Department of Informatics, University of Ziirich

BSc Thesis

QR decomposition integration into DBMS

Dzmitry Katsiuba
Matrikelnummer: 14-705-354

Email: dzmitry.katsiuba@uzh.ch

July 2, 2017

supervised by Prof. Dr. M. Bohlen and Oksana Dolmatova

University of D
gy Lurich™ B

Department of Informatics ra

Acknowledgements

Most of all, I would like to express my sincere gratitude to my supervisor Oksana Dolma-
tova for her patience, helpfulness and support. I am very thankful for the feedback and
guidance she provided. Also, I would like to thank Prof. Dr. Michael Bohlen for giving
me the opportunity to write my bachelor thesis at the Database Technology Group of
the University of Zurich.

Abstract

The demand to analyse data stored in DBMSs has increased significantly during the last
few years. Since the analysis of scientific data is mostly based on statistical and linear
algebra operations (e.g. vector multiplication, operations on matrices), the computation
of the latter plays a big role in data processing. However, the current approach to deal
with statistics is to export data from a DBMS to a math program, like R or MATLAB.
This implies additional time and memory costs. At the same time the column-store ap-
proach has become popular and a number of hybrid or pure column-store systems, such
as MonetDB, Apache Cassandra etc. are available. I investigate the benefits of incor-
porating a linear operation into a column-oriented DBMS. For this purpose, I integrate
the QR decomposition in MonetDB, analyse the complexity of the implementation and
empirically compare the performance with the existing R-solution (exporting the data
with UDFs). The results of experimental evaluation show, that the embedded R solution
works faster than the QR integration in MonetDB, when a virtualized environment used.
On an unvirtualized host MonetDB has a significantly better performance, exceeding the
results of R. The implemented Q_QR function allows calculation on relations directly
in the DBMS. It uses the SQL syntax, which makes the usage of the function easy and
intuitive. The user doesn’t require any additional skills, while writing of UDF functions
for different sets of parameters means a certain programmer effort.

Zusammenfassung

Die Nachfrage nach Datenanalyse der in Datenbanken gespeicherter Information ist in
den letzten Jahren deutlich gewachsen. Die Auswertung der wissenschaftlichen Daten
basiert meist auf statistischen und linearen Algebraoperationen (z.B. Vektorrechnungen,
Matrizen-Operationen usw.). Dabei erhélt die Moglichkeit, direkt in Datenbanken diese
Operationen auszufiihren, ein immer grosseres Gewicht. Die verbreitete Vorgehensweise
besteht darin, Daten in ein mathematisches oder statistisches Programm, wie beispiel-
sweise R oder MATLAB, zu exportieren. Das Problem dabei: Es verursacht zusatzlichen
Zeit- und Speicheraufwand.

Gleichzeitig werden spaltenorientierte Datenbanken immer populérer. Auch sind auf
dem Markt reine oder hybride spaltenorientierte Datenbanken (wie MonetDB, Apache
Cassandra) verfiighar.

Meine Arbeit untersucht die Vorteile der Integration von linear algebraischen Oper-
ationen in einer spaltenorientierten Datenbank. Dazu integriere ich die QR-Zerlegung
in MonetDB, analysiere die Komplexitat der Implementierung und vergleiche empirisch
ihre Performanz mit der existierenden R-Losung (unter Anwendung von UDFs fiir den
Datenexport).

Die Ergebnisse meiner experimentellen Analyse zeigen, dass in einer virtuellen Umge-
bung die eingebettete R-Losung eine grossere Schnelligkeit aufweist, als die QR-Integration
in MonetDB. Anders verhélt es sich in einer nicht virtuellen Umgebung: Da weist Mon-
etDB eine signifikant bessere Performanz auf und tiberholt gar die R-Losung.

Die implementierte Q_QR-~Funktion ermdglicht die Berechnungen auf Relationen di-
rekt in der Datenbank. Die dabei genutzte, iibliche SQL-Syntax macht den Gebrauch
dieser Funktion einfach und intuitiv. Dafiir benotigt der Benutzer keine zusétzlichen
Kenntnisse, wihrend das Schreiben von UDF-Funktionen fiir verschiedene Parameterkom-
binationen einen zusétzlichen Programmieraufwand bedeutet.

Table of Contents

1 Introduction
1.1 Motivation e
1.2 Problem definition

2 Related Work
2.1 QR Decomposition
2.2 Matrix operationsina DBMS o0 oo

3 Task description

4 Approach
4.1 MonetDB e
4.2 Implementation
4.2.1 Symboltree
4.2.2 Relationtreeo
4.2.3 Statement tree
4.2.4 Translation to MAL-Plan
5 Complexity Analysis
5.1 Complexity of the Gram-Schmidt algorithm
5.2 Complexity of the implementation
6 Experimental evaluation
6.1 Setup e
6.2 Test Case Selection and Metrics
6.3 Data Set e
6.4 Results. e
6.4.1 With ordering mode
6.4.2 Without ordering mode,
6.4.3 Operating environment
6.4.4 Change of complexity,
6.5 Optimization e

7 Summary and future work

11
11
15
15
16
16
18

23
23
24

25
25
25
26
28
28
36
38
41
42

43

Table of Contents

Code 47
Al sqlparser.y 47
A2 relbin.c 49
A3 sqlgencode.c 53
Relation-Plan 55
MAL-Plan 57
C.1 MAL-Plan for with ordering mode 57
C.2 MAL-Plan for without ordering mode 60
UDF 63
D.1 UDF for with ordering mode 63
D.2 UDF for without ordering mode 63
D.3 UDF without Q- QR 64
Detailed test results 65

Introduction

1.1 Motivation

The amount of data produced by scientists has increased significantly during the last
decades. The demand for structured and practical approach to processing and storing
these data is thus even higher. Database management systems (DBMSs) represent an
efficient storage solution with integrated set of mathematical and statistical operations
(e.g. minimum, mazimum, average, count etc.). However, scientific data often require a
more complicated evaluation and computations, such as linear algebra operations, which
cannot always be processed directly in DBMSs. Math and statistics programs, like R or
MATLAB, allow eluding the lack of statistical functionality in popular DBMSs.

At the same time column-oriented DBMSs have attracted a lot of attention. These
databases differ in the way information is stored, namely the attribute values belonging
to the same column are stored separately, contiguously and densely packed, while the
traditional row-oriented database systems store the entire records (rows) one by one
[1]. The column-store approach has become popular and a number of hybrid or pure
column-store systems, such as MonetDB, Kdb, VectorWise, Infobright, Exasol are now
available. Column-oriented systems have some important advantages compared to row-
stores, e.g. compression of the repeating values in columns, working with linear sets
of values, especially when those sets are much larger than available RAM. Specifically
due to these advantages column-oriented databases offer a great flexibility for analytical
workloads.

The goal of my thesis is to expand MonetDB functionality by integrating one of
the most well-known linear algebra operations, the QR decomposition (QRD), and to
investigate the benefits of incorporating a linear operation into a column-oriented DBMS.

1.2 Problem definition

Many mathematical and statistical problems arising during scientific research are solved
with the help of linear algebra operations, which require matrix and array operations.
QRD is one of the popular operations. Calculations of eigenvalue algorithm, the QR
algorithm, the linear least squares problem and many other problems are often solved

2 CHAPTER 1. INTRODUCTION

using the QRD. Unfortunately, it doesn’t belong to the standard set of database functions
and additional steps for its execution are required. Moreover, the QRD, as any linear
operation, is defined over matrices, but not relations. A relation should be ”adjusted”
in order to be suitable for the QRD. The current approach to perform this and other
statistical calculation is to export data from a DBMS, perform the operation using a
math tool and after that import the results back into the DBMS. This process implies
additional time and memory costs. Moreover, it is a potential source of errors. The
integration of the QRD in a column-oriented DBMS can be done by implementing a new
function, which returns the matrix @ from the QRD (Q_QR function). This approach
allows doing the decomposition directly in the database, using existing relations, without
additional export and import operations. It also saves resources and excludes possible
non-calculation errors.

2
Related Work

In this section I give an overview about QRD algorithms, describe DBMSs that allow
working with linear algebra operations. I also mention the possibility of processing these
operations on database relations.

2.1 QR Decomposition

QR Decomposition (QRD) of a matrix, also known as the QR factorization, is a decom-
position of matrix A into a product A = QR, where @ is an orthogonal matrix, and R
is an upper triangular matrix. I assume, that the matrix A is of size mxn, where m is a
number of rows, n is a number of columns and m > n. QRD is used for solving several
mathematical problems, such as: computation of matrix inversion, determination of the
numerical rank of a given matrix, singular value decomposition, least squares problem,
etc.

Algorithm 1 Classical Gram-Schmidt algorithm [2]

1: for k:=1 ton do

2 for i:=1 to k-1 do

3 s:=0

4 for j>=1tom do

5: Si=S8+aj;*ajL
6 Tik =S

7 for i:=1 to k-1 do

8 for j:=1 tom do

9 Ajk = Gk — Qji ¥ Tik
10: s:=0

11: for j:=1 to m do

12: s =5+ a;>

13: Tk = 8qrt(s)

14: for j:=1 tom do

15: ajk = aj,k/rk,k

4 CHAPTER 2. RELATED WORK

There are two common algorithms for executing QR-decomposition:
» Householder transformations
+ Gram-Schmidt algorithm (see Algorithm 1)

These algorithms differ in terms of performance and possibility of parallelizing their ex-
ecution. Transforming parts of the classical Gram-Schmidt algorithm into euclidean norm
and dot product functions produces the vector-based version of the algorithm (see Al-
gorithm 2). The algorithm normalizes the vectors in sequence, doing orthogonalization
for the rest of the vectors after every normalization (reorthogonalizing them by already
normalized vectors).

Algorithm 2 Vector-based Gram-Schmidt algorithm
1: for k:=1 to n number of vectors do
Tk = euclidean norm(ay,) > normalization
qk ‘= ak/ Tk k
for j:=k+1 to n do
r := dot product(qy,a;) > orthogonalization

Qj = aj —T*qg

The reorthogonalization doubles the computational effort and for this reason the
method of Householder is usually preferred. The advantage of Gram-Schmidt algorithm
is that it is possible to perform the orthogonalization of one vector to as many other
vectors as it is needed [2]. If, as according to the task (see Chapter 3), only the matrix
Q is needed, then the modified Gram-Schmidt algorithm is much more efficient [9].

2.2 Matrix operations in a DBMS

Data-intensive research fields rely on the ability to efficiently process massive amounts
of experimental data using database technologies. A DBMS works mostly with relations
and not with arrays or matrices, as it is often necessary for scientific purposes. Outsourc-
ing those computations to other programs represents a solution for this computation gap.

The most DBMSs have only a limited set of algebra operations and functions, such
as count, minimum, maximum, average etc. These are functions that are not depen-
dent on the order of the values in the attributes. More complex operations that respect
the order of attributes are not built-in and can only be performed using user-defined
functions (UDF'), embedded packages or by exporting the data into external solutions.
One of the biggest relational database Oracle has an R Enterprise solution, which in-
tegrates R with Oracle Database [10]. MonetDB has an embedded R package, which
also allows using the full functionality of R inside of MonetDB. However, this approach
needs programming effort and involves writing of single UDF function for each set of
input parameters (e.g by changing the number or data type of input columns, etc.). The

2.2. MATRIX OPERATIONS IN A DBMS)

implemented Q_QR function allows processing the linear algebra operation directly in
DBMS, without exporting and re-importing of the data.

To bridge the gap between the needs of the scientific world and the current DBMS
technologies, the first SQL-based query language (SciQL) for scientific applications was
introduced. SciQL’s key innovation is the introduction of an array type, which works
on the same level as a table. It uses both tables and arrays as first-class citizens and
provides relational algebra-like operations on them [15]. The difference between these
two types is their structure: tables are represented by a set of tuples, while an array
is identified by attributes (dimensions) and their constraints. Combination of indeces
(values of these attributes) denotes a cell, where a value of one non-dimensional attribute
is stored. Thus, one tuple from a table is represented in arrays by a set of cell indices
and the non-dimensional value in this cell. SciQL uses MonetDB as the target plat-
form. Its column-store architecture corresponds well to the array representation, which
significantly reduces the impedance mismatch between query language and array manip-
ulation and, as a result, the development effort [16]. To address arrays in queries, the
user applies the table syntax. That makes the transition from SQL to SciQL easier [6].
The implemented Q_QR function allows working directly on relations, without paying
attention to the array representation or learning a new query language.

SciDB is an open-source analytical database that provides not only data management,
but also complex analytics. In contrast to SciQL, SciDB was completely new developed.
SciDB is oriented towards the data management needs of scientists, fulfilling their re-
quirements regarding complex analytics and working with the large data sets [14]. As
such it mixes statistical and linear algebra operations with data management opera-
tions (e.g. create, delete, update values, managing of constrains, etc.). SciDB takes
natural nested multi-dimensional array data model as basis that eliminates the conver-
sion between tables and arrays. For this goal a new functional (AFL) and a SQL-like
query (AQL) languages were invented. SciDB provides an extensibility framework (for
user-defined data types, functions, aggregates but also array operators). That makes
it possible to apply highly specific algorithms in conjunction with some pre-processing
handled by SciDB’s built-in or user-defined array operators [13]. In contrast to SciDB
for employing the new defined function in MonetDB, the user doesn’t need to learn a
new query language or deal with a new data model. The Q_QR function runs directly
on existing relations.

