .4 the two excludes constraints exist-
ing in the feature model completely prohibit the selection of backend b-1 .5 .1 or b-2 .0 .3 making
them dead features. This has been correspondingly highlighted in Figure 4.5.

mba

frontend

f -1 .2 .7 f -1 .3 .0 f -2 .0 .0

backend

b-1 .5 .1 b-2 .0 .3

new -backend

nb-1 .0 .4

f -1 .3 .0 → 1-of -n( b-2 .0 .3 , nb-1 .0 .4 )

alternative cross-tree constraint

requires requires

excludes

excludes

Figure 4.5: Detecting Dead Features in Microservices-Based Feature Models

Validating Service Configurations. In Figure 4.6 we show two examples of feature configura-
tions. Figure 4.6(a) shows that the features {mba, frontend , f -1 .2 .7 , backend , b-1 .5 .1} have been
selected and thus are highlighted accordingly in the feature model. A SAT solver that validates
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the given feature configuration against the propositional formula of Figure 4.3 would confirm
the configuration to be legal. This is because no constraints are violated by the selected fea-
tures and thus these features are appropriately visualized with green borders. In contrast to Fig-
ure 4.6(a), Figure 4.6(b) shows an illegal feature configuration. This time, feature b-2 .0 .3 has been
selected instead of b-1 .5 .1 and this violates the defined requires constraint of f -1 .2 .7 depending
on b-1 .5 .1 . Feature b-1 .5 .1 has been highlighted appropriately to represent the constraint viola-
tion.
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Figure 4.6: Service Configurations of Microservices-Based Applications
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Implementation

In this section, the HEIMDALL web based application is presented. The system is a prototype
implementation of our microservices-specialized feature model and is based on Node.js1, Vue.js2,
and vis.js3. Our prototype targets microservices-based applications, specifically the modelling
and validation of dependencies between microservices.

5.1 System Overview
As visualized in Figure 5.1, the HEIMDALL application follows the microservice architectural style
and is composed of four distinct services; The frontend, the software product line (SPL), the sat-
isfiability (SAT) solver, and the database (DB) service.

Frontend

SPL

SATDB

Software or DevOps
Engineer

CRUD-
Operations

for FMs
FCs

FMs & FCs

SAT
Results

SAT
Results

Interacts

DSL

DSL

CRUD-
Operations

for FMs

Import / Export

Figure 5.1: High-level Architectural Overview of the HEIMDALL Application

1https://nodejs.org
2https://vuejs.org
3http://visjs.org
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In the following, we will briefly discuss the responsibilities, interactions, and dependencies of
the microservices.

Frontend & SPL. The frontend service is the single interaction point that software and DevOps
engineers can interact with. It offers graphical support to create and maintain feature models,
define feature configurations on the basis of feature models, and to validate the feature models
(FMs) and the feature configurations (FCs). Furthermore it is also possible to have the feature
models defined in a YAML4-based domain-specific language (DSL) [MHS05] which enables im-
porting or exporting feature models in that particular format. The frontend service depends on
the SPL service which processes the incoming requests from the fronted.

SPL & DB. The SPL service exposes a RESTful API to the Frontend. It validates incoming
CRUD-requests for the different elements existing in microservices-based feature models to al-
low retrieval and manipulation of applications, services, versions, and constraints from the DB
service. In case feature models are uploaded in the DSL, they get parsed and appropriately de-
composed and populate to the DB. In case of an export request, the process is exactly the same
vice-versa.

SPL & SAT. The SPL service does not only depend on the DB service but also on the SAT service.
When a request for correctness checking of a feature model is received, the SPL service gathers
the corresponding elements of the product line from the DB service, compiles it to a JSON rep-
resentation of the feature model and sends it to the SAT service. The SAT service translates the
JSON representation of the feature model to a propositional formula and validates it with the help
of an existing SAT solver. Depending on the result delivered by the SAT solver, the SAT service
can return three different response types with respect to the correctness of feature models:

• Consistent Feature Model:
One possible result is that a the feature model is consistent and a corresponding confirma-
tion is returned.

• Inconsistent Feature Model:
In case the result is not consistent, hints on how to resolve the inconsistent feature model
are returned.

• Dead Features:
If the result is consistent, check if dead features exist and return a list of these features.

Similarly, when the validation of a feature configuration is requested, familiar actions are per-
formed. the SPL service again gathers the elements of the product line from the DB and compiles
it in the same way before sending it together with the feature configuration to the SAT service.
The SAT service performs a quite similar translation of the feature model to a propositional for-
mula, but then it validates the given feature configuration against the formula with the help of the
SAT solver. The SAT service returns three different types of responses, depending on the result
computed by the SAT solver:

• Legal Configuration:
The first possibility is that the SAT service response with a confirmation that the configura-
tion is legal.

• Incomplete Configuration:
In case the configuration is incomplete, a further response type can suggest feature model
elements that may lead to a legal configuration.

4http://yaml.org
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• Illegal Configuration:
The third possibility is, in case the configuration is illegal, that the SAT service first per-
forms a neat backtracking algorithm to resolve which selected features are responsible for
the illegal configuration. The SAT solver the returns information about the possible culprits.

5.2 Technology Stack
The HEIMDALL application has been developed mainly in JavaScript utilizing Node.js as the
server-side JavaScript runtime and on the frontend side the Vue.js framework as well as the vis.js
visualization library have been used.

Backend. Node.js was not only chosen due to its lightweight and efficient architecture, but also
due to its low entry level that makes it easy to learn and thus to a perfect candidate for getting
prototypes quickly up and running. This gets further emphasized by the fact that Node.js is
bundled with NPM, the world’s largest software registry. Due to NPM, it is not only relatively
easy to find useful third party libraries and tools, but also directly integrating them is a breeze.
This was especially useful to find and incorporate an appropriate SAT solver for the HEIMDALL
application. Eventually, Logic Solver5 has been used for that purpose, a Boolean satisfiability
solver written in JavaScript that contains MiniSat6, an industrial-strength SAT solver. In order to
have maximal flexibility with respect to data structures, MongoDB7 is used to store data about the
features and constraints of feature models. It is a document database and stores data in flexible,
JSON8-like documents. The communication between the services of the application is handled
through RESTful HTTP APIs on the basis of ExpressJS9.

Frontend. For the frontend side, Vue.js was chosen as the main framework in order to keep
prototyping as smooth as possible. Vue.js is more flexible and less opinionated than AngularJS10

and with respect to React11, it offers similar strengths, such as utilization of a virtual DOM and
providing reactive and compose-able view components, but has in contrast a more flat learning
curve and shorter path to productivity. In order to dynamically visualize the feature diagrams
in the browser, vis.js has been used. It is designed to be easy to use and even though it is not
as powerful or versatile as other visualization libraries such as D312, it is able to handle large
amounts of dynamic data and provides appropriate manipulation and interaction possibilities
with the data.

Deployment. In order to ease deployment and reproducibility of experiments, we made use
of Docker13, the world’s leading software container platform [Inc17]. Although HEIMDALL does
not yet consist of many moving parts in its microservices architecture, we have decided to use
Docker Compose14 in order to facilitate defining and running our multi-container application
whereas each service is placed in its own container.

5https://www.npmjs.com/package/logic-solver
6http://minisat.se
7https://www.mongodb.com
8http://www.json.org
9http://expressjs.com

10https://angularjs.org
11https://facebook.github.io/react
12https://d3js.org
13https://www.docker.com
14https://docs.docker.com/compose
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5.3 Data Modelling of Feature Models
HEIMDALL allows creating and manipulating feature models of microservices-based applications.
Therefore appropriate elements of this domain need to be modelled in the database. In Sec-
tion 4.2.1 we have identified the three different types of features available in the feature models,
namely microservices-based applications, microservices, and versions. We have formally defined that
a microservices-based application consists of a finite set of microservices and each microservice is avail-
able in a finite set of versions. Additionally, we have shown in Section 4.2.2 the existence of the
three different cross-tree constraint types, such as the requires, excludes, and alternative constraints.
We have determined that constraints are modelled between the versions of services and since we
have formally defined that constraints always originate from a specific version, each version can
own a finite set of constraints. Figure 5.2 shows a UML diagram of a schematic database model
that represents the distinct elements, attributes, and relations that are required to implement fea-
ture models of microservices-based applications. Since MongoDB is used as the actual database
technology, data is stored in so called collections as opposed to data that is stored in tables in
relational database systems.

applications

id ObjectID
name String
description String

microservices
id ObjectID
application_id ObjectID
name String
description String
mandatory Boolean

versions
id ObjectID
microservice_id ObjectID
semver String

1

n
constraints

id ObjectID
version_id ObjectID
constraint_type String
targets ObjectID[1..*]

n n

1 n

Figure 5.2: Data Model of Feature Model Elements

Applications. HEIMDALL allows managing multiple microservices-focused SPLs, thus the cre-
ation and manipulation of multiple feature models needs to be covered. We have decided to
represent feature models with their root feature and therefore we store the root features of the
feature models, i.e. microservices-based applications, in a corresponding collection abbreviated as
applications. Besides the uniquely identifying attribute id, we provide two further attributes;
name to label the feature with a meaningful name, and description, which allows to add some
descriptive information about the product line that is modelled with the feature model.

Microservices. Services are appropriately stored in the microservices collection, each hav-
ing a unique id as well as a reference attribute application_id that links to the root fea-
ture that they belong to. This allows us to model the child-parent relationship between the
applications and the microservices with a [1..n] cardinality, which is necessary since we
have formally defined that feature models of microservices-based applications consist of a finite set
of microservices. Equally to the root feature, services have the attributes name and description,
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whereas the latter gives the possibility for briefly describing the corresponding service. Finally,
the mandatory attribute is used to indicate whether a microservice is obligatory or not.

Versions. Versions are stored in the appropriate versions collection, with their respective
unique id as well as the microservice_id reference to the microservice that they correspond to.
Similarly to the relationship between applications and services, the microservice_id reference
is used to model the the [1..n] cardinality between a service and its available versions. This covers
our formal definition that each microservice is available in a finite set of versions. A version’s
semver attribute is used to represent it with a meaningful tag.

Constraints. All constraints are stored in the same collection named constraints. This el-
ements also have the id attribute as a unique identifier and with the help of the version_id
attribute we can model the formally defined finite set of constraints that can originate from a
specific version. As the name indicates, the constraint_type attribute is used to represent
whether the constraint is of type requires, excludes, or alternative. The targets attribute is an
array of ids that represent foreign keys pointing back to a specific set of versions. Therefore we
have a [n..n] cardinality between the versions and the constraints collection. The important point
here is that requires and excludes constraints only have one single version identifier in the
targets attribute, but alternative constraints can have more than just one version identifier in
the targets array. The latter enables modelling the dependency between a specific microservice
version (i.e., the version_id attribute) and a set of multiple alternative versions of potentially
different services (i.e., the targets array) that it can choose from.

5.4 Domain-Specific Language
As previously introduced, we have defined a DSL in order to enable importing and exporting
of feature models in the YAML standard. On the one hand, this makes it possible to specify
feature models in this particular DSL and import them into the HEIMDALL application, on the
other hand, in conjunction with the export functionality, the DSL can be used as a specific data
exchange format between HEIMDALL and other systems. The DSL was built as an internal DSL on
top of YAML as a host language. YAML is a data serialization language designed to be readable
by humans. In the following, we will present the DSL with the help of a sample feature model
specification and explain the design decisions behind it. Furthermore, we will also briefly describe
what happens when a feature model specification in the DSL is imported to HEIMDALL and how
the data is further used in the system.

Introducing the DSL. Listing 5.1 shows a part of the specification that is required to define the
feature model from our running example in Figure 4.2. The DSL is a straightforward mapping of
the elements and attributes defined in the data model of Section 5.3. YAML’s root object represents
the root feature of microservices-based feature models. It comprises almost the same attributes
as the documents from the applications collection of the data model, as shown with the name
and description keys on line 1 and 2. The id property does not need to be mapped to a
corresponding key in the DSL (the same is true for the id properties of services, versions, and
constraints). The microservices key on line 3 lists the services that are available for the current
feature model. The services have the same properties as in the data model, e.g. lines 4 to 6
represent the mandatory Frontend service including a description. Each service has a versions
key that lists the different obtainable versions. Versions comprise the semver key to represent a
version’s tag. For example 1.2.7, 1.3.0, and 2.0.0 on lines 8, 14, and 22 depict the three different
versions that exist for the Frontend microservice. The constraints key of a version lists the
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constraints that originate from the corresponding version. For example the constraints list on
line 9 contains just one single constraint. Equally to the data model, each constraint contains a
constraint_type property as well as the targets key that contains the list of a constraint’s
targets, e.g. as defined on line 10 and 11 respectively. Equally to the data model, requires and
excludes constraints only have one target whereas alternative constraint can have several targets.
Since we do not have any uniquely identifying keys for versions of services, a target is comprised
of two keys, the name that points to a certain other service and the semver that specifies which
exact version of the service is targeted. For example, lines 12 and 13 define that the corresponding
requires constraints targets version 1.5.1 of the Backend service. The detailed specifications for the
Backend and the New-Backend services are omitted since they do not vary considerably from the
introduced concepts so far. The full specification is available as attachment in Appendix A.2.

1 name: Microservices-Based Applications

2 description: Feature model defining a sample set of microservices based applications

3 microservices:

4 - name: Frontend

5 description: Sample frontend service

6 mandatory: true

7 versions:

8 - semver: 1.2.7

9 constraints:

10 - constraint_type: requires

11 targets:

12 - microservice: Backend

13 version: 1.5.1

14 - semver: 1.3.0

15 constraints:

16 - constraint_type: alternative

17 targets:

18 - microservice: Backend

19 version: 2.0.3

20 - microservice: New-Backend

21 version: 1.0.4

22 - semver: 2.0.0

23 constraints:

24 - constraint_type: requires

25 targets:

26 - microservice: New-Backend

27 version: 1.0.4

28 - name: Backend

29 # Details omitted

30 - name: New-Backend

31 # Details omitted

Listing 5.1: Sample Feature Model Defined in the YAML Based DSL

Importing a Feature Model Specified in the DSL. The import of a feature model which is
specified in the DSL is quite straightforward. The specification gets parsed with the help of the
js-yaml15 JavaScript library which helps to return a JavaScript object representation of the feature
model. The information about the elements of the feature model is then appropriately used to
create the specific data representations of the feature model in the database. As previously in-
dicated, no explicit id keys need to be defined by a feature model specification in general since

15https://www.npmjs.com/package/js-yaml
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the ids will be generated when the feature model elements are created in the database. In case
the feature model is required by the frontend service or the SAT service, the SPL service fetches
all the corresponding elements of the desired feature model from the database, compiles it to a
JavaScript object and sends it to the appropriate service after parsing it to JSON. A small part of
the JSON formatted feature model from our running example is illustrated in Listing 5.2, which
shows the close similarity of the DSL to the JSON exchange format of feature models between
services. One main reason is that YAML 1.2 is a superset of JSON, which is actually just another
data serialization format [Eva17].

1 {

2 "id": "59805bc0b9572c4514713bec",

3 "name": "Microservices-Based Applications",

4 "description": "Feature model describing a sample set of microservices based apps",

5 "microservices": [

6 {

7 "id": "59805bc0b9572c4514713bed",

8 "application_id": "59805bc0b9572c4514713bec",

9 "name": "Frontend",

10 "description": "Sample frontend service",

11 "mandatory": true,
12 "versions": [Array] // Details omitted

13 },

14 {

15 "id": "59805bc0b9572c4514713bee",

16 "name": "Backend",

17 // Details omitted

18 },

19 {

20 "id": "59805bc0b9572c4514713bef",

21 "name": "New-Backend",

22 // Details omitted

23 }

24 ]

25 }

Listing 5.2: Sample Feature Model Defined Formatted in JSON

5.5 Visualization of Feature Models
The implementation of feature diagrams is achieved by using the vis.js visualization library. The
library consists of multiple components whereas its network component provides the necessary
set of functionalities to draw the hierarchical graph of feature models. In HEIMDALL, we have
combined Vue.js and vis.js together in order to implement an editor for manually creating and
manipulating feature models of microservice applications. Figure 5.3 shows a screenshot to illus-
trate how the graphical representation of feature models is realized in HEIMDALL. The example
shows the implementation from the running example of Figure 4.2. Even though the implemen-
tation follows the characteristics of the original definition of feature diagrams, there exist some
subtle differences that need to be highlighted.

Mandatory and Optional Services. One difference is that, due to some technical restrictions
of the vis.js library, it is not possible to draw the distinction between mandatory and optional
microservices with filled or empty circles. Instead of using filled circles for mandatory services,
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the labels of such services are simply prefixed with an asterisk whereas the labels of optional
services are not.

Alternative Relationship Between Services and Versions. Another change that is caused
due to the limitations of the vis.js library, is that no arc is drawn between the linking lines of a
service and its versions. Since we have only the alternative relationship between every service and
its versions, we do not see the requirement to indicate this relation visually in any way.

Alternative Cross-Tree Constraints. Another visual change for feature models is caused by
the effort to improve the usability of the feature model editor and the readability of microservices-
based feature models. The alternative cross-tree-constraint is the only type of cross-tree constraints
that has no proper graphical notation. In order to spare users of the HEIMDALL application from
the formally written-out Boolean formulas of these constraints, we decided to graphically visual-
ize them as well. An alternative constraint comprises more than one target version, thus multiple
arrows need to be drawn to appropriately represent the [1..n] relationship between the originat-
ing service version and the targeted service versions. The arrows are similar to the ones of the
requires constraints, but in order to visually group the arrows of an alternative constraint, each
alternative constraint gets randomly color coded with a specific color. This should allow users to
better distinguish multiple alternative constraints, even if they originate from the same microser-
vice version.

Figure 5.3: Visualization of Feature Models in HEIMDALL
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5.6 Implementing Propositional Formulas
The prerequisites for performing automated analysis on feature models are to have an appropriate
SAT solver at hand and to translate the feature model to propositional formulas. As described in
Section 5.2, we have decided to use Logic Solver as SAT solver for the HEIMDALL prototype. Logic
Solver is utilized by defining problems as logical constraints on Boolean variables. It then either
provides all possible solutions, or determines that there is definitely no possible assignment of
the variables that would satisfy the logical constraints. In Section 4.3.1 we have already defined
the Boolean formulas that are required to specify a feature model, thus we now just need to
accordingly express and compile these formulas with Logic Solver in order to have a feature
model ready for automated analysis.

5.6.1 Logic Solver Expressions
Logic Solver uses an intuitive pre-order notation to adopt the expressions of propositional logic
in a straightforward manner. The operators of propositional logic are represented by solver-
functions with appropriately defined names. Table 5.1 shows the Boolean formulas of Table 4.2
that are required for the implementation and depicts the appropriately mapped Logic Solver ex-
pressions. Implications → can be defined with the help of the implies function and the [1..1]
grouped features are realized with the exactlyOne function. Furthermore, the not function can
be used to implement the negation ¬ and a conjunction is mirrored with the and function.

Relation Boolean formula Logic Solver expression

Micros. Apps a a

Opt. service s → a Logic.implies(s, a)

Mand. service s → a Logic.implies(s, a)

a → s Logic.implies(a, s)

Version v1 → s Logic.implies(v1, s)

vn → s Logic.implies(vn, s)

s → 1-of -n(v1, ..., vn) Logic.implies(s, Logic.exactlyOne(v1,...,vn))

Requires s1v1 → s2v1 Logic.implies(s1v1, s2v1)

Excludes ¬(s1v1 ∧ s2v1 ) Logic.not(Logic.and(s1v1, s2v1))

Alternative s1v1 → 1-of -n(s2v1 , ..., smvn ) Logic.implies(s1v1, Logic.exactlyOne(s2v1 , ..., smvn))

Table 5.1: Implementing Translation Rules for Microservices-Based Feature Models

5.6.2 Conjoining Boolean Formulas
Listing 5.3 shows the corresponding code for providing the SAT solver with the formulas defined
in Table 5.1. Conjoining the Boolean formulas to the complete propositional formula is realized in
Logic Solver by using the requires() function. A Boolean formula that is passed as argument
to that method is conjoined to all of the previously added Boolean expressions of the solver. Line
1 indicates that the fm variable holds the complete data of a feature model. Line 2 shows the
instantiation of the satSolver object and line 3 adds the id of the feature model to the solver.
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The latter statement represents the usage of the Boolean formula for the root feature, i.e. the
first row of Table 5.1. From line 5 to 30 we iterate through all the services of the Feature Model.
Line 7 as the first line in the loop adds for each single service the Boolean formula that define the
services to be subfeatures of the root feature. Lines 8 to 10 check whether the service is mandatory
and correspondingly extend the implication of subfeatures with a further implication in the other
direction in order to define the service to be mandatory. Line 12 defines the versiondIds array
that is used to collect the id attributes of all version of a single service. From line 13 to 28 we
iterate through all versions of the current service whereas line 14 adds the correct formula to
define the versions to be subfeatures of the service feature. Additionally, on line 15, the id of
the version is added to the versiondIds array. Further down on line 29, after looping through
all the versions of a service, this array is then used to add the formula that defines that only
exactly one version needs to be selected among all existing versions for a microservice. From
Line 17 to 27 we iterate through all constraints that originate from the current service version.
Lines 18 to 26 add the corresponding logical expressions for the current constraint depending
on its constraint_type property. Finally, after looping through all services, versions, and
constraints and conjoining the appropriate Boolean formulas, the satSolver object is now ready
and available for automated feature analysis of the feature model.