3

Task description

In this chapter I describe the function that has to be implemented, including its struc-
ture, input parameters and constraints. I give a running example for the input relation,
on which I show the defined parameters. Finally, using the running example, I define
the expected results of the function.

The goal of this thesis is to integrate the QR decomposition (QRD) into column-
oriented DBMS by extending it with the new Q_QR function. So that afterwards the
following SQL query can be processed:

SELECT * FROM Q-QR (relation.name ON on_attributes

3.1
ORDER BY order_by_attributes); (3:1)

This query returns a relation with the same schema as the input relation and represents
the @ matrix from the QRD. Since I want only the @) matrix as the result, QRD can be
implemented according to the Gram-Schmidt Algorithm (see Chapter 2.1). Figure 3.1
illustrates the structure of the input relation.

Descriptive part Application part

01 09 0. On dq do d. dp, al as a.. an

T T T T T T T
! ! ! ! ! ! !

T
|
|
|
|
|
!

T T
| |
| |
| |
| |
| |
! !

Order_By part

Figure 3.1: Structure of the input relation

The application part (in (3.1) on_attributes) includes the set of only numeric-domain
attributes, which represents the matrix A for the QR decomposition (see Chapter 2.1).
The relationship between the size of the application part and the whole number of
attributes in the relation forms the ratio of the application part. Attributes, which
are not in the application part, form the descriptive part of the input relation. The
Order By part is a subset of descriptive part (in (3.1) order_by_attributes). It includes

8 CHAPTER 3. TASK DESCRIPTION

the attributes, the tuples in the output relation and the corresponding matrix A for the
QRD have to be sorted by. The attributes in Order_By part can also be of non-numeric
data types. The ratio of the Order_By part is a relationship between its size and the
number of attributes in the descriptive part.

For the implementation I use MonetDB-11.23.13 (Jun2016-SP2). The column-oriented
architecture of MonetDB works with the attributes as arrays. It allows me to use the
vector-based version of the algorithm (see Algorithm 2), which handles the values of one
attribute together as one vector.

The DBMS has to recognize ambiguous or not existing names of attributes and the
input relation in the passed query, and, if applicable, it returns an appropriate error
message. The input relation can be an existing relation or a result of an arbitrary select
subquery.

As a running example I take a relation r, which is displayed in Figure 3.2.

Descripiive part Application part
a | b | ¢ r oy |z
t1 7 : 8 : 3 0 : 2 : 5
to 1+ 2 . 0 3 1+ 4 1 5
t3 4 71 | 8 2 1, 2
t4 2 1 4 1 8 + 9 1 6
t5 9 , 0 , 8 2,9 , 3
te 4 ‘ 5 2 1 ‘ 0 ‘ 1
N——

Order_By part

Figure 3.2: Relation r

An example SQL query for this relation is shown in Query (3.2)
SELECT * FROM Q-QR (r ON z,y,z ORDER BY a); (3.2)

QRD is performed over 3 attributes (z,y,z) from the application part of r. After
ordering the attributes by a, the relation r and the matrix A look as shown in Figure
3.3.

a | b | ¢ x oy |z _ ;
L [T T2 T 0 | 3 4 5 232
ty 2 4 1 8 + 9 I+ 6 9 1 2
t3 4 .1 | 8 2,1, 2 A=11 0 1
tg 4 1+ 5 1 2 1+ 0 1
t 7, 8 , 3 0o, 2 , 5 g;g
ts 9 1 0 ' 8 2 1 9 1 3 - s

Figure 3.3: Relation r ordered by attribute a and the corresponding matrix A

X ' y ' 4
0.33129 | 0.02729 | 0.43491
0.88345 | -0.16036 | -0.15479
0.22086 ' -0.21495 ' 0.15105
0.11043 | -0.17742 | 0.11223

0 ' 0.27978 ' 0.83288

0.22086 ' 0.90419 1 -0.24037

© N e
S 0 U= R NS
0 W N o~ OO0

T
|
|
|
|
|
|
|
|
|
n

Figure 3.4: Results of the query (3.2)

The Order_By part in (3.2) is presented only by attribute a, the ratio of Order_By
part is thus 1/3, while the ratio of the application part is 50%.

Figure 3.4 demonstrates what the results of the Q_QR function applied on the relation
r has to look like.

4

Approach

In this chapter I give a description of the architecture and features of the used DBMS
(MonetDB). Afterwards I describe the necessary implementation steps.

4.1 MonetDB

MonetDB is a column-oriented database management system developed at the Centrum
Wiskunde & Informatica (CWI) in the Netherlands. It is actively used in businesses such
as health care, telecommunications as well as in sciences such as astronomy. Innovations
at all layers of a DBMS such as storage model based on vertical fragmentation, a modern
architecture of CPU-tuned query execution, different ways of optimizations, adaptive in-
dexing and a modular software architecture allow MonetDB to achieve significant speed
up compared to traditional designs [5]. It supports SQL:2003 standard on client side.

Architecture
MonetDB has a three-level software stack:

SQL front-end: The top layer of the architecture provides the access point for the
user. The task of front-end is to map the user’s data to the MonetDB’s internal struc-
ture (BAT) and to translate user queries to MonetDB Assembly Language, known as
MAL. The user query is transformed from a SQL query to an internal relational algebra
representation, which is then optimized using domain-specific rules and heuristics (e.g.
reducing the size of intermediate results, by pushing selections down in the tree). This
represents the strategic optimization of the parsed query [5].

At this level I need to extend the parser with the new syntax, and ensure that all
internal transformations and the strategic optimizations are done.

Tactical-optimizers: In the middle layer the resulting MAL-plan is going through a
row of tactical optimizations. It is inspired more by the programming language than
by classical database query optimization. Each optimizer, sprinkled with resource man-
agement or flow of control directives, takes a MAL plan and transforms it into a more
efficient one. It provides facilities ranging from symbolic processing up to just-in-time

12 CHAPTER 4. APPROACH

r
a,b,c :L\y\z oID | a oip | b oIp | C oID | T OID;y oID | 2
7:8:3 0:2:5 01:7 01:8 01:3 01:0 01:2 01:5
1:2:0|1314.5 o9 11 09 12 09 10 0y 13 0y 1 4 09 15
4:1:8 2:1:2:> 03:4 03:1 03:8 03:2 03:1 03:2
21411 81916 04‘2 04‘4 04‘1 04‘8 04‘9 04‘6
9,0,8[2,9,3 05 19 05 | 0 05 | 8 05 | 2 05 |9 05 |3
41512 11011 0614 0615 0612 0611 0610 0611
BXTS

Figure 4.1: Internal (BAT) representation of relation r

data distribution [5].

Columnar abstract-machine kernel: The bottom layer of MonetDB stores each at-
tribute of a relation as columns (in fact as arrays) known as BAT. It includes the library
of highly optimized implementations of the binary relational algebra operators, stored
in corresponding BAT modules. Those operators have access to the whole metadata of
BATSs, it allows them to perform operational optimization. The interface is described in
the MAL module sections.

For the implementation of the task I can reuse already existing BAT algebra modules.
Nothing additional needs to be done at this level for the purpose of optimization.

BAT

MonetDB stores each attribute of a relation in a separate table, called a BAT (Binary
Association Table). Each BAT consist of two columns: the head column, where the
object-identifiers (OID) are stored, and the tail column, where the actual attribute
values are stored. Due to this approach every relation is internally represented as a
collection of BATs. Physically BATSs are represented as consecutive C arrays. They can
be up to hundreds of megabytes. The operating system swaps them into memory and
compresses on the disk upon need [3].

The example relation r consists of 6 attributes, for these attributes 6 BATs exist. Each
BAT stores the respective attribute as (OID, value) pairs. The internal representation
of r is illustrated in Figure 4.1. OIDs (o1, 02, . ..,06) are generated from the system and
identify the tuple the value belongs to. The values from the same tuple are assigned the
same OID (e.g. in 6 BATSs that represent relation r values 7, 8, 3, 0, 2, 5 at the very top
of each BAT have the same OID o01. That means, that all of them belong to the same
tuple t1).

The head OID column is not materialised, but rather implicitly given by the position
of the value, so all values of one tuple will be on the same position in their respective
column representation. The position, in turn, is determined by the inserting order of
tuples [5].

Relational algebra plans are translated into simple BAT algebra operations and com-

12

4.1. MONETDB 13

piled to MAL programs. BAT algebra operators perform simple operations on an entire
column of values (”bulk processing”).

MAL

MonetDB Assembly Language (MAL) is the language used for the abstract machine
of the MonetDB kernel. It is the target language for front-end query compilers. Every
SQL query generates an execution plan, consisting of simple MAL instructions. These
instructions represent all actions, which are necessary in order to provide and deliver
the results (e.g. actions to ensure binding data and transaction control, the instructions
to produce the results, and the administration steps for preparing and delivering the
resulting relation to the front-end). BAT algebra operators correspond to simple MAL
instructions, thus building its core. MAL instructions have only BATSs as input, on
which corresponding simple BAT operations are performed. Complex operators can be
broken down into a sequence of BAT algebra operators, which in their turn are mapped
to simple operations on arrays. This approach allows avoiding additional expression
interpretations.

An example of such implementation of a select operator in MonetDB is shown in
Figure 4.2 [5]. The select value (V) is compared to the values, stored in the tail part of
the input BAT (B), which in its turn is stored as a C-Array. If the value is found, its
OID is stored in the tail part of the resulting BAT (R).

for (i=j=0; i<n ; i++)

select (B:bat:[:0id:int], V:int) _ if (B.tail[i] == V)

R.tail[j++] = i;
Figure 4.2: Implementation of select operation

The for-loops containing no external function calls provide high instruction locality.
That enables better compiler optimization and leads to reduction in the number of in-
struction cache misses.

MonetDB provides an internal function to show the MAL-Plan of a passed query. The
operations in it are executed one at a time. That means, that subsequent operations
are invoked only after the operation completed the calculation over its entire input data.
The idea of BAT operations is always to have a materialized result after its execution.

Query Processing
Symbol tree: A query passed into the client is parsed in order to detect the specified
keywords (tokens). The tokens help the Yacc parser generator to generate a shift-reduce

parser. The input to Yacc is a grammar (sql_parser.y) with snippets of C++ code ("ac-
tions”) attached to rules of the grammar. As soon as the rule is recognised, the parser

13

14 CHAPTER 4. APPROACH

calls the code snippets associated with this rule. During the execution of these snippets
nodes of different types are built and connected together in a symbol tree. Symbol tree
represents only the structure of parsed query.

Relation tree: The resulting symbol tree is used to build a relation tree. The relation
tree consists of nodes, representing a single operation on input tables, containing neces-
sary information for this operation. The nodes of the symbol tree are parsed, analysed,
grouped together and converted into corresponding relation tree node, depending on
tokens in them. Each node in the relation tree may have up to two children. Afterwards
the strategic optimization is carried out.

Statement tree: A statement tree is a special feature of MonetDB. It is an intermedi-
ate step between a relation tree and a low-level execution plan (MAL-Plan). Comparing
to the resulting relation tree, which nodes represent operations on or between relations,
each statement in the statement tree represents the sequence of operations on attributes
and returns one BAT as a result. Each operation is represented by a MAL-expression
that in its turn corresponds to simple BAT algebra operations.

Putting it all together, MonetDB provides a good extensibility framework. That allows
to extend its functionality, SQL syntax and to make changes at all levels of architecture.

The BAT structure using the OID guarantees, that the values from the same tuple
belong together, despite the order of the tuples in BATs. This mechanism allows algebra
and statistical operations, for which the order and the relation between the values are
essential.

Breaking down the operations to the simple operations on arrays and the set of existing
BAT algebra operations provide a good basis for implementation of sophisticated and
complex calculations.

14

4.2. IMPLEMENTATION 15

4.2 Implementation

In this subchapter I describe the changes in MonetDB, which has to be done in order to
implement the task query. I also show the examples of trees built by MonetDB during
the processing of Q_QR function, using the example SQL query (3.2).

4.2.1 Symbol tree

To parse the task query I expand the existing parser grammar by a new token Q_QR. For
processing the new token I define additional rules and snippets of code for these rules.
The extended part of the grammar can be found in Appendix A.1. Figure 4.3 illustrates
the symbol tree, which is produced after parsing and executing the corresponding code.

SELECT * FROM Q_QR (r ON z,y,z ORDER BY a);

SelectNode

Figure 4.3: Symbol tree for the query (3.2)

The symbols are build according to the tokens recognized in the passed query. SelectNode
is a route symbol-node for all SELECT-queries. It is connected to all symbols contain-
ing the information, which is necessary to produce the results from the input relation
and to deliver the needed result relation (e.g. symbols like WHFERE, GROUP_BY,
ORDER_BY, HAVING etc.).