1 (fm) => {

2 let satSolver = new Logic.Solver();

3 satSolver.require(fm.id);

4
5 for (let microservice of fm.microservices) {

6
7 satSolver.require(Logic.implies(microservice.id, fm.id));

8 if (microservice.mandatory === true) {

9 satSolver.require(Logic.implies(fm.id, microservice.id));

10 }

11
12 let versionIds = [];

13 for (let version of microservice.versions) {

14 satSolver.require(Logic.implies(version.id, microservice.id));

15 versionIds.push(version.id);

16
17 for (let constraint of version.constraints) {

18 if (constraint.constraint_type === ’requires’) {

19 satSolver.require(Logic.implies(version.id, targets[0]));

20 }

21 else if (constraint.constraint_type === ’excludes’) {

22 satSolver.require(Logic.not(Logic.and(version.id, targets[0])));

23 }

24 else if (constraint.constraint_type === ’alternative’) {

25 satSolver.require(Logic.implies(version.id, Logic.exactlyOne(constraint.targets)));

26 }

27 }

28 }

29 satSolver.require(Logic.implies(microservice.id, Logic.exactlyOne(versionIds)));

30 }

31
32 return satSolver;

33 }

Listing 5.3: Translation of Feature Models to Propositional Logic
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5.7 Correctness Checking of Feature Models
As introduced in Section 2.4.1, the correctness checking category of feature model analysis com-
prises consistency checking and finding dead features. In the following we will illustrate the main
concepts that stand behind the implementations of these analysis methods in HEIMDALL.

5.7.1 Consistency Checking
Logic Solver provides a solve function for solver objects. This enables the computation of possi-
ble solutions for a given problem. Calling the solve function returns one single possible solution,
or nothing. The latter is the case if there are no further solutions or the problem is not solvable
at the first place. Therefore, in order to enable consistency analysis, a single call of the solve
function is sufficient to determine whether the feature model is consistent or not. In HEIMDALL,
consistency checking is implemented in such a way that the SAT service computes either all pos-
sible solutions, or in case a threshold has been defined, up to that specified threshold. In the end,
the SAT service returns the solutions appropriately to the frontend service.

Implementation of Consistency Checking. Listing 5.4 shows the implementation of consis-
tency checking. Line 1 indicates that a satSolver object is required and that a threshold can be
defined with the help of the solutionThreshold parameter. Line 2 shows the solutions ar-
ray in which the results of the SAT solvers are stored. The currentSolution variable declared
in line 3 is used to hold the respective current solution that we compute on line 5 with the help
of the solve function for each iteration of a while loop. If no solution is left to be computed or
no solution exists at all, the while loop is not executed anymore. Inside the while loop, on Line
6, the identifiers of the feature model elements for the current solution are fetched and assigned
to the trueVars variable. This means that we fetch all id properties of every microservice and
version that are part of a possible SAT solver solution. On line 7, the trueVars array is stored
together with a representing solver result code, in this case consistent, as an object in the so-
lutions array. Later we will also introduce some other values for the satCode variable. These
variable is required by the frontend service to distinguish what kind of result has been computed
by the SAT service. Line 8 represent a Logic Solver idiom to remove the current solution from the
set of possible solutions so that for the next iteration of the while loop, another solution is fetched
via the solve method on line 6. Lines 10 to 12 ensure that the while loop is left prematurely in
case solutionThreshold is defined and the threshold has been reached.

1 (satSolver, solutionThreshold) => {

2 let solutions = [];

3 let currentSolution;

4
5 while ((currentSolution = satSolver.solve())) {

6 let trueVars = currentSolution.getTrueVars();

7 solutions.push({ satCode: ’consistent’, fmElementIds: trueVars });

8 satSolver.forbid(currentSolution.getFormula());

9
10 if (solutionThreshold !== undefined && solutions.length === solutionThreshold) {

11 break;

12 }

13 }

14
15 return solutions;

16 }

Listing 5.4: Consistency Checking of Feature Model
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Visualizing Consistent Feature Models. On the frontend side, each solution can eventually be
visualized separately in a feature diagram via a simple dropdown selection. The visualization of
the the possible solutions has been realized very similar to the examples shown in Section 4.3.2.
Figures 5.4(a)–(d) show the four possible solutions that result from performing consistency check-
ing on the feature model of the running example.

(a) (b)

(c) (d)

Figure 5.4: All Possible Solutions Resulting from the Consistency Check

Backtracking in Inconsistent Feature Models. Regarding inconsistent feature models, the
Logic Solver on its own is only able to determine if a feature model is inconsistent. It does not
give any suggestions on how to resolve inconsistencies. For that purpose, we have extended the
correctness checking methods with backtracking capabilities in order to resolve inconsistent fea-
ture models. The idea is to check whether the feature model would become correct if one of the
possible inconsistency causing Logic Solver expressions would be removed. In case removing
this particular expression does not result in a consistent feature model, it is reused and another
expression is removed in order to aim for a consistent model. In case the model is inconsistent
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no matter which expression we remove, we repeat the whole procedure again, but this time we
remove two formulas at any one time. If none of the removals of possible double combinations
returns a consistent model, we continue with the removal of triple combinations of formulas and
so forth. By this kind of backtracking, we ensure that we get the solutions to resolve the inconsis-
tent feature models that have the least number of expressions that need to be removed in order
for the model to become consistent. For the backtracking algorithm to work, we need to ensure to
collect the Boolean formulas that are added to the SAT solver during the translation of a feature
model. If consistency checking itself shows no possible solutions, the backtracking algorithm is
started and the collected formulas are passed to the algorithm.

Backtracking Algorithm Implementation. Listing 5.5 shows the implementation of the back-
tracking algorithm. Line 1 depicts that two distinct arrays containing Boolean formulas are re-
quired: the fmFormulas array contains the formulas for the structural relations and the second
array, i.e., errorProneFMFormulas, contains the formulas for the cross-tree constraints as well
as the formulas that are required to define a microservice to be a mandatory feature. The for-
mer array directly stores the formulas as array elements but the latter one wraps them inside
objects that have, on the one hand, a formula property that contains the actual boolean for-
mula, and on the other hand, an id property that references the element of the feature model
that is causing the respective formula definition. On line 2 the backtrackSolutions is de-
fined in which solutions from the backtracking algorithm are stored. Line 4 represents a for loop
which ensures that backtracking first tries to compute solutions that comprise one Boolean for-
mula less of the errorProneFMFormulas array that exist in the original propositional formula
and on every iteration that follows more formulas are incrementally removed from it. On line
5 all possible combinations of the formulas in errorProneFMFormulas with the current num-
ber of reduced formulas curNumOfErrorProneFMFormulas are computed with the help of
a generatorics library G16 and its combination method. The for loop on this line loops over
each of these possible combinations whereas the current combination of formulas is held in the
errorProneFMFormulasCombination. On line 7 a new solver is instantiated that will hold the
shrunken propositional formula. Line 8 to 10 will conjoin the Boolean formulas of structural rela-
tions and line 11 to 13 will conjoin the formulas of the errorProneFMFormulasCombination
array. Similarly to the consistency checking algorithm in Listing 5.4, the solve method of the
solver is used to find possible solutions, just this time for a subset of the Boolean formulas.
If a solution exists, line 17 to 24 compute which subset of Boolean formulas from the original
propositional formula has not been used in the current combination of formulas. Several steps
are required to achieve that. Line 17 uses the filter method from the popular underscore17

JavaScript library to filter out errorProneFMFormulas that are part of the current combina-
tion of formulas. The corresponding filter criteria that is used on line 19 is based on the _guid
attribute. This attribute is attached by Logic Solver to every Boolean formula that has been con-
joined with the require method and it allows to uniquely identify a specific formula. After the
computation of the harmful Boolean formulas, line 25 uses the pluck method from the under-
score library to extract the ids of the responsible feature model elements. These are then stored
to the backtrackSolutions array with inconsistent as a representing SAT solver result-
code. After that, the current solution is rejected on line 27 to allow the detection of possible other
solutions for the given propositional formula. Lines 31 to 33 ensure that backtracking is stopped
in case the current number of removed inconsistency causing formulas lead to one or more so-
lutions for resolving the inconsistent feature model. Finally, after inconsistency-causing feature
model elements have been detected successfully, the corresponding solutions are returned on line
36.

16https://www.npmjs.com/package/generatorics
17http://underscorejs.org
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1 (fmFormulas, errorProneFMFormulas) => {

2 let backtrackSolutions = [];

3
4 for (let curNumOfErrorProneFMFormulas = (errorProneFMFormulas.length-1);

curNumOfErrorProneFMFormulas > 0; curNumOfErrorProneFMFormulas--) {

5 for (let errorProneFMFormulasCombination of G.combination(errorProneFMFormulas,

curNumOfErrorProneFMFormulas)) {

6
7 let backtrackSolver = new Logic.Solver();

8 for (let fmFormula of fmFormulas) {

9 backtrackSolver.require(fmFormula);

10 }

11 for (let errorProneFMFormula of errorProneFMFormulasCombination) {

12 backtrackSolver.require(errorProneFMFormula.formula);

13 }

14
15 let backtrackSolution;

16 while ((backtrackSolution = backtrackSolver.solve())) {

17 let culpritFormulas _.filter(errorProneFMFormulas, function(errorProneFMFormula) {

18 for (let fmFormula of errorProneFMFormulasCombination) {

19 if (errorProneFMFormula.formula._guid === fmFormula.formula._guid) {

20 return false;

21 }

22 }

23 return true;

24 });

25 let culpritElementIds = _.pluck(culpritFormulas, ’id’);

26 backtrackSolutions.push({ satCode: ’inconsistent’, fmElementIds: culpritElementIds });

27 backtrackSolver.forbid(backtrackSolution.getFormula());

28 }

29 }

30
31 if (backtrackSolutions.length > 0) {

32 break;

33 }

34 }

35
36 return backtrackSolutions;

37 }

Listing 5.5: Backtracking for Inconsistent Feature Models

Visualizing Inconsistent Feature Models. The visualization for inconsistency causing features
and constraints is quite similar to the visualizations introduced in Section 4.3.2. For example, Fig-
ure 5.5 shows possible outcomes of performing consistency checking on the inconsistent feature
model introduced in Figure 4.4, which has been a slight alteration of the running example by
defining all services to be mandatory. Figures 5.5(a)–(d) illustrate the four possible inconsistency
causing elements that only require a single Boolean formula to be removed or adjusted in order
to turn the Feature Model into a consistent state. Highlighted services indicate that the service
should not be defined to be mandatory and highlighted constraints state that the particular con-
straint should not be defined between the corresponding microservice versions.

5.7.2 Dead Features
Detecting dead features, i.e. service versions or even microservices themselves, can be imple-
mented as a small extension of the consistency checking code. Since the code in Listing 5.4 com-
putes all possible solutions for a given feature model, the solutions just need to be reconciled with
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(a) (b)

(c) (d)

Figure 5.5: Backtracking Inconsistency Causing Feature Model Elements

a list that holds all element identifiers of a given feature model. If one identifier from the list does
not appear in any solution, it can be safely considered as a dead feature.

Implementation for Detecting Dead Features. Listing 5.6 shows the corresponding code ex-
tensions on the basis of Listing 5.4. Line 1 indicates that the element identifiers of a given feature
model are available via the fmElementIds parameter. Line 2 introduces the allTrueVars ar-
ray that is fed in every iteration of the while loop (line 7) with the ids of the current solution.
The intention is to collect all feature model element identifiers that are comprised in the differ-
ent solutions computed by the solve method. The if-condition on line 16 ensures that detection
of dead features is only performed when actual solutions exist. Lines 17 to 19 use the reject
method from the underscore library. It is applied to verify for each element of a feature model
whether its identifier is part of the allTrueVars array and only the ones that do not appear in
the allTrueVars are assigned to the deadFeatures array. Eventually on line 20, the list of
dead features are added to the general solutions array, with deadFeatures as a representative
label for the satCode property.
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1 (satSolver, fmElementIds) => {

2 let allTrueVars = [];

3 let solutions = [], currentSolution;

4
5 while ((currentSolution = satSolver.solve())) {

6 let trueVars = currentSolution.getTrueVars();

7 allTrueVars.push(...trueVars);

8 solutions.push({ satCode: ’consistent’, fmElementIds: trueVars });

9 satSolver.forbid(currentSolution.getFormula());

10
11 if (solutionThreshold !== undefined && solutions.length === solutionThreshold) {

12 break;

13 }

14 }

15
16 if (solutions.length > 0) {

17 let deadFeatures = _.reject(fmElementIds, function(fmElementId) {

18 return (allTrueVars.includes(fmElementId));

19 });

20 solutions.push({ satCode: ’deadFeatures’, fmElementIds: deadFeatures });

21 }

22
23 return solutions;

24 }

Listing 5.6: Implementing the Detection of Dead Features

Visualizing Dead Features. The actual visualization of dead features is very similar to the
corresponding illustrations in Section 4.3.2. Figures 5.6(a)–(b) show the same examples of dead
features as the feature diagram in Figure 4.5 where the new-backend service of the running ex-
ample has been defined to be mandatory. For this set-up, only two possible solutions exist. The
dead features are highlighted in a different color compared to the highlighted features that form
a specific feature model solution.

(a) (b)

Figure 5.6: Consistency Checking Combined with Detection of Dead Features
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5.8 Interactive Feature Configuration
Configuration support is the second category of automated feature model analysis that we have
introduced in Section 2.4.1. We have implemented an interactive service configuration support
for the HEIMDALL application that assists the derivation process of microservices-based applica-
tions. The configuration system tries to guide the user with consistent configuration choices by
validating the user’s decision with respect to the dependencies between services. In order to em-
phasize the dependencies between services, the interactive feature configuration is heavily based
on visualizing the selected features in the context of a service dependency graph. Uhle [UT14]
has already highlighted that dependency graphs are often regarded as program dependency graphs
in literature and that such graphs model how an application works internally, often on the gran-
ularity of software modules, control flow, or data. In HEIMDALL we use a very similar approach
as Uhle [UT14], but instead of modelling service dependency graphs in the granularity of de-
pendencies between microservices, we need to model the graphs in the granularity of dependen-
cies between specific microservice versions in order to align with the concept of the underlying
microservices-based feature models.

5.8.1 Dependency Graph for Feature Configuration
Figures 5.7(a)–(d) show the four possible valid feature configurations that exist for the feature
model of the running example as dependency graphs. Each dependency graph mirrors one of
the possible solutions that we have already illustrated in Figure 5.4. A dependency graph is
implemented as a hierarchical directed network graph. We use a directed graph in order to be able
to show which service depends on another service. The directed edges represent the dependencies
and illustrate well which service is the consuming service and which is the producing one in the
respective context. The hierarchical positioning is intended to accentuate the notion of upstream
and downstream services. The services themselves are designed as hexagons; a shape that has
been become quite common to indicate that the components at hand represent microservices.
For example Sam Newman favours this particular representation of microservices for his slides
[New15b]. Under each service a label illustrates its name and its selected version.

(a) (b) (c) (d)

Figure 5.7: Feature Configurations Visualized as Dependency Graphs
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5.8.2 Feature Configuration Process

Figures 5.8 illustrate the configuration process provided by HEIMDALL in the context of our run-
ning example. In Figure 5.8(a) it is shown that, in case the feature model is consistent, a feature
configuration action can be performed on the basis of the current model. A list of the available
microservices is placed on the right side of the screen, as shown in Figure 5.8(b). By clicking e.g.
on the frontend service, it will be automatically placed on the graph space. As illustrated in Fig-
ure 5.8(c), it is now possible to choose a specific version for the current service which will be then
appropriately appended to the label of the service. By clicking somewhere on an empty space
on the graph area the service gets deselected and the list of the (remaining) services is available.
Figure 5.8(d) shows that selecting the backend service creates it on the canvas next to the frontend
service and again choosing a service version will label the backend service with the corresponding
version tag. Having selected the current service with a defined version, allows us to model a de-
pendency that originates from this current node. The corresponding dropdown lists the potential
target nodes, thus as depicted in Figure 5.8(e), only the Frontend [1.2.7] service is currently
listed. By adding it, the directed edge is accordingly created between the two services. Addition-
ally, the dependency graph will recalculate the hierarchy of the nodes and correspondingly adjust
the visualization of the hierarchical network, as captured in Figure 5.8(f).

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Service Configuration Process with HEIMDALL



5.8 Interactive Feature Configuration 49

5.8.3 Validating Feature Configurations
At any given time, the user is able to validate the current feature configuration based on the
underlying feature model. The SAT service is responsible for validating the currently selected
features and dependencies and to return meaningful responses. A feature configuration is basi-
cally an array that contains the ids of the currently used feature model elements in the depen-
dency graph. The ids of microservices and versions always comply with the respective ids in
the database. In contrast, certain dependencies might have arbitrary ids that have no counter-
part in the database. This is the case if a dependency has been modelled between two services in
the graph that has no corresponding constraint representation in the underlying feature model.
We will discuss later how such cases can be treated. Generally, we have defined to detect three
possible states that a given feature configuration can reflect, legal, incomplete, and illegal
configurations. This desired analysis of feature configurations is only possible if conjoining the
Boolean formulas of feature models is implemented a bit differently for feature configuration val-
idation than it has been realized for correctness checking.

Conjoining Boolean Formulas for Feature Configurations. Listing 5.7 shows the adjusted
code of Listing 5.3 and defines the propositional formula for feature models that are used for the
validation of feature configurations. The fm object on Line 1 holds the complete data of a feature
model whereas the fc array contains the ids of the elements that are selected for the feature con-
figuration. Line 2 to 3 are the same as for correctness checking and also the start of the for loop
over the microservices of the feature model on line 4 does not differ. On line 5 in contrast, an
if-condition is wrapped around the whole code of the for loop since we only add Boolean formu-
las of structural relations that originate from services that are actually part of the current feature
configuration. If true, lines 7 to 10 add the proper Boolean formulas for microservices, and addi-
tionally on line 11 also the id of the service feature is incorporated via the require method. The
latter ensures that at the end the SAT solver will only find solutions that also comprise this spe-
cific service. The very same concept is also applied to the versions of services as indicated by line
15 and 18. The constraint logic is also adjusted a bit in order to cope with the increased emphasis
on dependencies between microservices. Since the product derivation process is realized with the
help of a dependency graph, dependencies are explicitly modelled and defined for a feature con-
figuration. Therefore these dependencies need also explicitly be conjoined to the propositional
formula of feature models. Line 23 and line 31 respectively add the proper Boolean formulas so
that the version demands the explicit selection of requires and alternative constraints that
originate from it. The lines 24 and 32 then check whether this constraints have been included
into the feature configuration fc and correspondingly add the constraint ids to the propositional
formula. Since excludes constraints are neither modelled in a dependency graph nor actually
required for the configuration process, they just need to be added in the same manner to the
propositional formula as it is realized for correctness checking.

1 (fm, fc) => {

2 let satSolver = new Logic.Solver();

3 satSolver.require(fm.id);

4 for (let microservice of fm.microservices) {

5 if (fc.includes(microservice.id) || microservice.mandatory === true) { // fc

6
7 satSolver.require(Logic.implies(microservice.id, fm.id));

8 if (microservice.mandatory === true) {

9 satSolver.require(Logic.implies(fm.id, microservice.id));

10 }

11 solver.require(microservice.id); // fc

12
13 let versionIds = [];

14 for (let version of microservice.versions) {
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15 if (fc.includes(versionId)) { // fc

16 satSolver.require(Logic.implies(version.id, microservice.id));

17 versionIds.push(version.id);

18 solver.require(version.id); // fc

19
20 for (let constraint of version.constraints) {

21 if (constraint.constraint_type === ’requires’) {

22 satSolver.require(Logic.implies(version.id, targets[0]));

23 satSolver.require(Logic.implies(version.id, constraint.id)); // fc

24 if (fc.includes(constraint.id)) { solver.require(constraint.id); } // fc

25 }

26 else if (constraint.constraint_type === ’excludes’) {

27 satSolver.require(Logic.not(Logic.and(version.id, targets[0])));

28 }

29 else if (constraint.constraint_type === ’alternative’) {

30 satSolver.require(Logic.implies(version.id, Logic.exactlyOne(constraint.targets)));

31 satSolver.require(Logic.implies(version.id, constraint.id)); // fc

32 if (fc.includes(constraint.id)) { solver.require(constraint.id); } // fc

33 }

34 }

35 }

36 }

37 satSolver.require(Logic.implies(microservice.id, Logic.exactlyOne(versionIds)));

38 }

39 }

40 return satSolver;

41 }

Listing 5.7: Translating Feature Models for Validating Feature Configurations

Implementation of Feature Configuration Validation. A feature configuration is called to be
legal in case the configuration fits the constraints of the underlying feature model. The feature
configuration is already appropriately conjoined to the propositional formula of the SAT solver,
thus detecting legal feature configurations now has almost exactly the same underlying code as
the one shown for the consistency checking in Listing 5.4. Listing 5.8 shows the corresponding
implementation where the only difference is reflected by the satCode attribute containing the
String legal as value.