The query (3.2) produces the SelectNode connected only to one symbol namely
one with the information about the source relation (FROM). The new Q_-QR token
also produces a symbol, connected to the symbols with input parameters: relation r,
Application part and ORDER_BY . The last two parameters are lists, containing the
COLU M N-symbols. The Application part contains the columns (z,y, z) for the matrix
used during the QRD and ORDER_BY contains the column (a) for determining the
order of values in the resulting relation. The information in COLU M N-symbols must
correspond with the attributes in the input relation r. The result of the Q_QR-symbol
represents the only source relation for the F' RO M -symbol.

15

16 CHAPTER 4. APPROACH

4.2.2 Relation tree

To implement the task I add a new function that deals with the new Q_QR-symbol in the
symbol tree. This function uses the Q_-QR-symbol as well as the related symbols with
corresponding information to build a proper relation tree node for the Q_QR. function.
The resulting relation tree has tree nodes, as shown in Figure 4.4.

SELECT * FROM Q_QR (r ON z,y,z ORDER BY a);

7Ta7b7c7w5y7z

q-qrs -

r

Figure 4.4: Relation tree for the query (3.2)

After conversion of symbol tree nodes into relation tree nodes the information about
input relation r is stored in a separate node. For storing the lists of columns for QRD
(x,y, z) and ordering (a) I define a new type of a relation tree node (g_gr relation).

The resulting relation tree corresponds to the relation plan, produced by the internal
MonetDB function (see Appendix B).

4.2.3 Statement tree

To fulfil the translation of the new g_qr relation into MAL-Plan and make the calculation
of the QRD possible, I need to extend the existing translation function. It takes the
information from the g_gr relation and, following the steps of the vector-based Gram-
Schmidt Algorithm, translates it in a sequence of statements. The pseudocode of the
translation is shown in Algorithm 3. The extended part of the function can be found in
Appendix A.2.

The resulting sequence of statements can be also presented in a tree form. Figure 4.5
displays such a statement tree for the g_gr relation of the query (3.2). It shows both
the sequence and the origin of the data required for each particular statement. Each
statement tree node is a single BAT, representing the results of the done statement
calculations.

At the beginning I use the information from the g_gr relation in order to create two
lists of BAT's for the descriptive (a,b,c) and the application parts (z,y, z) of the input
relation. Using the Order By part (a), I determine the order of tuples in the output
relation. For this purpose I reuse the operations of the existing statements for ordering
and reordering of data in BATs. These statements are translated without changes into

16

4.2. IMPLEMENTATION 17

Algorithm 3 Q_QR
1: procedure Q_QR(relation, on_attrs, order_by_attrs)
2 attrs < attributes of relation
3 descriptive_part < attrs — on_attrs
4: if order_by_attrs 4 then
5: order_by < order of order_by_attrs
6
7
8
9

for descriptive_attr in descriptive_part do
sort descriptive_attr by order_by
add descriptive_attr to list_ output
: for on_attr in on_attrs do
10: sort on_attr by order_by

11: add on_attr to on_attrs_sorted

12: rest_attrs <— on_attrs_sorted

13: for on_attr in on_attrs_sorted do

14: normalize on_attr

15: add on_attr to list_output

16: rest_attrs <— rest_attrs — on_attr

17: for rest_attr in rest_atirs do

18: orthogonalize rest_attr to on_attr

return list_output

low-level MAL-plan and represented through existing BAT algebra operations. The
ordering statement takes the BAT, by which it must be sorted, as input and returns a
BAT containing the determined order of tuples (Oyist_order_attributes i1 Figure 4.5 Oy).

After that the attributes in the descriptive and the application parts are ordered
by this BAT. As a result a new ordered BAT for each of the attributes is produced
(Oorder by_attrs(on-attr) in Figure 4.5 Oq(a), Oq(b), ..., Ou(2)). The ordered results of
the descriptive part are directly appended to the output list. The ordered application
part is stored as an intermediate list that is used for the Q_QR calculation afterwards.

Q_QR calculation is defined by a sequence of normalization and orthogonalization
operations on attributes. The operations of the corresponding statements and their re-
sults are not implemented in MonetDB and have to be defined. Detailed description
of how these two operations work and how the resulting BATs (Norm(attribute) and
Orthastribute, (attributer), e.g. in Figure 4.5 Norm(z) and Orth,(y) or Orth,(z) respec-
tively) are produced is given in the Chapter 4.2.4.

I append the BAT, representing the normalized attribute, to the output list. After
all operations have been done and all attributes have been appended, the output list
is passed as an argument to the next node of the relation tree. The projection of the
results to the user is processed by existing statements, and doesn’t require changes at
this step.

The MAL-Plan constructed for the query (3.2) is shown in the Appendix C.1.

17

18 CHAPTER 4. APPROACH

SELECT * FROM Q_QR (r ON z,y,z ORDER BY a);

Qq ba Ca | z* | ya* } Output
Norm(z)
Orthy(z)
L QQR
’ Orthy(y) ’ Orthy(z)
ZTq Ya Za
+ Ordering

} Input

——
Order_By part

Descriptive part Application part

Figure 4.5: Statement tree for the query (3.2)

4.2.4 Translation to MAL-Plan

Two additional statements, required for the implementation of Gram-Schmidt algorithm
and used by me for the translation of the g_gr relation into low-level MAL instructions,
have to be implemented. These statements execute the operations of normalization and
orthogonalization on attributes (see Algorithm 2).

To get the results of these two statements, I use BAT operations from existing BAT
modules, such as:

« algebra calculations (multiplication, exponentiation, division, subtraction)
« aggregate functions (sum)
« mathematical functions (square root).

Both statements run over the ordered application part of the relation that is stored
after the ordering operation in an intermediate list.

18

4.2. IMPLEMENTATION 19

Normalization: Normalization statement has one BAT as input, which has to be
normalized. First the euclidean norm for the attribute is calculated. The calculation is
performed by multiplying the corresponding BAT of the attribute by itself. The values
in the resulting BAT are summed and the square root of the sum is taken.

Each of the aggregate (SUM()) and mathematical (SQRT()) functions returns a
single number, stored as a separate temporal BAT. This BAT is used in subsequent
calculations later.

Division of each attribute value by its euclidean norm delivers the normalized form of
the attribute. It is stored as a new BAT (Norm(x)) that is also appended to the output
list of attributes.

Figure 4.6 illustrates the processes of normalization statement, on the example of the
attribute « from the query (3.2).

OID | Oq(x) OID | Oa(y) OID | Oalz)
T T T =
List of 02 3 02 4 02 2
04 ! 8 o4 ! 9 [6
ordered ! I I
L 03 | 2 03 | 1 03 | 2
application I I I
part 06 1 06 | 0 06 1
01 : 0 01 : 2 o1 : 5
o5 ! 2 o5 ! 9 o5 ! 3
oD | Oa(z) oD | Ou (@) oIp ; tempy
09 } 3 09 } 3 09 : 9
04 : 8 04 : 8 [64
03 1 2 *| o3 1 2 = o3 : 4
o | 1 0 | 1 06 ! 1
o0 ! 0 ool 0 o, 0
[2 o5 | 2 o5 ! 4
Euclidean OID | tempy
norm 02 : 9
wll ot G
SUM(| o3 , 4) = ‘ ©
01,
o6 ! 1
01 : 0
o5 ! 4
‘ OID | tempy ‘ _ ‘ OID | tempy ‘
SQRT(5 59 1) = [o, ' 905539 |
oID | Ou () OID | Norm(x)
02, 3 0y | 0,33129
Normali- 04 | 8 o4 | 0,88345
| tempg _
zatwp 03 | 2 / on, 19,0553 03 1 0,22086
operation 06 | 1 og | 0,11043
01 : 0 o1 : 0
o5 ! 2 os ' 0,22086

Figure 4.6: Processes of normalization statement, on the example of the attribute x from
the query (3.2)

Orthogonalization: After each operation of normalization the rest of non-normalized
attributes in the application part of the relation has to be orthogonolized to the last
normalized vector. For this purpose the statement Orthairipute, (attribute;) takes two

19

20 CHAPTER 4. APPROACH

attributes as an input: the attribute that has to be orthogonalized (attribute;) and the
attribute, which it has to be orthogonalized to (attributes).

An example of orthogonalization procedure for the attribute y (orthogonalized to
attribute z) is displayed in Figure 4.7.

oID ; Norm(x) oID ; Oaly) oD ; Oa(z)
) 02 | 033129 || 0o | 4 02, b
OLT’;;Z o1 ! 088345 || o4 | 9 ! 6
application 03 : 0,22086 03 : 1 03 : 2
o o6, 0,11043 || 0g y O o, 1
part 01 : 0 01 : 2 01 : 5
o5 ' 0,22086 o5 | 9 [3
OID | Norm(z) OID | Oaly) oID | tempy
02 | 0,33129 0y | 4 0y | 1,32518
o1 | 0,88345 o1 ! 9 o4 1 7,95107
03 1022086 | *| o3 1 1 = o3 | 0,22086
og | 0,11043 o1 0 o610
01 : 0 01 : 2 01 : 0
05 1 0,22086 o519 05 ' 1,98777
Dot
product l
oID | tempy
0y | 132518
04 1 7,95107
SUM(| o3 | 0,22086 |) = o, 1148488
[0
01 : 0
05 ' 1,98777
OID | Norm(x) OID | tempsz
02 | 0,33129 0y | 3,80488
01 | 0,88345 01 ! 10,14634
03 1 0,22086 | * = | 03 1 2,53659
o | 0,11043 o | 1,26829
o1 : 0 01 : 0
) 05 ' 0,22086 05 ' 2,53659
Orthogonali-
zation l
process .
OID | Oa(y) OID | tempg, OID | Orthy(y)
0y | 4 02 | 3,80488 0y | 0,19512
o4 ! 9 04 ! 10,14634 o4 1 -1,14634
og 1 1 — | o3 1253659 | = | o3 | -1,53659
o1 0 o6 | 1,26829 o0 1 -1,26829
o | 2 oo ! 0 o, 2
o5 1 9 05 | 2,53659 05 ' 6,46341

Figure 4.7: Processes of orthogonalization statement, on the example of the attribute y
from the query (3.2) (orthogonalized to attribute x)

After the orthogonalization of the non-normalized attributes is completed, as shown
in Figure 4.8, the next attribute can be normalized and the orthogonalization procedure
iterated until there is only one attribute left.

After the normalization of the last attribute, the latter is appended to the output list,
where it forms the output relation, together with the attributes from the descriptive
part, as shown in Figure 3.4.

One of the advantages of the application of Gram-Schmidt algorithm for the matrix

20

4.2. IMPLEMENTATION 21

OID | Norm(x) 01D | Ortha(y) 01D | Ortha(2)
o0y | 0,33129 02 : 0,19512 02 : 2,29268
04

0,88345 04 1 -1,14634 o4 1 -1,21951

03 1 0,22086 || o3 | -1,53659 || o3 | 0,19512
o6 1 0,11043 || o5 1 -1,26829 || o5 ' 0,09756
01 0 01 ! 2 01 : 5

|
o5 1 0,22086 o5 ' 6,46341 o5 ' 1,19512

Figure 4.8: Stand of BATs after all attributes from the query (3.2) are orthogonalized
to attribute z

Q calculation is the possibility of parallelizing its execution. Since there are no de-
pendencies between the attributes and no overwriting operations of them during the
orthogonalization, the latter can be done concurrently.

The described approach represents the processes and the order of their executions
according to the used algorithm. However, during the low-level MAL-optimization of
MonetDB, these processes are re-organized, so that the entire set of operations (the
required number of orthogonalizations and the subsequent normalization) are performed
consequently for each attribute. This is reflected in the produced MAL-Plan for Q_QR
function (see Appendix C).

Such optimization helps to reduce the number of cache misses, since more information
needed for all optimizations and the normalization is stored in the cache. That reduces
the number of requests to the slow main memory and improves the runtime of the entire
Q-QR function.

The code for the extended statements is shown in Appendix A.3.

21

5

Complexity Analysis

In this chapter the complexity of the original Gram-Schmidt algorithm and the imple-
mentation are estimated and compared.

5.1 Complexity of the Gram-Schmidt algorithm

The vector-based Gram-Schmidt algorithm, used for the implementation, comprises op-
erations of normalization and orthogonalization. Using a matrix of size mxn, where m
is the number of tuples and n is the number of attributes, the numbers of executions of
the algorithm operations and their suboperations can be analyzed. Table 5.1 lists the
estimated numbers of these operations. The normalization is executed only once for each
vector, while orthogonalization is to be done for the rest (all non-normalized) vectors
after every normalization. As a result, the execution number of orthogonalization equals

to (n—1)n/2.

. Sub Number of
Operation . .
-operation | executions
= | Buclidian norm(e,) n
2 2 n(m)
]
S + n(m-1)
o]
= Vv n(1)
> | Devision by e, n
|/ n(m)
2 | Dot product (n-1)n/2
g * ((n-1)n/2)(m)
E + (n-1)n/2)(m-1)
S | Subtraction ((n-1)n/2)
Q
£ / ((n-1)n/2)(m)
S - ((n-1)n/2)(m)

Table 5.1: Operations in vector-based Gram-Schmidt algorithm and number of their
executions

24 CHAPTER 5. COMPLEXITY ANALYSIS

The total number of calculated QRD operations is summarized in Equation 5.1.

nm+n(m — 1) + In + nm+

(n—1)n (n—1)n (n—1)n (n—1)n (5.1)
+ 5 M + 5 (m—1)+ 5™ + 5 M
o 1o 1
mn + 2mn* — on" +gn (5.2)

According to the simplified version of Equation (5.2), the algorithm has the total
complexity of O(mn?).

5.2 Complexity of the implementation

According to the task, the output relation of the implemented Q_QR function is ordered
by the defined set of attributes. It means that the complexity of the Gram-Schmidt
algorithm has to be extended by the complexity of additional operations of lists building,
determination of order and ordering itself.

In the first step I build the lists of attributes for the application and descriptive parts
of the relation, which I need to define the matrix for the QRD. For this purpose I iterate
through all attributes of the input relation, what has a complexity of O(n?).

The order of the attributes is to be determined according to the order_by_attributes
passed in the query. If only one attribute is passed, the complexity is at least O(m logm).
If there are more than one attribute in the order_by_attributes, the following attributes
are only used in case, if the first order_by attribute has at least two tuples with exactly
same values. For ordering those tuples additional information is needed. That means,
that the complexity of such additional ordering equals to O(klogk), where k is the
number of tuples with same values and k < m. The worst case of ordering is when all
tuples of an order_by attribute have the same value (k = m). The complexity of ordering
in this case is at least O(smlogm), where s is the number of attributes with the same
values.

After the order is determined, all attributes in the relation have to be sorted according
to it. This results in the ordering complexity of O(mlogm - n).

The total complexity of the Q_QR function is summarized in Equation(5.3).

O(n?) + O(mlogm) + O(mlogm - n) + O(mn?) (5.3)
For the met assumption, that m > n, the total complexity of the Q_QR function

equals to O(mn?). If it is assumed, that m >> n, the effort for ordering overtakes the
cost of the Q_QR calculations, what leads to the resulting complexity of O(mlogm-n).

24

§

Experimental evaluation

In this chapter I describe the experimental evaluation. It includes the explanation of
the setup, test cases, data set, the results of the experiments and their discussion. The
goal of the experimental evaluation is to analyse the complete runtime of the solution
and to compare the performance of MonetDB with the existing R-solution empirically.
Additionally to the complete runtime I analyse time spent on building the execution
plan and for Q_-QR execution itself.

6.1 Setup

The experiments are carried out on an Ubuntu (16.04 LTS) virtual machine having 5,5
GB RAM. The virtual machine (5.1.14) was running on MacOS Sierra (10.12.4) having
2.70 GHz Intel Core i5-5257U CPU and 8 GB 1867 MHz DDR3 memory.

To check the environmental dependency of MonetDB I use a server with 2 x Intel(R)
Xeon(R), CPU E5-2440 0 @ 2.40GH, 64GB main memory, hard disks 4x320GB, SATA,
15000rpm and OS: CentOS 6.4.

6.2 Test Case Selection and Metrics

The implemented Q_QR function has only one input relation and three additional pa-
rameters, which influence the execution performance and can be manipulated during the
evaluation (see Figure 3.1):

1. number of tuples in the input relation (m)

2. number of attributes in the application part (1)

3. number of attributes in the descriptive part (ng)

4. ratio of the Order_By part in the descriptive part (ratio)

The distribution of values is irrelevant. To get a different size of the Order_By part of
the relation I combine different Order_By ratios with the size of the descriptive part.

26 CHAPTER 6. EXPERIMENTAL EVALUATION

The input relation itself is an existing relation or a result of a passed sub-query.
Since the processing of sub-query is not influenced during the implementation and it
is not directly connected with the performance of the Q_QR function, I refrain from
manipulating this parameter.

Experimental evaluation consists of two separate experiments:

» MonetDB vs. R: It is a comparison between the implementation in MonetDB
and the existing R-solution. For this experiment, the embedded R package for
MonetDB is used and the data is exported to R via UDF (see Appendix D).

o Internal: It provides the detailed information about the time consumption of the
implementation function in MonetDB

Detailed information on chosen values of input parameters for these experiments is
presented in Table 6.1.

Parameter Values
m 100°000, 500°000, 1°000°000
Na 20, 40, 60, 80, 100
N 11, 10, 50 2
ratio 100%, 30%, 60%, 90% 3

Table 6.1: Values of the input parameters for experimental evaluation

A combination of all four parameters represents a test case to be performed. For each
of them a complete runtime is measured using the internal MonetDB timing function. For
the Internal evaluation I record the time spent on creation of execution plan (preparation
time), additionally to the complete runtime. The combination of complete runtime and
preparation time provides the information about execution time.

In order to evaluate time spent on ordering the relation, I run every defined test case
in two modes (with and without ordering). For the without ordering mode I optimize
the Q_QR function so that the order is not determined and no ordering of attributes is
performed. For each test case the difference between runtimes in two modes provides
the information about time spent on ordering all attributes in the relation.

6.3 Data Set

Every single test case has 3 runs that are performed one by one. The mean value is
calculated based on the measurement results of each test case run.

For each test case a new relation with m tuples and n attributes (n = ng + ng) is
generated. MonetDB and R solution use the same relation by each run.

!Descriptive part with 1 attribute has always ratio of 100%
2In the without ordering mode the descriptive part consists of only 1 attribute
3In the without ordering mode the ratio is for all test cases 100%

26

6.3. DATA SET 27

By executing the same query more than one time, the execution plan is created only
once and stored in the cache. To avoid its reusing for measuring the preparation time 3
runs are done on different relations.

Test cases, where the Order_By ratio parameter is manipulated, are performed on the
same relation.

Queries for creating and filling tables are generated using a python script program
that takes random integers between 0 and 10000.

27

28 CHAPTER 6. EXPERIMENTAL EVALUATION

6.4 Results

In this section I present the test results for both experiments. At first I present the
results of the tests in with ordering mode, which are followed by the results of the
without ordering mode. The measurements are evaluated and comparison and evalua-
tion of the results is given. Detailed test results are listed in Appendix E.

6.4.1 With ordering mode

In this part of the experimental evaluation I test the implemented solution in with ordering
mode. The order of data in a relation can be essential for some statistical and linear
algebra calculations, so the resulting relation is sorted by its Order_By part.

MonetDB vs. R

The first set of test cases compares the performance of MonetDB with existing R-
solution. That is done using UDF and embedded R package in MonetDB. The results of
test cases with ordering by one attribute are illustrated in Figure 6.1. It is recognisable,
that for R the number of tuples doesn’t play a significant role, while for MonetDB it is
a decisive parameter.

800 |- MonetDB 100k tuples N
MonetDB 1M tuples
— — — R 100k tuples
| —=—=- R1IM¢t les -
< 600 Pl

)
n
~—
)

£ 400]
g
=

200 - B

0 | —

| | | |

|
20 40 60 80 100
Number of attributes in the application part

Figure 6.1: Complete runtime in the MonetDB vs. R experiment (ordered by 1 at-
tribute)

The performance of R is over 4 times better than the performance of MonetDB for
all combinations of the number of tuples and the size of the application part. And the
more attributes in the application part are taken, the bigger is the absolute performance
difference. By increasing the number of attributes in the application part and using
the high number of tuples in the relation, the complete runtime in MonetDB changes

28

6.4. RESULTS 29

T T T T T
onet tuples | MonetDB 100k tuples B
60 | xonetgi 11(\)/?1(tuplels N 60 MonetDB 1M tuples
— — — R 100k tuples — — — R 100k tuples
— - — R 1M tuples — - - R 1M tuples
?8? 40| . g 40 | .
~— \Q)/ e
= E
.- H
= ao0) 1 20 | 1
o "o - or T -
| | | | |
30% 60% 90% 10 50
Order_By ratio Number of attributes
in the descriptive part
Figure 6.2: Complete runtime in the Figure 6.3: Complete runtime in the
MonetDB wvs. R experi- MonetDB wvs. R experi-
ment with 20 attributes in ment on relations with 20
the application part, 10 in attributes in the application
the descriptive part and dif- part, 30% Order_By ratio
ferent Order_By ratios and two different descriptive

part sizes

quadratically. This result corresponds to the estimated complexity of the implementation
for m > n (O(mn?)).

At this point it is still unclear if the reason for this might be a difference in preparation,
sorting or calculation processes. That could be better investigated during the Internal
evaluation or during further tests in without ordering mode (see Chapter 6.4.2).

To evaluate how the Order_By ratio affects the performance of both solutions, I ad-
ditionally change it for the fixed size of the descriptive and the application parts of the
relation. Figure 6.2 demonstrates the results of tests for three different Order_By ratios
(30%, 60%, 90%). We can see, that the ratio doesn’t have much influence on the com-
plete performance, since it is relevant only during the processes of order determination.
The runtime in all the three test sets is almost identical.

Since the values are generated randomly, the number of tuples with the same value
depends on the correlation between the number of tuples in the relation and the range for
generating values. If the number of equal values is low, only a small amount of additional
Order_By attributes deliver the necessary information, needed for determining the final
order.

The same principle explains the results of test cases, where I manipulate the size of
the descriptive part, by the fixed size of the application part and Order_By ratio. The
results of these tests are shown in Figure 6.3. In the first case the resulting number of

29

30 CHAPTER 6. EXPERIMENTAL EVALUATION

Order_By attributes is equal to 3, and in the second case it equals to 16. For a small
number of attributes it has practically no influence on the runtime. For a higher number
of tuples the number of identical values increases, which leads to determination of order
using additional attributes and to longer runtime. And the lager is the list of Order_By
attributes, the longer the determination of order can last.

More information on the structure of time consumption in MonetDB is provided in
the Internal evaluation.

30

6.4. RESULTS 31

Internal

During the Internal evaluation I record the time spent on different stages of the query
execution: preparation, ordering and Q_-QR calculation itself. This provides an overview
of the change in the time consumption structure in MonetDB as a result of change of
the input parameter’s values.

First, I analyse the time spent on preparation. This stage includes the parsing of the
passed query, the construction of symbol, relation and statement trees, the translation
of statement tree into the MAL-Plan. I fix the number of attributes in the application
and the descriptive parts and change the number of tuples in the relation. As expected,
this has no influence on the preparation time.

For the next test I fix the number of tuples in the relation and change the number of
attributes in the application part. Figure 6.4 shows that the preparation time changes
linearly to the number of attributes in the relation, but still remains very small compared
to the complete runtime (the longest preparation for 100 attributes in the relation takes
only ~900 msec. vs. 63 sec of complete runtime).

100 n
80 |- .
60 |- .

40 N

Time(msec)

20 | :

0L \r I I I |
20 40 60 80 100
Number of attributes in the application part

Figure 6.4: Preparation time in the Internal experiment on relations with 100’000 tuples
(ordered by 1 attribute)

To see how the structure of time consumption changes at different sizes of the Order_By
part, I change the ratio of the Order_By part and the size of the descriptive part. The
rest of input parameters stay fixed (same as in the MonetDB vs. R experiment). Figures
6.5 and 6.6 demonstrate the results of these two manipulations respectively.

As assumed, the resulting difference in the complete runtime can be explained by
lightly increased costs of ordering: namely at the stage of order determination and not
at the stage of reordering the attributes (this step is always performed for all attributes
regardless of the size of the Order_By part).

Further I want to analyse the influence of the application part size. For this purpose I

31

32 CHAPTER 6. EXPERIMENTAL EVALUATION

A [rremion | Sl T P |
[Ordering [] Ordering
Q-QR Calculation Q-QR Calculation
3| . 31 -
B :
~— | B E/ 2 [—
g 2 £
= =
1 3 L 1
B — i
0 % N 0
! ! ! ‘ ‘
30% 60% 90% 10 50
Order_By ratio Number of attributes
in the descriptive part
Figure 6.5: Time consumption in the Figure 6.6: Time consumption in the
Internal experiment on re- Internal experiment on re-
lations with 100’000 tuples, lations with 100’000 tuples,
20 attributes in the applica- 20 attributes in the appli-
tion part, 10 in the descrip- cation part, 30% Order_By
tive part and different Or- ratio and two different de-
der_By ratios scriptive part sizes

fix the number of Order_By attributes and the number of tuples, and manipulate the size
of the application part. The results of this test are presented in Figure 6.7. For the chosen
combination of m and n, we can see, that the ordering time changes logarithmically, as
assumed during the complexity analysis (O(mlogm - n)). The difference in complete
runtime is caused primarily by the increased cost of calculations, which seems to change
quadratically to the size of the application part, that corresponds to the calculated
complexity of the Gram-Schmidt algorithm (O(mn?)).