1 (satSolver) => {

2 let solutions = [];

3 let currentSolution;

4
5 while ((currentSolution = satSolver.solve())) {

6 let trueVars = currentSolution.getTrueVars();

7 solutions.push({ satCode: ’legal’, fmElementIds: trueVars });

8 satSolver.forbid(currentSolution.getFormula());

9 }

10
11 return solutions;

12 }

Listing 5.8: Validating Legal Feature Configurations

Visualizing Legal Feature Configurations. With respect to the four possible solutions of the
running example, the corresponding legal feature configurations are appropriately visualized by
highlighting the elements of the dependency graph in green colors, as shown in Figures 5.9(a)–(d).
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(a) (b) (c) (d)

Figure 5.9: Legal Feature Configurations Visualized as Dependency Graphs

Computing Suggestions for Incomplete Configurations. In the strict sense, incomplete con-
figurations fall into the category of illegal configurations. However, we have already indicated in
Section 2.4.4 that such configurations can be treated in a more beneficial manner. With the help of
the SAT solver, actual suggestions that may help to resolve incomplete configurations can be pro-
posed. During the preparation of the propositional formula shown in Listing 5.7 we only add the
Boolean formulas for structural relations and cross-tree constraints which are indeed demanded
by the elements selected for the feature configuration. With that, the usage of the solver method
does actually not only return solutions for complete feature configurations, but also returns the
ids of elements in the feature model that would be valid suggestions that help to continue the
completion of the configuration. Listing 5.9 shows an extended version of the validation code.
Line 7 represents the main change that is necessary to check whether some element ids returned
by the solver are not covered by the element ids of the feature configuration and are therefore in-
dicating suggestions how to continue on an incomplete feature configuration. The difference
method from the underscore JavaScript library is used to return the values from trueVars that
are not present in fc. On lines 9 to 14 the code is correspondingly adjusted to either store solutions
for legal configurations or for incomplete ones.

1 (satSolver) => {

2 let solutions = [];

3 let currentSolution;

4
5 while ((currentSolution = satSolver.solve())) {

6 let trueVars = currentSolution.getTrueVars();

7 let suggestedElementIds = _.difference(trueVars, fc);

8
9 if (suggestedElementIds.length === 0) {

10 solutions.push({ satCode: ’legal’, fmElementIds: trueVars });

11 }

12 else {

13 solutions.push({ satCode: ’incomplete’, fmElementIds: suggestedElementIds });

14 }

15 satSolver.forbid(currentSolution.getFormula());

16 }

17
18 return solutions;
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19 }

Listing 5.9: Validating Incomplete Feature Configurations

Visualizing Incomplete Feature Configurations. With respect to the running example, an in-
complete feature configuration might be at hand, when only the Frontend [1.2.7] service has been
created so far on the dependency graph, as depicted in Figure 5.10(a). With the help of the SAT
solver, actual suggestions that may help to resolve the incomplete configuration can be proposed.
As illustrated in Figure 5.10(b), such elements are colored in orange. By clicking on a suggested
service, the microservice as well as the dependency to it is automatically added to the dependency
graph, as shown in Figure 5.10(c).

(a) (b) (c)

Figure 5.10: Incomplete Feature Configurations Visualized in Dependency Graphs

Resolving Illegal Feature Configurations with Backtracking. An illegal feature configuration
is a configuration that violates the constraints of the feature model, thus the SAT solver can not
solve the underlying propositional formula. Logic Solver on its own is only able to determine if
a configuration is illegal, but not which elements are causing the illegal state. This is very similar
to the situation with inconsistent feature models in correctness checking. The solver is not able
to give suggestions on how to resolve an illegal configuration. Therefore we have extended the
feature configuration validation methods with backtracking capabilities too. Again, the Boolean
formulas that are added to the SAT solver during the translation of a feature model need to be
collected for the backtracking algorithm. If configuration validation itself shows no possible so-
lutions, the backtracking algorithm is started. Listing 5.10 shows the backtracking code for illegal
feature configurations. The fmFormulas parameter on line 1 indicates that we need the Boolean
formulas of the feature model and the fc variable holds the element ids of the feature model
that form the feature configuration. The basic structure of this algorithm is exactly the same as
the algorithm for the Backtracking in inconsistent feature models shown in Listing 5.5. The dif-
ference this time is that we do not reduce the amount of Boolean formulas of the feature model
one by one, but we steadily reduce the amount of element ids contained in the feature config-
uration. Thus line 3 and 4 differ in that aspect and therefore loop over a decreasing amount of
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combinations of the fc array. Also lines 10 to 12 do then include the reduced amount of ele-
ment ids from the current feature configuration combination. If the solve method in line 15 is
successful, the backtrackTrueVars array in line 16 fetches the subset of element ids from the
feature configuration that would result in a legal configuration. On line 17 we then use again
difference method from underscore to return the values from the fc array that are not present
in the backtrackTrueVars so that finally the element ids that are causing the configuration to
be illegal are stored in the illegalElementIds array. These ids are then appropriately pushed
to the solutions array on line 18.

1 (fmFormulas, fc) => {

2 let backtrackSolutions = [];

3 for (let currentNumOfFmElementIds = (fc.length-1); currentNumOfFmElementIds > 0;

currentNumOfFmElementIds--) {

4 for (let fcCombination of G.combination(fc, currentNumOfFmElementIds)) {

5
6 let backtrackSolver = new Logic.Solver();

7 for (let fmFormula of fmFormulas) {

8 backtrackSolver.require(fmFormula);

9 }

10 for (let fmElementId of fcCombination) {

11 backtrackSolver.require(fmElementId);

12 }

13
14 let backtrackSolution;

15 while ((backtrackSolution = backtrackSolver.solve())) {

16 let backtrackTrueVars = backtrackSolution.getTrueVars();

17 let illegalElementIds = _.difference(fc, backtrackTrueVars);

18 backtrackSolutions.push({ satCode: ’illegal’, fmElementIds: illegalElementIds });

19 backtrackSolver.forbid(backtrackSolution.getFormula());

20 }

21 }

22
23 if (solutions.length > 0) {

24 break;

25 }

26 }

27 return backtrackSolutions;

28 }

Listing 5.10: Backtracking in Illegal Feature Configurations

Visualizing Illegal Feature Configurations. Figure 5.11(a) shows a feature configuration for
which two specific services from the running example are selected, the Backend [2.0.3] and the
New-Backend [1.0.4] service. Since both services exclude each other, the SAT solver can not com-
pute a valid solution and thus the backtracking algorithm needs to be used to find errors in the
feature configuration. In this case, either New-Backend [1.0.4] or Backend [2.0.3] needs to be re-
moved, as respectively shown in Figure 5.11(b) and Figure 5.11(c).

(a) (b) (c)

Figure 5.11: Illegal Feature Configurations Visualized in Dependency Graphs
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The Special Case of Illegal Dependencies. One aspect that hasn’t been covered yet, is that
feature configurations could potentially comprise dependencies that do not exist at all in the un-
derlying feature model. Technically, this means that a feature configuration can contain element
ids that do not reference to any valid element of the feature model. During the preparation of the
propositional formula in Listing 5.7 unknown constraint ids are neglected at all due to the lines
24 and 32. Thus the SAT solver of the validation algorithm can not know about these unknown
ids and therefore also wouldn’t be able to detect that the configuration is illegal. Fortunately, such
cases can be easily covered during the validation of feature configurations and we only need to
extend the code in Listing 5.9 appropriately. Listing 5.11 shows the extended code, whereas ac-
tual changes are rather small. On line 8 we fetch the element ids from the feature configuration
that are not part of the current possible solution. This is actually only possible for not existing
dependency ids thus we store them in the notExistingDependencyIds array and push them on line
17 with an appropriate satCode to the solutions array.

1 (satSolver) => {

2 let solutions = [];

3 let currentSolution;

4
5 while ((currentSolution = satSolver.solve())) {

6 let trueVars = currentSolution.getTrueVars();

7 let suggestedElementIds = _.difference(trueVars, fc);

8 let notExistingDependencyIds = _.difference(fc, trueVars);

9
10 if (suggestedElementIds.length === 0 && wrongDependencies.length === 0) {

11 solutions.push({ satCode: ’legal’, fmElementIds: trueVars });

12 }

13 else if (notExistingDependencyIds.length === 0) {

14 solutions.push({ satCode: ’incomplete’, fmElementIds: suggestedElementIds });

15 }

16 else {

17 solutions.push({ satCode: ’illegalDependencies’, fmElementIds: notExistingDependencyIds });

18 }

19 satSolver.forbid(currentSolution.getFormula());

20 }

21
22 return solutions;

23 }

Listing 5.11: Validating Feature Configurations Containing not Existing Dependencies

Visualizing Illegal Dependencies in Feature Configurations. Figure 5.12(a) shows a feature
configuration containing the Frontend [1.2.7] and Backend [2.0.3] service versions with
a dependency from the former to the latter. The SAT solver validation algorithm detects that such
a dependency does not exist at all and therefore it will be highlighted accordingly as shown in
Figure 5.12(b).
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(a) (b)

Figure 5.12: Illegal Dependencies Visualized in Dependency Graphs
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Evaluation

In this chapter, we evaluate the automated analysis capabilities of HEIMDALL’s SAT service. We
focus on a quantitative evaluation to determine the performance and the results of the different
automated analysis aspects when used in practice. The evaluation experiments are performed
with a multitude of differently sized microservices-based feature models.

6.1 General Setup
All tests were performed on a laptop with Windows 10 Home as operating system and an Intel
Core i7-4702MQ CPU @ 2.20 GHz with 32GB of RAM. The results of every experiment have been
collected each in a comma-separated values (CSV) files. The CSV result files and the scripts that
have been used to perform the experiments can be found in the repository that is defined in
Appendix A.3.

6.2 Randomly Generated Feature Models
Generally, one challenge in analyzing feature models is the lack of large scale real models [MWC09].
The same holds true in the microservices domain, where insight in actual real world architectures
of microservices-based systems is rarely available, especially for larger scale applications. In or-
der to still have a solid foundation of microservices-based feature models, we implemented a
random generator for such models.

6.2.1 Random Feature Model Generator
On the one hand, the generator allows us to specify some parameters that affect the properties of
a feature model. On the other hand, the generator itself enforces certain characteristics that shape
all microservices-based feature models used for the quantitative evaluations.

Parameters. The generator allows regulating the creation of feature models with the following
four parameters:

• Number of Services:
Probably the most important parameter is to enable specifying how many microservices the
randomly generated model should comprise.
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• Expected Versions per Service:
Even though the quantity of available versions differs from service to service, we allow
to emphasize the amount per service around a given number. This can also be a decimal
number as it is used as input for the expected value for a normal distribution of versions, as
further discussed in the next paragraph.

• Ratio of Excludes Constraints:
Excludes constraints are the essential cause for inconsistent models. For experimentation
purposes we allow regulating the number of excludes constraints as a ratio compared to
the number of all possible connections between service versions. Thus a ratio of 100% im-
plies that every single service version has excludes constraints to all versions of all other
microservices.

• Number of Excludes Constraints:
Alternatively to the ratio of excludes constraints, also a parameter for defining a fixed num-
ber of such constraints is allowed.

• Ratio of Mandatory Services:
Mandatory services allow specifying which services should be absolutely contained in a
feature configuration. The parameter allows controlling the ratio of services that will be
defined by the generator to be mandatory. For n number of services, the ratio r defines
n/100 ∗ r = m mandatory services.