The complexity of the used QRD algorithm correlates linearly to the number of tuples
m. To prove this assumption I fix the number of the Order_By attributes and the size
of the application part of the relation and change only the amount of tuples. Figure 6.8
illustrates the results of this test and proves that the time spent on calculations indeed
changes strictly linearly.

Since the complete runtime grows mostly due to the increasing costs of calculation,
I'm interested in investigating what these costs contain. For this purpose I can use the
internal function of MonetDB, which allows seeing how much time the execution of each
particular MAL-instruction (¢race function). According to Table 5.1, the calculation of
Q-QR function includes 6 different operations takes. They are executed using 5 MAL-
instructions (sorted by the total number of executions):

32

6.4. RESULTS 33

60| | 50 | |
g 101 | /g 15 a
5 g0l | &
5 7 Q |
0l ==y 0l |
20 40 60 80 100 100k 500k 1M
Number of attributes in the application part Order_By ratio
Figure 6.7: Time consumption in the Figure 6.8: Time consumption in the
Internal experiment on re- Internal experiment on re-
lations with 100’000 tu- lations with 20 attributes in
ples and different applica- the application part and dif-
tion part sizes (ordered by ferent number of tuples (or-
1 attribute) dered by 1 attribute)

* (for multiplication and exponentiation, total number of executions :
(n+ (n—1)n/2)*xm)

« / (for division, total number of executions : (n + (n — 1)n/2) xm)

» sum (for sum, total number of executions : (n+ (n — 1)n/2) * (m — 1))
+ — (for subtraction, total number of executions : ((n — 1)n/2) xm)

« sqrt (for square root, total number of executions : n)

I fix the size of the application and the Order_By parts, as well as the number of tuples
in the relation, and do the tests concurrently calling the trace function. Summarizing the
obtained data per executed MAL-instruction provides an overview, which instructions
take the most time during the execution of the Q_QR function. The results of this
analysis are shown in Figure 6.9. Comparison between the analysis of the execution
number and the results of the measurements shows, that only two MAL-instructions are
executed over 90% of the calculation time (these are x, — operation and not *, / as could
be expected based on the total number of executions). The explanation for this can be,
that x and — are operations over two BATs. That means that the operations between
BATSs need more read-write operations. The operations on one BAT or one BAT and
one value (such as sum, sqrt, /) are executed relatively fast.

33

34 CHAPTER 6. EXPERIMENTAL EVALUATION

80 |- R
100 - — — — — sqrt -
By
80 | | 60 [sum |
60 Bl
[B 2]
NS \OJ/ 40 -
40 . E
20 |- :
| 1
ol = = = = = | ol = = = — = |
| | | | | | | | | |
20 40 60 80 100 20 40 60 80 100
Number of attributes in the application part Number of attributes in the application part

Figure 6.9: Time consumption by the used MAL-instructions, during the Q_QR calcula-
tion on 100’000 tuples

R solution

R solution in MonetDB is an embedded but still external package. That means, that
in order to use its functionality the information from MonetDB has to be transferred
to and from this package, using UDF. To estimate and analyse the time consumption
structure when executing the UDF, I manipulate the UDFs to measure the time spent
only for transferring the data and Q-QR calculations (see Appendix D). Figure 6.10
shows that the time for data transfer is growing depending not only on the number of
tuples in the relation (i.e. the size of input arrays, which need to be passed to R) but
also on the size of the application part. The latter increases the transfer time, due to
casting of computational results from integer (data type of the input values) to numeric
values, which takes double more space on the disk. That means that not only the values
in resulting attributes change, but also the amount of data changes after the execution
of the QRD. As a result, the transfer costs grow and can take up to over 1/3 of the
complete runtime for chosen parameters.

During the experimental evaluation, I noticed a remarkable difference in the usage of
cache between MonetDB and the R solution. MonetDB uses the cache and releases the
memory as soon as it no longer needs the data in it. R solution, on the other hand,
holds the used objects in virtual memory and it seems to apparently retain the data
after the completed calculations. That results in the gradual growth of the occupied
memory. After a certain number of processed operations no new vectors can be loaded,
which leads to a server crash, with the corresponding error message. That represents a
memory limit for the whole computation process in R.

There are also limits on individual objects. The storage space cannot exceed the
address limit, thus R can only support vectors up to 23!, about 2 % 10° elements, which
is also the limit on each dimension of an array [11]. That may lead to problems, that
the data is too large to be loaded in memory or the data is loaded, but with remaining

34

6.4. RESULTS 35

T T
[] Data transfer
Q-QR calculations
60 - 7
)
g 40| .
~—
<)
e
=
20 7
O [|
| | | |

|
20 40 60 80 100

Number of attributes in the application part

Figure 6.10: Time consumption in R on relations with 1’000°000 tuples (ordered by 1
attribute)

memory no computations can be performed (requires more memory).

Different approaches dealing with these limits are available. When the computational
task implies a huge number of data, the server needs to be periodically restarted, or
changes in data types and experiment structure can be made. Nevertheless, the unclear
mechanism of cleanup in R and the memory limits might be a certain restriction for
using this solution.

35

36 CHAPTER 6. EXPERIMENTAL EVALUATION

6.4.2 Without ordering mode

The used version of Gram-Schmidt algorithm produces the results by using the op-
erations on vectors. That means, that during the calculation of the dot product or
subtraction, the values need to be at the same positions in vectors. The mapping of
values in MonetDB, using OID in BATSs, guarantees, that the values in attributes are
multiplied or subtracted only with the values from the same tuple, sharing the same
OID. That means, that the order in the relation has no influence on the correctness
of the Q_QR function. It allows me in the second part of the experimental evaluation
to test the implemented solution in without ordering mode. The tuples in the output
relation have exactly the same values as in the with ordering mode, only the order of
tuples stay the same as in the input relation.

MonetDB vs. R

The results of test cases for MonetDB and R are displayed in Figure 6.11. The only
difference in comparison with the results of the with ordering mode is the lack of costs
for ordering the values. The complete runtime for performing the function is reduced,
but the MonetDB-R performance ratio remains the same. Now it is more obvious, that
the complexity of Q_QR computations in R is almost linear, while in MonetDB, with
the increasing number of attributes, it tends to quadratic.

400 MonetDB 100k tuples
MonetDB 1M tuples
— — — R 100k tuples
300 - — — — R 1M tuples |

Runtime(sec)
[\
S
o
T

—_

S

o
T

|
20 40 60 80 100
Number of attributes in the application part

Figure 6.11: Complete runtime in the MonetDB vs. R experiment (in without ordering
mode)

36

6.4. RESULTS 37

Internal

Also the Internal experiment is likely to prove the findings, that Q_QR function
spends the most time on calculation of the results. Figure 6.12 illustrates the results of
the tests for 100’000 tuples.

400 T T
[] Preparation
Calculation
300 - =
£
2 200 | 8
O
e
=
100 + n
0 |
\ \ \ \

|
20 40 60 80 100
Number of attributes in the application part

Figure 6.12: Time consumption in the Internal experiment on relations with 1°000’000
tuples (in without ordering mode)

As Figure 6.13 indicates, the time spent on calculation of the Q_QR function with fixed
size of the application part is linearly dependent on the number of tuples in the relation,
which means a relatively good performance of chosen algorithm and the column-oriented
DBMS, in respect to this parameter.

37

38 CHAPTER 6. EXPERIMENTAL EVALUATION

25 T T

w0l |
g 15+ .
T
£ oo |
=

51 |

ol |

| | |
100k 500k 1M

Number of tuples in relation

Figure 6.13: Calculation time in the Internal experiment on relations with 20 at-
tributes in the application part and different number of tuples in relation
(in without ordering mode)

6.4.3 Operating environment

For testing the implemented solution I use the virtualization environment VirtualBox.
This environment adds an additional level of abstraction between the hardware and the
database. This leads to an inevitable performance overhead, since DBMSs are often op-
timized for the hardware, using the advanced CPU instructions for optimal performance
[8].

The number of researches, which handle the topic of performance differences of databases
in native and virtualized environments is limited. Nevertheless, they confirm small per-
formance loss (around 10%) in virtualized environments for different states of cache
(with and without data) and workloads [7, 4]. There is also one publication available,
which found an astonishing performance reduction of MonetDB running in VirtualBox
[8].

To prove these findings and if it is the reason for the modest results of the new
Q-QR function in MonetDB during the experimental evaluation, I additionally repeat
the MonetDB vs. R experiment for 100’000 and 1’000°000 tuples, ordered by 1 at-
tribute, with different sizes of the application part under the host operating system on
unvirtualized hardware.

Figure 6.14 indicates, that the execution of queries in VirtualBox has a significant
overhead, compared to performance under the host. Simple join operations require over
twice as much time, while the execution of the Q_QR function shows a tremendous
slowdown.

Figure 6.15 demonstrate, that the resulting performance of MonetDB is significantly
better than its performance in VirtualBox, while R shows the same results. The per-

38

6.4. RESULTS 39

(a) (b)

40 T T 400 T T
+237,9%
30 |- 5 300 1
/g +613,8% /qg
&z 20 5 g 200 i
(] ~—
E]
10 |- 8 100 5
0 [D . 0 - I— .
| | | |
H VB H VB
Environment Environment

Figure 6.14: Complete runtime of two functions, performed in VirtualBox(VB) and un-
der host operating system (H): (a) Q_-QR for 1°000°000 tuples, with 20
attributes in the application part (ordered by 1 attribute); (b) JOIN for
two relations with 1000 tuples

formance of the integrated QRD is comparable with the performance of the R solution.
For a high number of tuples MonetDB consistently needs almost 3 seconds less than the
embedded R.

90 |- .
MonetDB 100k tuples /0
MonetDB 1M tuples
40 [— — — R 100k tuples 1
— — — R 1M tuples
—
o
w30 N
~—
<
E
= 20 [N
=}
~
10 |- N
0 - |

|
20 40 60 80 100
Number of attributes in the application part

Figure 6.15: Complete runtime in the MonetDB vs. R experiment, run under host op-
erating system (ordered by 1 attribute)

Time consumption by executed MAL-instructions has the same structure as in Vir-
tualBox. This means that all operations are performed equally faster under the host
operating system, and the execution of latter cannot explain the performance overhead.

39

40 CHAPTER 6. EXPERIMENTAL EVALUATION

A possible reason for this significant performance degradation of MonetDB under
virtualized environments can be a huge write load on the memory bus or a high number
of system calls during query execution [8].

Another explanation of the performance difference can be execution parallelization
inside the DBMS. The number of threads the MonetDB server uses to perform main
processing equals the number of available CPU cores in the system [3]. The analysis
of the data delivered by the trace function points out that MonetDB uses only one
thread in VirtualBox. That means no parallelism during query execution in virtualized
environment. The used host system allows the server to work with 25 threads, which
can be also proved using the results of the trace function.

The results of the performed tests show, that MonetDB is environment sensitive and
hypervisors (especially VirtualBox) significantly impact the entire performance of Mon-
etDB.

40

6.4. RESULTS 41

6.4.4 Change of complexity

In the Chapter 5 is assumed, that by some m to n ratios (m > n) the costs of ordering
prevail over the Q_QR calculation costs, leading to the total complexity of O(mlogm-n).
To prove this assumption I run additional tests on the server, by which I fix the number
of tuples on a high level (10°000’000) and manipulate the size of the application part,
the results have to be ordered by 1 attribute. Figure 6.16 illustrates the structure of the
resulting time consumption. I do not picture the preparation time, since it is very small
(< 0.4 sec) compared to the total time consumption.

Logarithmic growth of the ordering costs and quadratic growth of the Q_QR calcula-
tion costs correspond to the assumed complexities. Using the low number of attributes
the ordering of tuples indeed takes more than 50% of the spent time. By increasing
the size of the application part the ordering costs still grow logarithmically, while the
costs of Q_QR calculations grow quadratically. And from a certain m to n ratio the

latter dominate in the time consumption structure. This results in the final complexity
of O(mn?).

50| [Ordering |
Q-QR calculations
40 |- a
o
2
< 30 -
e
=
20| N
10 |- / :
| | |

5 10 15 20 25
Number of attributes in the application part

Figure 6.16: Complexity evaluation for 10°000’000 tuples, run under non-virtualized en-
vironment (ordered by 1 attribute)

41

42 CHAPTER 6. EXPERIMENTAL EVALUATION

6.5 Optimization

The extensibility framework of MonetDB, allows optimizations on each of the execution
stages, which can string out the performance of the entire function:

Preparation: Preparation of the plan is one of core functionalities of MonetDB. As
the experimental evaluations show, the operations of this stage are executed already
very fast. Therefore, improvements at this step would not have significant effect on the
complete runtime. The preparation costs in the R solution are presented by the transfer
costs of the input and the output data, which are inevitable and high. By increasing the
amount of data transfer costs grow continuously, while the operations in MonetDB run
inside the DBMS and no transfer costs arise.