Characteristics. The generator creates feature models that comply with the following charac-
teristics:

• Normal Distribution for Versions:
The number of versions for a certain microservice is depending on the parameter for ex-
pected versions per service n. The parameter n is actually the input for generating random
numbers with a normal (Gaussian) distribution. The expected value as well as the stan-
dard deviation are defined by n. If the proposed number falls below 1 or exceeds the upper
bound that is defined as (2 ∗ n) + 1, the random number generation is triggered again. This
rule safely defines an upper bound for unlikely runaway values and also ensures that at
least one version is created for each service. In case the parameter n is set to 0, the under-
lying random value generator would end up in an endless loop. In order to prevent that,
a parameter value of 0 is interpreted in such a way, that each service gets supplied with
exactly just one single version.

• Allow for Root Services:
After the creation of services and versions, dependencies are created in a specifically con-
trolled manner. We iterate over the randomly generated services one by one and for each
service we also iterate over the versions of a service. On each version we ensure that no
dependencies are created towards the versions of services over which we have already iter-
ated before. The first iteration of the dependency creation process handles therefore the first
service which can not be targeted by any constraint originating from versions of subsequent
services. This produces microservices-based applications that have at least one top level
service, e.g. a frontend service or an API gateway.

• No Circular Dependencies:
By avoiding creating dependencies to versions over which we have already iterated before,
we also avoid the creation of circular dependencies between services. This characteristic is
highly desired since circular dependencies should not appear in a microservices architecture
at all.
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• Normal Distribution of Dependencies:
The number of other services that a given service depends on is similar to the distribu-
tion mechanism that is applied when creating versions. We assumed for the evaluation
experiments that the expected value for the normal distribution is based on a fraction of the
specified number of services n. Additionally, it is also multiplied by a factor that is con-
stantly decreasing with the number of services n. This rule ensure that services in larger
microservices-based architectures may potentially depend on more microservices than they
would do in smaller architectures, but it also prevents the number of dependencies to be-
come unlikely high for large scale applications. One specific version vx of a service sa can
then have one to n dependencies to a subset of the versions v1, ..., vm of the other service sb,
where m is the total number of versions of sb and 0 < n <= m. The number of dependencies
n1 that the first version v1 of service sa has, is a random number between 1 and m. The next
version v2 of the service sa has then a number of dependencies that is a random number
between n1 and m. With that we ensure that version v2 of service sa does not depend on
lower versions of sb than version v1 of service sa does. A single dependency is modelled ei-
ther with a requires constraint when a certain version vx of service sa depends on exactly one
specific version of the other service sb, or with an alternative constraint, when the version vx
of service sa depends on one of the multiple possible other versions v1, ..., vm of sb.

6.2.2 Examples of Randomly Generated Feature Models
In the following we perform a test run that should reveal the numbers of services, versions, and
constraints of feature models that get created by the random feature model generator.

Parameters. We have specified the following parameters for these feature models; mandatory
services and excludes constraints have been neglected the test run since they do not alter the ten-
dency of the numbers for versions and constraints with respect to an increasing service number.
Furthermore, the expected versions per service has been set to 2 which results in services having
one to five versions. We assume this to be a realistic number since we guess that there is rarely
the need for software and DevOps engineers to manage service configurations where more than
five different versions of a service exist at the same time. We have created feature models ranging
from one service to 100 services and for each number of services 25 sample models have been
generated.

• Numbers of services: 1 - 100
• Expected versions per service: 2
• Ratio of Excludes Constraints: 0
• Ratio of Mandatory Services: 0

Results. Figure 6.1(a) shows the numbers of versions and constraints that have been created for
the different amounts of services. The numbers are linearly growing, even for constraints, which
we assume form a solid basis of feature models for the experiments that follow. Figure 6.1(b)
illustrates one of these microservices-based feature models.
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(a) Statistics of Randomly Generated Feature Models

(b) Example of a Randomly Generated Feature Models

Figure 6.1: Randomly Generated Feature Models

6.3 Evaluation of Correctness Checking
We now perform a set of different experiments that analyze the performance and the results of
the different methods available for correctness checking.

6.3.1 General Setup for Correctness Checking
Generally each experiment for correctness checking runs 25 times for each single service size. In
each run a random feature model gets generated, correctness checking is performed, time mea-
surements and complementary statistics are stored into the CSV file of the current experiment,
and finally the feature model gets deleted again. For the different experiments, a threshold for
the solution finding process can be defined to determine how many solutions should be computed
at most. In case the threshold is reached, dead feature detection can not be performed since all
solutions of a feature model are required to enable the identification of dead features. Since mul-
tiple runs are performed for each service size, the results are visualized as box plots in order to
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give a notion about the variance of the results for each particular service size. The following time
measurements are performed for the different correctness checking aspects:

• Translation:
The time it takes to perform the translation of feature models to propositional formula.

• Consistency Checking:
The duration of consistency checking, thus finding a first solution for the feature model.

• Solution Finding:
In case the feature model is consistent, the time that is required to either find all possible
solutions of a feature model or the number of solutions that has been predefined as upper
bound with the threshold for the solution finding.

• Dead Feature Detection:
The duration of analyzing whether certain features appear not once in any of all the possible
solutions for a feature model.

• Backtracking:
In case the feature model is inconsistent, this holds the time that is consumed by the back-
tracking algorithm in order to find the contradictions in the feature model.

• Overall:
The time that is consumed by the whole correctness checking method. With respect to the
implementation explained in Section 5.7, the overall time can be composed of different parts,
depending on the consistency of the feature model, the threshold for solution finding, and
the number of found solutions:

– Consistent Feature Model [Threshold == 1[ :
The sum of translation and consistency checking.

– Consistent Feature Model [Threshold > 1, Solutions < Threshold] :
The sum of translation, solution finding, and consistency checking.

– Consistent Feature Model [Threshold > 1, Solutions <= Threshold] :
The sum of translation, consistency checking, solution finding, and dead feature detection.

– Inconsistent Feature Model [Solutions == 0] :
The sum of translation, consistency checking, and backtracking.

6.3.2 Consistency Checking and Dead Feature Detection
The first experiment intends to show the time it takes to translate a feature model to propositional
formula, perform consistency checking, and fetching all solutions in order to detect dead features.

Experiment Parameters. Basically the same parameters for the feature models as for the test
run in Section 6.2.2 are used. Excludes constraints and mandatory services are again neglected
in order to ensure as far as possible that the feature models are consistent. The difference is that
this time the feature models range from one service to 20 services. Correctness checking has been
parametrized with a threshold of 30′000 solutions since computing more solutions sometimes
proved to bring Logic Solver to its knees, which trows a memory error in such cases.

• Numbers of services: 1 - 20
• Expected versions per service: 2
• Ratio of excludes constraints: 0
• Ratio of mandatory services: 0
• Threshold for solution finding: 30, 000
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Results. Figure 6.2 shows the different time measurements for correctness checking. Since only
consistent feature models have been validated time measurements for translation, consistency
checking, solution finding, and dead feature detection have been captured. Figure 6.2(a) opposes
the translation time to the consistency checking time. The duration for the former increases lin-
early the more services exist for a feature model, but even though the latter has similar tendencies,
the performance is varying increasingly the more services exist. Both aspects need way less time
than solution finding and feature detection therefore the other measurements are listed in a sepa-
rate graph. Figure 6.2(b) depicts the times that it took to find all solutions for every feature model.
Compared to translation and consistency checking, finding all possible solutions of a given fea-
ture model takes much longer. The detection of dead features is then again less time consuming,
but since its prerequisite is to have all solutions at hand, a complete dead feature detection needs
to comprise both methods. Still, the performance impact of the latter is negligible to the former.
Finally, the time measurements for the whole correctness checking clearly shows that finding all
solutions is primarily responsible for the correctness checking time.

(a)

(b)

Figure 6.2: Time Measurements of Correctness Checking

Figure 6.3 shows the amount of solutions computed with respect to the number of services.
The amount of results starts varying much more with an increasing number of services. Since
dead feature detection requires the computation of all possible solutions, it can’t be performed
for feature models that have a higher number of solutions than the solutions threshold. Thus, the
average number of solutions flattens the more services a feature model possesses. The threshold
is reached most of the times for the feature models that have a service size of 17 and higher. This
indicates that the dead feature detection capability by HEIMDALL’s SAT service is solely feasible
for feature models comprising low numbers of microservices.
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Figure 6.3: Solutions of Correctness Checking

6.3.3 Large Scale Consistency Checking
Since dead feature detection is quite costly, we perform a new experiment where we disable dead
feature detection and focus on consistency checking of large scale microservices-based feature
models.

Experiment Parameters. This experiment is performed with a threshold of 1 for the solution
finding. This allows us to check whether the feature models are consistent, but dead feature
detection is completely neglected. The feature models range from 10 to 200 services in steps of 10
services.

• Numbers of services: 10 - 200
• Expected versions per service: 2
• Ratio of excludes constraints: 0
• Ratio of mandatory services: 0
• Threshold for solution finding: 1

Results. Figure 6.4 shows that translation as well as consistency checking is increasing linearly
at a very low grade. Therefore also the overall correctness checking performance increases at a
very low rate for increasing numbers of services in the feature models. With that, consistency
checking scales quite well and can be performed in a feasible amount of time for microservices-
based feature models comprising hundreds of different services.

Figure 6.4: Time Measurements for Translation, Consistency Checking and Overall Duration
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Results. Figure 6.5 shows results to a minimally adjusted alteration of the experiment. The
difference is that this time the same feature model has been used for all 25 experiment runs per
each number of services. The intention here is to depict the performance variation of the transla-
tion and consistency checking methods when executed on the same feature model. As the figure
shows, the methods perform decently stable up to feature models with 120 services. Even though
the average duration increase stays the same for higher number of services, the performance
varies a bit more from then on, probably due the increased load.

Figure 6.5: Time Measurements for Translation, Consistency Checking and Overall Duration

6.3.4 Enable Dead Feature Detection for Larger Scales
Dead feature detection has been proven to be quite costly since feature models with increasing
service numbers result quickly in unmanageable amounts of possible solutions. One aspect that
has not been considered yet is that lowering the number of versions per service as well as an
increasing of mandatory services and excludes constraints lower the amount of possible solutions
for a feature model. The next experiment focuses on how much these factors impact the possible
result set of correctness checking and its performance.

Experiment Parameters. This experiment is executed in four different ways. First we solely
increase the ratio of mandatory services and then we do the same for the ratio of excludes con-
straints. After that, only the expected number of services is decreased and in the final experiment,
we use all three result lowering parameters together to test their combined impact on a larger scale
of feature models. A ratio of 10% has been chosen for the mandatory services, a ratio of 0.1% for
the ratio of excludes constraints, and the expected number of versions per service has been set to
1.75. For all experiments we reestablish the thresholds for solutions to 30’000 since low adjust-
ments might still result in too many solutions.

Parameters Separated:
• Numbers of services: 20
• Expected versions per service: 0− 2
• Ratio of excludes constraints: 0− 100%
• Ratio of mandatory services: 0 - 100%
• Threshold for solution finding: 30, 000

Parameters Combined:
• Numbers of services: 5 - 50
• Expected versions per service: 1.75
• Ratio of excludes constraints: 0.1%
• Ratio of mandatory services: 10%
• Threshold for solution finding: 30, 000

Results. As shown in Figure 6.6, increasing the ratio of mandatory services quickly reduces the
number of solutions and the duration of correctness checking. However, since the feature models
are randomly generated, the number of solutions may still vary a lot and the ratio of mandatory



6.3 Evaluation of Correctness Checking 65

services only allows a vague prediction about its influence on the size of the result set. In contrast,
the number of solutions directly correlates to the correctness checking duration. This is mainly
because finding all solutions for a feature model occupies most of the correctness checking length.

Figure 6.6: Increasing Ratio of Mandatory Services

Figure 6.7 shows that increasing the ratio of excludes constraints also quickly reduces the
amount of possible solutions in the result set. In contrast to mandatory services, excludes con-
straints steadily decrease the possible amount of solutions. Same as before, the time spent for
correctness checking directly correlates to the possible result set.

Figure 6.7: Increasing Ratio of Excludes Constraints

Reducing the expected number of versions per service is also effectively decreasing the num-
ber of possible solutions as shown in Figure 6.8. Furthermore, the correlation between the dura-
tion and the size of the result is depicted in these measurements too.

Figure 6.8: Decreasing the Number of Expected Versions per Service
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Figure 6.9 shows the impact of combining a set of fixed parameters on several feature models
of different sizes. Compared to the experiment in Section 6.3.2, feature models with up to 30
services won’t reach the threshold of 30, 000 solutions this time. The more services, mandatory
services, versions, constraints, and especially excludes constraints exist, the more does the result
set size vary. Especially feature models with more than 30 services tend to show either result sets
that exceed the threshold, or result sets of size 0, indicating the feature model to be inconsistent.

Figure 6.9: Combining Result Lowering Parameters

6.3.5 Analyzing Inconsistent Feature Models
As previously shown, already small percentages of mandatory services and excludes constraints
can introduce inconsistency in feature models. The SAT service of the HEIMDALL application has
an implemented backtracking algorithm which helps to detect the features and constraints that
cause feature models to be inconsistent. The performance of the backtracking algorithm is the
subject that the next experiment focuses on.

Experiment Parameters. This experiment is performed with a threshold of 1 for the solution
finding, thus disabling dead feature detection and only focusing on the backtracking algorithm
for inconsistent models. In order to enforce the feature models to be inconsistent, the number of
expected versions per service has been set to 1 and a percentage of 100% is chosen for the ratio of
mandatory services. Instead of setting a ratio for the excludes constraints, a fixed number is set
for them. The experiment is run in two variants, one time with one excludes constraint and the
other time with two. Since all services are set to be mandatory, the chance to get an inconsistent
model is quite high with setting one or two excludes constraints. If in case the feature model is
consistent, no measurements are stored and the run is repeated. The feature models range from 2
to 20 services in steps of 2 services.

1 Excludes Constraint Variant:
• Numbers of services: 2 - 20
• Expected versions per service: 1
• Number of excludes constraints: 1
• Ratio of mandatory services: 100%
• Threshold for solution finding: 1

2 Excludes Constraint Variant:
• Numbers of services: 2 - 20
• Expected versions per service: 1
• Number of excludes constraints: 2
• Ratio of mandatory services: 100%
• Threshold for solution finding: 1

Results. As shown in Figure 6.10, backtracking requires a considerable amount of the correct-
ness checking duration for inconsistent feature models, thus translation and consistency checking
are not visualized here in the box plot. Still, the corresponding times are implicitly readable by
comparing the backtracking time with the overall time. Even though the duration tendencies are
similar to the ones of the solution finding process, these particular backtracking computations
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perform still better by over a factor of ten. However, the duration line tends to have a slight
exponential tendency.

Figure 6.10: Time Measurements of Backtracking Inconsistent Models

The exponential tendency actually increases with every inconsistency causing element. This
is shown in Figure 6.11 where the overall correctness checking times of feature models with one
excludes constraints is compared to the ones with two excludes constraints. In Chapter 5 we
have shown the backtracking algorithm which requires multiple consistency checking iterations,
depending on how many potentially inconsistency causing element exist in the feature model.
Thus analyzing inconsistent feature models scales really bad for defective large scale models.

Figure 6.11: Comparing Time Measurements for an Increasing Number of Excludes Constraints

6.3.6 Findings of Evaluating Correctness Checking
From the correctness checking process, the translation of feature models to a propositional for-
mula is the least time consuming computation. Checking the consistency of a feature model also
requires relatively little time and scales well even for microservices-based feature models com-
prising hundreds of services. In contrast, the procedure of finding all solutions of a consistent
feature model in order to enable dead feature detection needs most of the time of the correct-
ness checking method. Computing all possible solutions for a given feature model proved to be
costly for Logic Solver, the SAT solver used in HEIMDALL’s SAT service. Similarly, in case the
feature model is inconsistent, the backtracking algorithm is mainly responsible for the duration
of the correctness checking process. The difference is that the solution finding process is mostly
influenced by the number of elements in the feature model whereas the backtracking algorithm
is mainly impacted by possibly inconsistency causing elements.
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6.4 Evaluation of Feature Configuration Validation
In this section, we perform a set of different experiments that measure the performance for val-
idating the three different categories of feature configurations, namely legal, incomplete, and
illegal configurations.

6.4.1 General Setup for Configuration Validation
The general setup for configuration validation is very similar to the one for correctness checking.
Again, each experiment usually runs 25 times for each single service size. For each single run a
random feature model gets generated. This time it is absolutely necessary that all feature models
are consistent since trying to validate a feature configuration against an inconsistent feature model
would always fail. In each run, correctness checking is performed before the actual validation of
the feature configuration, since we use the returned results to generate a feature configuration
that fits the nature of the corresponding experiment. Regarding the correctness checking, the
threshold for finding solutions for the different experiments, is set to only 1000 in order to avoid
spending unnecessary time with the solution finding process (which is not of interested in the
current experiments anyhow). As soon as a feature configuration has been generated, feature
configuration validation is performed, time measurements and complementary statistics of the
validation process are stored into a CSV file of the current experiment, and again in the end the
feature model gets deleted. The results are again merely visualized as box plots in order to give
a notion about the variance of the results for each particular service size. The following time
measurements are performed during the validation of a feature configuration:

• Translation:
The time it takes to perform the translation of feature models to propositional formula and
to set the corresponding variables of the formula to true (according to the given feature
configuration).

• Legal:
The duration it takes to validate whether a feature configuration is legal. Since a legal con-
figuration per definition has to completely match with one of the possible solutions of a
feature model, Logic Solver just returns the one solution as result which is identical to the
feature configuration.

• Incomplete:
In case the feature configuration is incomplete, this is the time it takes that is required to
compute the specific solutions of a feature model that conform with the truth values dictated
by the feature configuration.

• Illegal:
In case the feature configuration is neither legal nor incomplete, no solution is returned by
Logic Solver. Therefore backtracking is required again, but this time contradictions do not
need to be found in the feature model, but in the feature configuration. Therefore this is the
time that is consumed by the backtracking algorithm in order to find contradictions in the
given feature configuration.

• Overall:
The time that is consumed by the whole feature configuration validation method. Due to
the implementation of feature configuration validation as shown in Section 5.8.3, this means
that the overall time measures one of the following combinations for the different types of
feature configurations:
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– Legal Configurations: The sum of translation and legal.
– Incomplete Configurations: The sum of translation and incomplete.
– Illegal Configurations: The sum of translation, legal, and illegal.

6.4.2 Evaluation of Legal Configurations

This experiment discloses the performance of our SAT service when it comes to validating legal
configurations against a feature model.

Experiment Parameters. The feature models that form the basis of the experiment range from
10 to 100 services, increasing in steps of 10 services. Expected versions per service is set to 2 and
excludes constraints and mandatory services are neglected. As already disclosed in the general
setup section, for each experiment run, a feature configuration is validated against the underly-
ing feature model. We generate the feature configuration by using the last solution returned by
correctness checking and use the ids of the corresponding elements as feature configuration to be
validated.

• Numbers of services: 10 - 100
• Expected versions per service: 2
• Ratio of excludes constraints: 0
• Ratio of mandatory services: 0
• Threshold for solution finding: 1000

Results. Figure 6.12 shows that the whole feature configuration validation process performs
quite well even for feature models with 100 services. The translation of the feature model and
the feature configuration to propositional formula is a bit faster than the actual validation of the
legal configuration. The overall duration does not steadily increase with an increasing number of
services per feature model.

Figure 6.12: Performance of Validating Legal Configurations

Figure 6.13 shows that the performance is rather correlated to the number of elements that
are contained in a feature configuration. This makes sense since only the parts of the feature
models are translated and part of the feature configuration that are actually selected by the feature
configuration.
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Figure 6.13: Performance of Validating Legal Configurations

6.4.3 Evaluation of Incomplete Configurations
The next experiment analyzes the performance of the SAT service’s validation process for incom-
plete configurations.

Experiment Parameters. The parameters for the current experiment are similar to the previous
experiment in Section 6.4.2. For a change, however, this time only 2/3 of the element ids of a valid
solution returned by the consistency checking is used as basis for the feature configuration. In
order to increase the chance that the configuration is incomplete, 10% of the services are changed
to be mandatory.

• Numbers of services: 10 - 100
• Expected versions per service: 2
• Ratio of excludes constraints: 0
• Ratio of mandatory services: 10%
• Threshold for solution finding: 1000

Results. Figure 6.14 shows that the validation of incomplete configurations performs not as
good as the validation for legal configurations, but still models with 100 services can be computed
in an acceptable time in not more than 400ms in average. The translation of the feature model and
the feature configuration to propositional formula is as always extremely quick, thus the actual
validation has the major influence on the performance. A further observation is that the overall
duration does not entirely increase in a steady manner with the increasing number of services per
feature model.

Figure 6.14: Performance of Validating Incomplete Configurations
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In Figure 6.15 we see that the performance is actually correlated to the number of result sets
that the SAT solver returns. This makes perfect sense, since the more possibilities exist to extend
the currently validated feature configuration, the more solutions are computed by Logic Solver
to give suggestions on how to continue the configuration. With respect to the computation of
solutions, we have already observed in previous sections that the Logic Solver’s solving function
is costly.

Figure 6.15: Correlation of Overall Duration and Number of Results Returned by the Validation

6.4.4 Evaluation of Illegal Configurations
Finally we analyze the performance of validating illegal feature configurations, whereas back-
tracking is used to detect the configuration elements that are causing the configuration to be
illegal.

Experiment Parameters. Again, the parameters resemble to the ones in the previous experi-
ments of configuration validation, but this time the number of excludes constraints per feature
model is set to 1. The two microservice versions that exclude each other are then both selected for
the feature configuration in order to ensure that an illegal configuration is sent to the SAT service.