Ordering: The MonetDB vs. R and Internal experiments show, that high differences
in performance of both solutions can be partly explained with the time consumption for
ordering the tuples. R uses "radix” sort method, which relies on simple hashing to scale
time linearly with the input size. The asymptotic time complexity is O(m). For small
inputs (m < 200), the implementation uses an insertion sort (O(m?)). For integer vec-
tors of range less than 100,000, it switches to a simpler and faster linear time counting
sort. In all cases, the sort is stable. The "radix” method generally outperforms other
methods, especially for character vectors and small integers [12]. Empirically obtained
results show, that the complexity of the existing ordering algorithm in MonetDB is log-
arithmic, which seems to be the best attainable. But the absolute time consumption for
ordering is highly influenced by the environment, where MonetDB is running.

Q-QR calculations: The most time is consumed by the execution of the QRD. The
advantage of Gram-Schmid algorithm is, that it can be executed in parallel: for example
at the orthogonalization step. That represents an option for further optimization of the
Q_QR function. But it is only possible, if the system allows multiple threads during the
execution, which seems to be a problem in virtualized environments.

Multithreading in virtualized environments can significantly speed up not only the
execution of the Q_QR function but also the performance of the entire DBMS. To achieve
it, it is necessary to make the parallelizing of execution possible, that in practice means
to resolve the dependency on the amount of CPU cores available.

To avoid the existing performance degradation in virtualized environments the user
can move to unvirtualized hardware. If it is not possible, there is an another approach
to speed up the performance. Working in a virtualized environment, MonetDB maps
the database files on the VirtualBox disk image. Moving these files to an in-memory file
system (/dev/shm) helps to massively improve the performance [8].

With these optimisations and taking into account the transfer costs and memory
restrictions in R, MonetDB is an attractive solution for further statistical and linear
algebra calculations.

42

7

Summary and future work

The goal of this thesis was to integrate the QR decomposition into column-oriented
DBMS. First, I researched related works, showing which QRD algorithm is most suitable
for the task and chose one of them. In the next step, I analysed how linear algebra and
statistical operations are used in existing DBMS, and which approach is common for
carrying out statistical and linear operations.

Then the implementation approach was introduced, including detailed description
of the task, introducing the architecture and the main components of MonetDB. Im-
plementation is described using a running example. Experimental evaluation provides
information for judging the complexity of the implementation and comparing it with an
existing R solution.

As a result, MonetDB provides a good basis for customising DBMS’s functionality.
Existing libraries and primitive BAT operations allow to implement practically every
advanced statistical or linear algebra operation. The existing optimization logic at all
levels of MonetDB architecture makes it fairly easy to extend the rules for the newly
integrated operations.

I also analysed the performance of MonetDB, depending on the environment used. The
virtualized environment (especially VirtualBox) significantly impacts the performance
not only of the implemented Q_QR function but of the entire performance of MonetDB.

Big input and resulting relations require a lot of main memory, which might be a
problem on machines with a small main memory. Also computing a lot of concurrent
queries calling the function on the same server leads to memory problems. However,
as values of one attribute in MonetDB are stored so ”densely” (together in the same
C-array), they do not require much place. Together with optimized CPU instructions
and different compression techniques at many levels it provides an efficient mechanism
to use the advantage of fast cache memory in full.

Running the implemented Q_QR. function in a non-virtualized environment shows a
performance comparable with the performance of math and analytic software. The pos-
sibility of calculations directly on relations also saves time and resources for exporting
and reimporting the data. All that makes MonetDB attractive for statistical or linear
algebra operations.

44 CHAPTER 7. SUMMARY AND FUTURE WORK

Further linear algebra operations can be also integrated into MonetDB: e.g. imple-
mentation of a function which returns R matrix from QRD etc.

An interesting topic for further research can be investigation the exact reasons of the
performance degradation in VirtualBox and solving this performance overhead. That
would allow using MonetDB on different platforms, without the loss of performance.

44

References

1]

ABADI, D. J., Boncz, P. A.; AND HARIZOPOULOS, S. Column-oriented database
systems. Proceedings of the VLDB Endowment 2, 2 (2009), 1664-1665.

GANDER, W. Algorithms for the qr decomposition. Res. Rep 80, 02 (1980), 1251—
1268.

Group, D. A. Monetdb. http://www.monetdb.org/, May 2017.

GRUND, M., SCHAFFNER, J., KRUEGER, J., BRUNNERT, J., AND ZEIER, A.
The effects of virtualization on main memory systems. In Proceedings of the Sixth
International Workshop on Data Management on New Hardware (2010), ACM,
pp- 41-46.

IDREOS, S., GROFFEN, F., NES, N., MANEGOLD, S., MULLENDER, S., KERSTEN,
M., ET AL. Monetdb: Two decades of research in column-oriented database archi-
tectures. A Quarterly Bulletin of the IEEE Computer Society Technical Committee
on Database Engineering 35, 1 (2012), 40-45.

KERSTEN, M., ZHANG, Y., IvANovA, M., AND NEs, N. Sciql, a query language
for science applications. In Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases (2011), ACM, pp. 1-12.

MiNHAS, U. F., YADAvV, J., ABOULNAGA, A., AND SALEM, K. Database systems
on virtual machines: How much do you lose? In Data Engineering Workshop, 2008.
ICDEW 2008. IEEE 24th International Conference on (2008), IEEE, pp. 35—41.

MUHLBAUER, T., RODIGER, W., KiPF, A., KEMPER, A., AND NEUMANN,
T. High-performance main-memory database systems and modern virtualization:
Friends or foes? In Proceedings of the Fourth Workshop on Data analytics in the
Cloud (2015), ACM, p. 4.

O’LEARY, D. P., AND WHITMAN, P. Parallel qr factorization by householder and
modified gram-schmidt algorithms. Parallel computing 16, 1 (1990), 99-112.

ORACLE. Oracle r enterprise. http://www.oracle.com/ technetwork/ database/
database-technologies/ r/ r-enterprise/ overview/ index.html, June 2017.

46

References

[11]

[12]

[13]

R. Memory limits in r. hitps: // stat.ethz.ch/ R-manual/ R-devel/ library/ base/
html/ Memory-limits.html, June 2017.

R. R: Sorting or ordering vectors. hitps://stat.ethz.ch/ R-manual/ R-devel/
library/ base/ html/ sort.html, June 2017.

ROGERS, J., SIMAKOV, R., SOROUSH, E., VELIKHOV, P., BALAZINSKA, M.,
DeEWITT, D., HEATH, B., MAIER, D., MADDEN, S., PATEL, J., ET AL. Overview
of scidb. In 2010 International Conference on Management of Data, SIGMOD’10
(2010).

STONEBRAKER, M., BROWN, P., PoLiAKOV, A., AND RAMAN, S. The architec-
ture of scidb. In Scientific and Statistical Database Management (2011), Springer,
pp. 1-16.

ZHANG, Y., KERSTEN, M., IvaANovAa, M., AND NES, N. Sciql: bridging the
gap between science and relational dbms. In Proceedings of the 15th Symposium on
International Database Engineering & Applications (2011), ACM, pp. 124-133.

ZHANG, Y., KERSTEN, M., AND MANEGOLD, S. Sciql: array data processing inside
an rdbms. In Proceedings of the 2018 ACM SIGMOD International Conference on
Management of Data (2013), ACM, pp. 1049-1052.

46

A
Code

A.1 sql_parser.y

table_ref:
simple_table
subquery table_name { 8% = $1;
if ($$—>token — SQL.SELECT) {
SelectNode #xsn = (SelectNode
x)$1;
sn—>name = $2;
} else {append_symbol($1—>data.
lval, $2);}
}

QQR (7 table_ref ON column_ref_commalist opt_order_by_clause

{ dlist =1 = L();
append_symbol (1, $3);
append_list (1, $5);
append_symbol (1, $6);
$$ = _symbol_create_list (SQLQQR, 1); }
QQR (7 qqr_subquery ON column_ref_commalist
opt_order_by_clause)’
{ dlist x1 = L();
append_symbol (1, $3);
append_list (1, $5);
append_symbol (1, $6);
$$ = _symbol_create_list (SQL.QQR, 1); }

qqr_subquery :
subquery table_name { $3
if

= $1;
($$—>token —
SQL.SELECT) {

48

APPENDIX A. CODE

| subquery

SelectNode #sn = (
SelectNodex) $1;
sn—>name = $2;
} else { append_symbol(
$1—>data.lval , $2);}
}
{ $$ = NULL;
yyerror (m, ”Subquery table reference needs
alias , use (SELECT .) AS xxx and 7);
YYABORT; }

48

A.2. REL_BIN.C 49

A.2 rel bin.c

static stmt =*
rel2bin_qqr (mve xsql, sql_rel *rel, list xrefs)

{

clock_t start = clock();

list *xlAppUnsorted;

list x1Descr;

list *lAppSorted;

list xqqrFinal;

list *xpl;

node *n;

node xen;

node *xexp;

node xk;

node 1 ;

node x*j;

stmt xleft = NULL;

stmt *xonV = NULL;

stmt *psub = NULL;

stmt *orderby_ids = NULL;
stmt *xorderby_grp = NULL;

lAppUnsorted = sa_list (sql—>sa);
IDescr = sa_list (sql—>sa);
lAppSorted = sa_list (sql—>sa);
qqrFinal = sa_list (sql—>sa);

//Take the table

if (rel—1)

left = subrel_bin(sql, rel—>1, refs);
if (!left)

return NULL;

printf (”\nxxxTable %s*xx\n”, table name(sql—>sa, left—
op4.lval —>h—>data));

//Make 2 lists for descriptive part and for application
part
if (rel—exps){

for (n = left—>op4.lval—h; n; n = n—>next) {

49

APPENDIX A. CODE

stmt xsc = n—>data;

char xcname = column_name(sql—>sa, sc);
char *tname = table_name(sql—>sa, sc);
int is_same = 0;

for (exp = rel—>exps—>h; exp ; exp =
exp—>next){
sql_exp *EXPsc = exp—>data;
char *EXPtname = EXPsc—>1;
char *xEXPcname = EXPsc—>r;

if (strcmp (cname,”%TID%”) =— 0)
{
is_same = 0;
break;}
if (strcmp (cname, EXPcname)=— 0)

{

is_same = 1;
break;}

}

stmt *xnc;

nc = column(sql—sa, sc);

if (is_same =— 1)

list _append (1AppUnsorted ,
stmt_alias (sql—>sa, nc,
tname, cname));

else
list _append (1Descr, stmt_alias(
sql—>sa, nc, tname, cname));
}
¥
//Find ORDER
if (rel—>r) {
list xoexps = rel—>r;
for (en = oexps—>h; en; en = en—>next) {

stmt xorderby = NULL;

sql_exp xorderbycole = en—>data;

stmt xorderbycolstmt = exp_bin(sql,
orderbycole, left , psub, NULL, NULL,
NULL, NULL) ;

50

A.2. REL_BIN.C

51

}

/ JORDER

if (!orderbycolstmt) {
assert (0) ;
return NULL;

}

/* single values don’t need sorting x/

if (orderbycolstmt—>nrcols = 0) {
orderby_ids = NULL;
break ;

if (orderby_.ids)
orderby = stmt_reorder (sql—>sa,
orderbycolstmt ,
is_ascending (orderbycole),
orderby_ids, orderby_grp);
else
orderby = stmt_order (sql—>sa,
orderbycolstmt , is_ascending
(orderbycole));

orderby_ids = stmt_result (sql—>sa,
orderby, 1);

orderby_grp = stmt_result (sql—>sa,

orderby , 2);

if (orderby_ids){

for(n =

for (1

IDescr—>h; n; n = n—>next){

stmt xsc = n—>data;
char #cname = column_name(sql—>sa, sc);
char stname = table_ name(sql—>sa, sc);

sc = stmt_project (sql—>sa, orderby_ids,
sc);

sc = stmt_alias(sql—>sa, sc, tname,
cname) ;

list_.append (qqrFinal , sc);

lAppUnsorted—h; 1; 1 = l-—>next){
stmt xsc = l—>data;
char #cname = column_name(sql—>sa, sc);

o1

52

APPENDIX A. CODE

char xtname = table_name(sql—>sa, sc);

sc = stmt_project (sql—>sa, orderby_ids,

s¢)

sc = stmt_alias(sql—>sa, sc, tname,

cname) ;

list _append (l1AppSorted, sc);

}

// Make QQR for the sorted Application part and append

it to the result list qqrFinal

for (k = 1AppSorted—h; k; k = k—>next){

stmt xoriginal;
stmt *xnorm;
original = k—>data;

norm = stmt_norm(sql—>sa, original);

list_append (qqrFinal , norm);
k—>data = norm;

for (j = k—>next; j; j = j—next){
stmt xoriginal = j—>data;
stmt xorth = stmt_orth(sql—>sa,

original , norm);
j—>data = orth;
}
¥

return stmt_list (sql-—>sa, qqrFinal);