• Numbers of services: 10 - 100
• Expected versions per service: 2
• Number of excludes constraints: 1
• Ratio of mandatory services: 0
• Threshold for solution finding: 1000

Results. Figure 6.16(a) represents the overall duration of the validation procedure for illegal
configurations. Translation time is completely omitted since it is barely contributing to the over-
all duration. Even though higher numbers of services in feature model can worsen the perfor-
mance of the validation process, it is again the number of computed result sets that correlate with
the time measurements, as shown in Figure 6.16(b). Similarly to the backtracking algorithm for
inconsistent feature models, resolving illegal configurations can lead to a really high number of
possibilities on how a feature configuration can be made legal. Thus it is rather a question of how
complex the dependencies between the versions of services are, than rather the pure number of
services and versions in a feature model. Figure 6.16(c) shows that the time measurements val-
ues look way more stable if runaway values are filtered out. Thus the performance of validating
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illegal configurations shows promising results for highlighting contradictions in feature config-
urations and usually does not need more than 400ms. Only really complex microservices-based
feature models, which are potentially caused by the random nature of the generation procedure
for the feature models, tend to challenge the validation of illegal feature configurations.

(a)

(b)

(c)

Figure 6.16: Performance of Validating Illegal Configurations

6.4.5 Findings of Configuration Validation
With respect to validating feature configurations, the validation of legal configurations performs
really well, also for large microservices-based feature models. This is because a legal configura-
tion is per definition one specific possible solution of the feature model and therefore no further
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solutions need to be computed with the underlying SAT solver. The validation of incomplete con-
figurations also performs in a decent manner, but it is highly depending on the complexity of the
feature model, which features are selected and thus, how many possible set of features can be sug-
gested to continue the current feature configuration. On the other hand, the validation of illegal
configurations can be again costly, depending on the complexity of the constraints between the
service versions. However, the last experiment has shown that filtering out a few runaway values
reveals a quite stable picture of the performance of validating illegal configurations and we as-
sume that the randomly generated feature models tend to have way more complex dependencies
than real world microservices-based architectures have.
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Closing Remarks

7.1 Conclusion
This thesis focused on how software product line concepts can be mapped to the microservices
domain in order to enable automated analysis of microservices-based feature models. Chapter 2
introduces important concepts of microservices and software product line practices, such as fun-
damentals of feature models, the translation of feature models to propositional formulas, and how
SAT solvers are utilized to perform automated analysis on feature models. In Chapter 3 some re-
cent research in the microservices domain has been introduced and previous work which have
tackled challenges related to the task of modelling and managing services dependencies have
been presented. Furthermore, some research that has also adopted SPL practices to overcome
challenges in current trends of the software engineering landscape have been highlighted and
important research in automated analysis of feature models has been introduced. The collected
background information serves as a basis to establish a mapping between SPL concepts and the
domain of microservice applications, as stated in the first research question:

RQ1: How can software product line concepts be mapped to the domain of microservice appli-
cations to enable automated analysis of microservices-based feature models?

In Chapter 4 the mapping of the SPL concepts to the microservices domain has been performed
carefully and with respect to common properties of the respective artifacts in both domains. The
mapping has been used to derive microservices-based feature models and the existing practice of
translating feature models to propositional formula has been adapted to define a formal model of
microservices-based feature models. The concepts for automated analysis of feature models have
then been adopted to enable correctness checking of microservices-based feature models and to
automatically validate the dependencies in service configurations. Eventually, the formal model
and the automated analysis concepts have been used as a basis to implement the HEIMDALL
application (described in Chapter 5) in order to answer the second research question:

RQ2: How can we build tooling that is capable of both validating given service configurations
and recommending fixes for invalid service configurations based on satisfiability-solution tech-
niques?

The prototype system allows software and DevOps engineers to create feature models for
microservices-based applications either with the help of a graphical editor or to import feature
models that are defined in a YAML-based domain specific language that fully implements their
characteristics. HEIMDALL also allows performing automated correctness checking on these mod-
els and enables configuration support to interactively describe valid service configurations. Both
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of these automated analysis concepts have been realized with the help of an existing satisfiabil-
ity solver called Logic Solver, which allowed to adopt the translation rules of feature models to
propositional formula in a very straightforward manner.

Chapter 6 has then be used to validate the implementation in a quantitative performance eval-
uation. A random feature model generator has been implemented as part of the HEIMDALL appli-
cation to facilitate the generation of the feature models that formed the basis for the experiments
of the evaluation. The experiments have shown that the HEIMDALL application, albeit being a
prototype, performs quite well for most of the automated analysis approaches, even for microser-
vice applications with hundreds of different services.

7.2 Threats to Validity
The following section discusses threats to validity concerning both, the results of the performance
evaluation as well as the mapping of SPL techniques to the domain of microservices-based appli-
cations.

7.2.1 External Validity
Logic Solver has been used as SAT solver for the HEIMDALL application. Even though it is based
on MiniSAT, an industrial-strength SAT solver, it has its limitations. Evaluations have shown
that an extensive use of its solving method is decreasing the performance of correctness checking
and configuration validation and can even reach a hard-coded memory limit of the Logic Solver
library. Furthermore it has not built-in dead feature detection or backtracking capabilities, there-
fore such mechanics needed to be implemented manually for the HEIMDALL application. These
implementations might have its drawbacks and computationally faster algorithms may exist.

7.2.2 Internal Validity
The performance evaluation has been conducted on a laptop. Even though the machine is rel-
atively powerful, it is possible that its performance influenced the results of certain measure-
ments. However, a multitude of measurement runs have been performed for each experiment
in order to compensate possible performance fluctuations. Another possible threat are the ran-
domly generated feature models which might not reflect well enough the structure of real world
microservices-based application with respect to services, versions and their dependencies. How-
ever, we believe that the randomly generated models have more complex dependencies than real
world applications do. Therefore we hope that the latter would actually perform better than most
of the already promising evaluations of artificial models have shown.

7.2.3 Construct Validity
The mapping of the SPL practices to the microservices domain, especially the mapping of feature
models to microservices-based applications, have been performed carefully and with respect to
common properties of the artifacts in both domains. However, it is not said that this is the only
possible mapping and their might exist better approaches or improved alterations of the current
approach.
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7.3 Future Work
In the following section possible additions and improvements to the model, the developed pro-
totype and the evaluations are discussed.

Extending the HEIMDALL Application. Currently, the validation of feature configurations need
to be actively triggered in HEIMDALL. However, interactive configuration support generally in-
cludes that a feature configuration is automatically validated after every decision the user per-
forms. An implementation of such a mechanism yields advantages that are twofold. On the one
hand, the user would immediately notice bad decisions during the configuration process. On
the other hand, the implementation could be done in such a manner that such choices would get
rejected instantly and a configuration couldn’t become inconsistent in the first place. Expensive
backtracking operations could be avoided and large scale microservices-based feature models
could definitely benefit from that.

Combining HEIMDALL with BIFROST. The actual idea of the topic for this thesis has been trig-
gered by previous work done by Schermann et al. [SSLG16] who have introduced a formal model
for supporting continuous deployment with automated enactment of multi-phase live testing
strategies. A prototype called BIFROST has been implemented to provide tooling that allows de-
velopers to define and automatically enact such complex live testing strategies. HEIMDALL and
BIFROST would complement each other well, since HEIMDALL could be employed to ensure that
only valid service configurations would be used for the live testing strategies in BIFROST. There-
fore combining both systems by ensuring that they can seamlessly interact with each other would
definitely have beneficial synergy effects.

Extended Feature Models for the Formal Model. The formal model for microservices-based
feature models is based on feature models, but this approach is not proven to be the best possible
one. One alternative could be to use the possibilities of extended feature models which have
been briefly introduced in Section 2.3.3. For example versions of services could be modelled as
attributes of services and extra-functional features could used to control version specifications
and the constraints between the microservices.

Quantitative Evaluations. The validity of the conducted performance evaluation is question-
able since randomly generated microservices-based feature models have been used. An evalua-
tion that comprises feature models of real world large scale applications would be desirable to
clearly verify whether the performance of the automated analysis methods match the needs of
software and DevOps engineers.

Qualitative Evaluations. Furthermore a qualitative evaluation of the HEIMDALL application
would help to target which features could be improved and extended and what capabilities are
probably missing in order to use it productively in the recurring tasks of software and DevOps
engineers when deploying microservices-based applications.





Appendix A

Attachments

A.1 Heimdall Installation Guide
Heimdall

Heimdall allows to model microservices-based applications as feature models and is capable of
both validating given service configurations and recommending fixes for invalid service configu-
rations based on satisfiability-solution techniques.

Requirements

• Docker: 17.06.0-ce (or higher)
• Docker-Compose: 1.14.0 (or higher)

Setup

1. After cloning or copying the heimdall project to your desired destination, adjust the .env
file in te project folder so that the host parameters of the services equal to the ip where your
docker-engine runs, e.g. on windows machines with installed docker toolbox this is usually
192.168.99.100:
SPL_HOST=192.168.99.100
SPL_DB_HOST=192.168.99.100
SAT_HOST=192.168.99.100

2. Then run docker-compose up inside the project folder
docker-compose up
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A.2 Running Example as Feature Model DSL

name: Microservices-Based Applications
description: Feature model describing a sample set of microservices based applications
microservices:
- name: Frontend
description: Sample frontend service
mandatory: true
versions:
- semver: 1.2.7
constraints:
- constraint_type: requires
targets:
- microservice: Backend
version: 1.5.1

- semver: 1.3.0
constraints:
- constraint_type: alternative
targets:
- microservice: Backend
version: 2.0.3

- microservice: New-Backend
version: 1.0.4

- semver: 2.0.0
constraints:
- constraint_type: requires
targets:
- microservice: New-Backend
version: 1.0.4

- name: Backend
description: Sample backend service
mandatory: false
versions:
- semver: 1.5.1
constraints:
- constraint_type: excludes
targets:
- microservice: New-Backend
version: 1.0.4

- semver: 2.0.3
constraints:
- constraint_type: excludes
targets:
- microservice: New-Backend
version: 1.0.4

- name: New-Backend
description: Sample service of a completely rewritten backend service
mandatory: false
versions:
- semver: 1.0.4
constraints:
- constraint_type: excludes
targets:
- microservice: Backend
version: 1.5.1

- constraint_type: excludes
targets:
- microservice: Backend
version: 2.0.3

Listing A.1: Sample Feature Model Defined in the YAML Based DSL
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A.3 CD Contents
• master_thesis.pdf

Master Thesis as PDF.

• abstract.txt
Abstract in English.

• zusfsg.txt
Abstract in German.

• heimdall/
The source code of the entire HEIMDALL application

• heimdall/msc-thesis-spl/src/demo/evaluation/
The scripts that were required to run the experiments for the Evaluation.

• heimdall/msc-thesis-spl/src/demo/evaluation/results
The results of the evaluation as csv files.
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