92

A.3. SQL.GENCODE.C

53

A.3 sql_gencode.c

static int
_dumpstmt (backend xsql, MalBlkPtr mb, stmt x*s)
{

InstrPtr q = NULL;

node x*n;

if (s) {

if (s—>nr > 0)

return s—>nr;

f

/* stmt already handled

switch (s—>type) {

case st_norm:{

InstrPtr sum, v, p;
int 1, res;
1 = _dumpstmt(sql, mb, s—>opl);
assert (1 >= 0);

q = newStmt (mb, batcalcRef
)

q = pushArgument (mb, q,

q = pushArgument (mb, ¢,

res = getDestVar(q);

1)
1);

7

sum = newStmt (mb, aggrRef, ”sum

R) .
sum = pushArgument (mb, sum,

) ;

res =

res
getDestVar (sum) ;

v = newStmt (mb, mmathRef, ”sqrt
’7) ;

v = pushArgument (mb, v,

res = getDestVar(v);

res);

p = newStmt(mb, batcalcRef
’7/’7) ;

p = pushArgument(mb, p, 1);

p = pushArgument (mb, p, res);

res = getDestVar(p);

93

APPENDIX A. CODE

s—>nr = getDestVar(p);
return s—>nr;
} break;
case st_orth:{
InstrPtr sum, p, m;
int 1, r, res;

1 = _dumpstmt(sql, mb, s—opl);
r = _dumpstmt(sql, mb, s—>op2);
assert (1 >= 0 && r >= 0);

q = newStmt (mb, batcalcRef
)

q = pushArgument(mb, q, 1);

q = pushArgument (mb, q, r);

res = getDestVar(q);

kM

sum = newStmt(mb, aggrRef, ”sum
")
sum = pushArgument (mb, sum, res

) ;

res = getDestVar (sum) ;

p = newStmt(mb, batcalcRef
)

p = pushArgument(mb, p, res);

p = pushArgument (mb, p, r);

res = getDestVar(p);

m = newStmt (mb, batcalcRef ,

” _77);
m = pushArgument (mb, m, 1);
m = pushArgument (mb, m, res);

s—>nr = getDestVar (m);

return s—>nr;

} break;

o4

B

Relation-Plan

plan SELECT % FROM q_qr (tablel ON x,y,z ORDER BY a);

+ +
rel

+ +
project (

aqr (

table (sys.tablel) [tablel.x, tablel.y, tablel.z, tablel.a,
tablel.b, tablel.c, tablel.%TID% NOT NULL]

) [tablel.x, tablel.y, tablel.z |
) | tablel.x, tablel.y, tablel.z, tablel.a, tablel.b, tablel.c

]
+

+

C
MAL-Plan

C.1 MAL-Plan for with ordering mode

explain SELECT % FROM q_qr (tablel ON x,y,z ORDER BY a);

l’

mal

I

function user.s5_1():void;

X_121:void := querylog.define(” explain select x from q_qr (
tablel on x,y,z order by a);”,” default_pipe” ,97);

X_80 := bat.new(nil:oid,nil:str);
X_88 := bat.append(X_80,” sys.tablel”);
X 96 := bat.append(X_88,” sys.tablel”);
X_101 := bat.append(X_96,” sys.tablel”);
X_106 := bat.append(X_-101,” sys.tablel”);
X_111 := bat.append(X_106,” sys.tablel”);
X_116 := bat.append(X_111,” sys.tablel”)
X_83 := bat.new(nil:oid,nil:str);
X_90 := bat.append(X_83,”x");
X_ 97 := bat.append(X_90,”y");
X_102 := bat.append(X.97,72");
X_107 := bat.append(X_102,”7a”);
X_112 := bat.append(X_107,”b"”);
X_117 := bat.append(X_112,7¢c”);
X_84 := bat.new(nil:oid,nil:str);
X_91 := bat.append(X_84,” int”);
X 98 := bat.append (X 91,” int”);
X_103 := bat.append(X_98,” int");
X_108 := bat.append(X_103,” int”);
X_113 := bat.append(X_108,” int”);
()
)

?

X_118 := bat.append(X_113,” int”
X_85 := bat.new(nil:oid, nil:int
X_93 := bat.append(X_85,32);

I

7

58 APPENDIX C. MAL-PLAN

X_99 := bat.append(X_93,32);
X_104 := bat.append(X_99,32);
X_109 := bat.append(X_104,32);
X_114 := bat.append(X_109,32);
X_119 := bat.append(X_114,32);
X_87 := bat.new(nil:oid,nil:int);
X 95 := bat.append(X_87,0);
X_100 bat .append (X_95,0) ;
X_105 := bat.append(X_100,0) ;
X_110 := bat.append(X_105,0) ;
()
()

X_115 := bat.append(X_110,0) ;

X_120 := bat.append(X_115,0) ;

X1 := sql.mve();

C_2:bat [:0id] := sql.tid(X_.1,”sys”,” tablel”);
X.5:bat[:int] := sql.bind(X.1,”sys”,” tablel”,”a” ,0);
(C8,r1.8) := sql.bind(X_1,”sys”,” tablel”,”a” ,2);
X_11:bat [:int] := sql.bind(X_.1,”sys”,” tablel”,”a” ,1);

X_ 13 := sql.delta(X5,C8,r1.8,X_11);
X_14 := algebra.projection(C.2,X_13);

(X_15,r1.15,r2_15) := algebra.subsort(X_14, false , false);
X_19:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”x” ,0);
(C21,r1.22) := sql.bind(X_1,”sys”,” tablel” ”x”,2);
X_23:bat[:int] := sql.bind(X_1,”sys”,” tablel” ,”x” 1);

X 24 := sql.delta(X_19,C21,r1.22 /X 23);

X_25:bat [:int] := algebra.projectionpath(rl_15,C.2,X_24);

X_26 := batcalc.x(X_25,X_25);
X_ 27 := aggr.sum(X_26);

X_28 := mmath.sqrt (X_27);
X_29 := batcalc./(X_25,X_28);

X_30:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”y” .,0);
(C32,r1.34) := sql.bind(X_1,”sys”,” tablel”,”y” ,2);
X_34:bat [:int] := sql.bind(X_1,”sys”,” tablel” ,”y” 1);

X 35 := sql.delta(X_30,C32,r1.34 ,X.34);

X_36:bat [:int] := algebra.projectionpath(rl_15,C_2,X_35);

X_37 := batcalc.*x(X_.36,X_29);
X_38 := aggr.sum(X_37);
X_39 := batcalc.*(X_.38,X_29);

X_40 := batcalc.—(X_.36,X_39);

X_41 := batcalc.*(X_40,X_40);

X 42 := aggr.sum(X_41);

X_43 := mmath.sqrt (X_42);

X_ 44 := batcalc./(X_40,X_43);

X_45:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”z” ,0);
(C47,r1.50) := sql.bind(X_1,”sys”,” tablel”,”z”,2);

o8

C.1. MAL-PLAN FOR WITH ORDERING MODE

59

X_49:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”z” 1);
X.50 := sql.delta (X 45,C47,r1.50,X_49);

X_51:bat[:int] := algebra.projectionpath(rl_15,C_2,X_50);

X_52 := batcalc.x(X.51,X_29);
X_ 53 := aggr.sum(X_52);

X_54 := batcalc.*x(X_53,X_29);
X_55 := batcalc.—(X_51,X_54);
X_56 := batcalc.*(X_55,X_44);

X_57 := aggr.sum(X_56);
X_58 := batcalc.*(X.57,X_44);

X_59 := batcalc.—(X_55,X_58);

X_60 := batcalc.*x(X_59,X_59);

X 61 := aggr.sum(X_60);

X_62 := mmath.sqrt (X_61);

X_63 := batcalc./(X_.59,X_62);

X_64 := algebra.projection(rl_15,X_14);

X_65:bat [:int] := sql.bind(X.1,”sys”,” tablel”,”b” ,0) ;
(C67,r1.71) := sql.bind(X_1,”sys”,” tablel”,”b” ;2);
X_69:bat [:int] := sql.bind (X.1,” sys”,” tablel”,”b” ,1);
X_70 := sql.delta (X 65,C67,r1.71,X_69);
X_71:bat[:int] := algebra.projectionpath(rl1-15,C_2,X_70);
X_72:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”¢” ,0);
(C_74,r1.79) := sql.bind(X_1,”sys”,” tablel”,”¢c”,2);
X_76:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”¢” 1) ;

X_77 := sql.delta(X.72,C.74,r1.79 ,X_76);

X_78:bat [:int]| := algebra.projectionpath(rl.15,C.2 /X.77);

sql.resultSet (X_116,X_117,X_118,X_119,X_120,X_29,X_44,X_63 ,X_64

, X 71,X.7 : 8); end user.sb_1

99

60 APPENDIX C. MAL-PLAN

C.2 MAL-Plan for without ordering mode

explain SELECT % FROM q_qr (tablel ON x,y,z ORDER BY a);

+ +

mal

+ +

function wuser.s2_1():void;

X_116:void := querylog.define(” select * from q_qr (tablel on x,
y,z order by a);”,” default_pipe” ,95);

X_75 := bat.new(nil:oid,nil:str);

X_83 := bat.append(X_.75,” sys.tablel”);

X 91 bat .append (X_83,” sys.tablel”);
X_96 := bat.append(X_91,” sys.tablel”);
X_101 := bat.append(X_96,” sys.tablel”);
X_106 := bat.append(X_101,” sys.tablel”);
X_111 := bat.append(X_106,” sys.tablel”);
X_78 := bat.new(nil:oid,nil:str);

X_85 := bat.append (X_78,"x");
X_92 := bat.append(X_85,"7y");
X_97 := bat.append(X_.92,72")

X_102 := bat.append(X_97,”a”

~— -

X_107 := bat.append(X_-102,”b”);
X_112 := bat.append(X_107,7¢c”);
X_79 := bat.new(nil:oid,nil:str);
X_ 86 := bat.append(X_79,” int”);
X_93 := bat.append(X_86,” int”);
X_ 98 := bat.append(X_93,” int”);
X_103 := bat.append(X_98,” int”);
X_108 := bat.append(X_103,” int”);

X_113 := bat.append(X_108,” int”);
X_80 := bat.new(nil:oid, nil:int)
X_ 88 := bat.append(X_80,32);

X_ 94 := bat.append(X_88,32);

X 99 := bat.append(X_94,32);
X_104 := bat.append(X.-99,32);
X_109 := bat.append(X_104,32) ;
X_114 := bat.append(X_109,32);
X_82 := bat.new(nil:oid,nil:int);
X_ 90 := bat.append(X_82,0);
X_95 := bat.append(X_-90,0) ;
X_100 := bat.append(X_95,0);
X_105 := bat.append(X_100,0);
X_110 := bat.append(X_105,0)

7

I

60

C.2. MAL-PLAN FOR WITHOUT ORDERING MODE

61

X_115 := bat.append(X_110,0) ;

X1 := sql.mve();

C_2:bat[:0id] := sql.tid(X_.1,”sys”,” tablel”);
X_5:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”x”,0);
(C8,r1.8) := sql.bind(X.1,” sys”,” tablel” ”x” ,2);
X_11:bat[:int] := sql.bind(X.1,”sys”,” tablel” ,”x” /1) ;

X_ 13 := sql.delta(X5,C8,r1.8,X_11);

X_14 := algebra.projection(C.2,X_13);

X_15 := batcalc.*(X_14,X_14);

X_16 := aggr.sum(X_15);

X_17 := mmath.sqrt (X_16);

X_18 := batcalc./(X.14,X_17);

X_19:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”y” 0);

(C21,r1.21) := sql.bind(X_1,”sys”,” tablel”,”y” 2);
X_23:bat [:int] := sql.bind(X.1,”sys”,” tablel” ,”y” 1) ;

X_ 24 := sql.delta(X_19,C21,r1_21,X_23);
X_25 algebra.projection (C_2,X_24);
X_26 := batcalc.*x(X_25,X_18);

X_27 := aggr.sum(X_26);

X_28 := batcalc.*(X_27,X_18);

X_29 := batcalc.—(X_25,X_28);

X_30 := batcalc.*(X_29,X_29);

X_31 := aggr.sum(X_30);

X_32 := mmath.sqrt (X_31);

X_33 := batcalc./(X.29,X_32);

X_34:bat [:int] := sql.bind(X.1,”sys”,” tablel”,”2z” 0);
(C_36,11.36) := sql.bind (X.1,” sys”.,” tablel” 72" 2):
X_38:bat [:int] := sql.bind(X.1,”sys”,” tablel”,”2z” 1) ;

X 39 := sql.delta(X.34,C.36,r1.36 ,X_38);
X_40 := algebra.projection(C-2,X_39);
X_41 := batcalc.*(X_40,X_18);

X_ 42 := aggr.sum(X_41);

X_43 := batcalc.*(X_42,X_18);
X_44 := batcalc.—(X_40,X_43);
X_45 := batcalc.*x(X 44,X_33);
X_ 46 := aggr.sum(X_45);

X_47 := batcalc.*x(X_46,X_33);

X 48 := batcalc.—(X.44,X_47);

X_49 := batcalc.*(X_48,X_48);

X_50 := aggr.sum(X_49);

X_51 := mmath.sqrt (X_50);

X_52 := batcalc./(X.48,X_51);

X_53:bat [:int] := sql.bind(X_1,”sys”,” tablel”,”a” ,0);
(C55,r1.55) := sql.bind (X_1,”sys”,” tablel” ,”a”,2);

61

62 APPENDIX C. MAL-PLAN

X 57:bat[:int] := sql.bind(X_1,”sys”,” tablel”,”a” ,1);
X 58 := sql.delta(X.53,C.55,r1.55,X.57);
X_59 := algebra.projection(C_2,X_58);

X_60:bat [:int] := sql.bind(X.1,”sys”,” tablel”,”b” ,0) ;
(C.62,11.62) := sql.bind(X_1,” sys”.,” tablel” ,”b” ,2);
X_64:bat[:int] := sql.bind(X.1,”sys”,” tablel”,”b” |1);

X_ 65 := sql.delta(X_60,C62,r1.62,X 64);
X_66 := algebra.projection(C-2,X_65);

X_67:bat[:int] := sql.bind(X_1,”sys”,” tablel”,”¢”,0);
(C69,r1.69) := sql.bind(X_1,”sys”,” tablel” ”c”,2);
X_71:bat[:int] := sql.bind(X_1,”sys”,” tablel”,”¢” 1) ;

X_72 := sql.delta(X_67,C_69,r1.69 ,X_71);

X_73 := algebra.projection(C.2,X_72);

sql.resultSet (X_111,X_112,X_113,X_114,X_115,X_18,X_33,X_52,X_59
. X_66,X_73) ;

end user.s2_1;

62

UDF

D.1 UDF for with ordering mode

CREATE FUNCTION function_-R (al INTEGER, a2 INTEGER, a3 INTEGER, a4
INTEGER, a5 INTEGER, a6 INTEGER)

RETURNS TABLE (x1 INTEGER, x2 DOUBLE, x3 DOUBLE, x4 DOUBLE, x5
DOUBLE, x6 DOUBLE) LANGUAGE R {

frame <— data.frame(xl=al,6x2=a2,6x3=a3, x4=a4,x5=ab,x6=ab);

frameSorted <— frame[with (frame,order(x1)) ,];

frameforQR<—frameSorted [,c(2,3,4,5,6) |;

mat <— as.matrix (frameforQR);

Q <— qr.Q(qr(mat));

cbind (frameSorted[,c(1)],as.data.frame(Q));};

D.2 UDF for without ordering mode

CREATE FUNCTION function R (al INTEGER, a2 INTEGER,a3 INTEGER, a4
INTEGER, a5 INTEGER, a6 INTEGER)

RETURNS TABLE (x1 INTEGER, x2 INTEGER, x3 INTEGER, x4 DOUBLE, x5
DOUBLE, x6 DOUBLE) LANGUACE R {

frame <— data.frame(xl=al,h x2=a2,6x3=a3,x4=a4,xb=ab,x6=ab6) ;

frameforQR<—frame[,c(4,5,6)];

mat <— as.matrix (frameforQR);

Q <~ qr.Q(qr(mat));

cbind (frame[,c(1,2,3)],as.data.frame(Q));};

64 APPENDIX D. UDF

D.3 UDF without Q_QR

CREATE FUNCTION function_R (al INTEGER, a2 INTEGER, a3 INTEGER, a4
INTEGER, a5 INTEGER, a6 INTEGER)

RETURNS TABLE (x1 INTEGER, x2 DOUBLE, x3 DOUBLE, x4 DOUBLE, x5
DOUBLE, x6 DOUBLE) LANGUACE R {

frame <— data.frame(xl=al, 6 x2=a2,6x3=a3, 6 x4=a4, 6 xb5=ab, 6 x6=a6);

frameforQR<—frame[,c(2,3,4,5,6) |;

mat <— as.matrix(sapply (frameforQR, as.numeric));

cbind (frame[,c(1)],as.data.frame(mat));};

64

1D

Detailed test results

Table E.1: Complete runtime in with ordering mode, ordered by one attribute (in sec.)
MonetDB

Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100
1 2,30 9,50 20,20 45,00 80,00
100k 2 2,40 10,90 25,00 39,30 54,70
3 2,50 11,20 22,10 31,40 55,80
Mean 2,40 10,53 22,43 38,57 63,50
1 21,90 88,00 265,00 480,00 826,00
IM 2 22,10 85,00 270,00 444,00 846,00
3 22,10 85,00 270,00 444,00 846,00
Mean 22,30 85,00 271,00 459,00 842,00
R
Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100
1 1,80 2,30 4,10 5,10 8,90
100k 2 0,86 1,80 2,90 5,00 5,40
3 0,81 2,10 3,20 3,80 5,90
Mean 1,16 2,07 3,40 4,63 6,73
1 7,30 18,40 44,10 84,00 133,00
IM 2 6,20 15,40 41,20 690,00 153,00
3 6,00 18,40 41,30 96,00 159,00
Mean 6,50 17,40 42,20 90,00 148,33

66 APPENDIX E. DETAILED TEST RESULTS

Table E.2: Complete runtime in with ordering mode on relations with 10 attributes in
the descriptive and 20 attributes in the application part (in sec.)

MonetDB
Number of Orde1j,By
fuples Run ratio
30 60 90
1 2,20 2,40 2,20
2 2,50 2,30 2,20
10k 3 2,40 2,20 2,20
Mean 2,37 2,30 2,20
1 22,10 23,60 24,80
M 2 22,20 24,50 25,90
3 22,40 25,30 24,90
Mean 22,23 24,47 25,20
R
Number of Order',By
fuples Run ratio
30 60 90
1 0,81 0,75 0,82
2 0,80 0,71 0,77
100k 3 0,76 0,70 0,84
Mean 0,79 0,72 0,81
1 9,20 17,00 14,80
M 2 8,50 13,90 20,10
3 7,40 20,10 18,00
Mean 8,37 17,00 17,63

66

67

Table E.3: Complete runtime in with ordering mode, on relations with 30% Order_By
ratio and 20 attributes in the application part (in sec.)

MonetDB
Number of attributes
Number of . .
tuples Run in the descriptive part
10 50
1 2,20 2,40
2 2,50 2,30
100k 3 2,40 2,60
Mean 2,37 2,43
1 22,10 30,70
2 22,20 29,20
M 3 22,40 32,70
Mean 22,23 30,87
R
Number of attributes
Number of . ..
tuples Run in the descriptive part
10 50
1 0,81 1,10
2 0,80 0,90
100k 3 0,76 0,95
Mean 0,79 0,98
1 9,20 20,40
2 8,50 28,30
M 3 7,40 21,80
Mean 8,37 23,50

Table E.4: Preparation time in with ordering mode, ordered by one attribute (in msec.)
MonetDB

Number of attributes
Number of . ..
tupl Run in the application part
Hpies 20 40 60 80 100
1 13,68 51,00 78,50 213,00 288,28
100k 2 14,63 48,40 89,10 143,41 245,51
3 16,20 40,50 129,60 240,37 231,84
Mean 14,83 46,63 99,07 198,93 255,21

67

68

APPENDIX E. DETAILED TEST RESULTS

Table E.5: Complete runtime in without ordering mode (in sec.)
MonetDB

Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100
1 2,30 9,50 20,50 35,50 55,00
100k 2 2,20 9,20 18,80 35,50 53,40
3 2,20 9,30 19,70 35,40 57,00
Mean 2,23 9,33 19,67 35,47 55,13
1 21,10 82,00 224,00 302,00 373,00
IM 2 19,70 82,00 202,00 298,00 371,00
3 20,10 84,00 201,00 295,00 412,00
Mean 20,30 82,67 209,00 298,33 385,33
R
Number of attributes
Number of . ..
tuples Run in the application part
20 40 60 80 100
1 1,00 1,30 2,50 3,50 5,70
100k 2 0,51 1,30 2,90 3,30 5,20
3 0,53 1,30 1,90 3,40 5,00
Mean 0,68 1,30 2,43 3,40 5,30
1 4,70 15,30 27,40 58,80 67,00
IM 2 5,30 14,50 23,90 57,10 69,00
3 3,80 15,50 23,10 61,00 76,00
Mean 4,60 15,10 24,80 58,97 70,67

Table E.6: Preparation time in without ordering mode (in msec.)
MonetDB

Number of attributes
Number of) ..
tupl Run in the application part
uples 20 40 60 80 100
1 12,27 43,70 80,55 173,61 259,26
100k 2 11,77 46,73 77,43 174,03 264,87
3 13,25 45,68 73,31 152,18 266,02
Mean 12,43 45,37 77,10 166,60 263,38

68

69

Table E.7: Time for data transfer to and from R (in sec.)

R
Number of attributes
Number of . L
tuples Run in the application part

20 40 60 80 100
1 1,40 2,40 3,90 9,40 26,20
100k 2 1,00 2,50 4,10 13,50 18,90
3 1,00 2,20 3,50 9,10 11,10
Mean 1,13 2,37 3,83 10,67 18,73

Table E.8: Time consumption by used MAL-instructions (in sec.)
MonetDB
Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100

* 2,6591 9,2369 19,3498 35,3222 54,9333

— 0,7616 2,5941 5,5058 10,3352 15,7897

100k sum 0,1511 0,5878 1,1764 2,3311 3,5729

/ 0,0807 0,1037 0,1524 0,1994 0,3300

srqt 0,0001 0,0003 0,0005 0,0008 0,0012

69

70 APPENDIX E. DETAILED TEST RESULTS

Table E.9: Complete runtime in with ordering mode, ordered by one attribute and run
in non-virtualized environment (in sec.)

MonetDB
Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100
1 0,4 1,1 2,2 3,9 6,2
2 0,4 1,1 2,3 3,9 6,1
100k 3 0,4 1,1 2,3 4,0 6,0
Mean 0,4 1,1 2,3 3,9 6,1
1 3,6 9,0 17,3 29,1 44,7
IM 2 3,6 9,1 17,2 29.4 45,0
3 3,6 9,1 17,4 28,8 45,6
Mean 3,6 9,1 17,3 29,1 45,1
R
Number of attributes
Number of . .
tuples Run in the application part
20 40 60 80 100
1 0,7 1,1 1,8 2,8 4,0
2 0,5 1,0 1,8 3,2 4,0
100k 3 0,5 1,0 1,8 2,8 3,9
Mean 0,6 1,0 1,8 2,9 4,0
1 6,3 12,4 19,9 31,8 45,9
IM 2 4.6 11,3 20,1 31,2 48,4
3 5,0 11,0 19,6 33,3 48,1
Mean 5,3 11,6 19,9 32,1 47,5

Table E.10: Time consumption in with ordering mode, on relations with 1’°000°000 tu-
ples, odered by one attribute and run in non-virtualized environment (in

sec.)
MonetDB
Number of attributes
Number of . .
tuples Run in the application part
5 10 15 20 25
1 1,7 5,4 11,4 19,5 30,9
2 1,7 5,5 11,3 19,4 30,5
Q-QR 3 1,7 5,4 11,4 19,5 30,2
Mean 1,7 5,4 11,4 19,5 30,5
1 7,4 10,9 14,2 16,1 15,7
2 7.4 11,0 13,8 15,1 15,8
Q-QR 3 7.4 11,1 13,3 16,0 16,9
Mean 7.4 11,0 13,8 15,7 16,1

70

List of Figures

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

6.1

6.2

6.3

6.4

6.5

6.6

Structure of the input relation 7
Relation ro 8
Relation r ordered by attribute a and the corresponding matrix A 8
Resulting relation L L oo 9
Internal (BAT) representation of relation » 12
Implementation of select operation 13
Symbol tree 15
Relation treeo 16
Statement tree e 18
Processes of normalization statement, on the example of the attribute z

from the query (3.2) 19
Processes of orthogonalization statement, on the example of the attribute

y from the query (3.2) (orthogonalized to attribute) 20
Stand of BATs after all attributes from the query (3.2) are orthogonalized

to attribute x Lo 21

Complete runtime in the MonetDB vs. R experiment (ordered by 1 at-
tribute) 28
Complete runtime in the MonetDB vs. R experiment with 20 attributes
in the application part, 10 in the descriptive part and different Order_By
ratios . . . oL L 29
Complete runtime in the MonetDB vs. R experiment on relations with 20
attributes in the application part, 30% Order By ratio and two different

descriptive part sizes L 29
Preparation time in the Internal experiment on relations with 100’000
tuples (ordered by 1 attribute) 31

Time consumption in the Internal experiment on relations with 100’000
tuples, 20 attributes in the application part, 10 in the descriptive part
and different Order_ By ratios L. 32
Time consumption in the Internal experiment on relations with 100’000
tuples, 20 attributes in the application part, 30% Order_By ratio and two
different descriptive part sizes 32

72

List of Figures

6.7 Time consumption in the Internal experiment on relations with 100’000
tuples and different application part sizes (ordered by 1 attribute)

6.8 Time consumption in the Internal experiment on relations with 20 at-
tributes in the application part and different number of tuples (ordered
by 1 attribute)

6.9 Time consumption by the used MAL-instructions, during the Q_QR cal-
culation on 100’000 tuples

6.10 Time consumption in R on relations with 1’000°000 tuples (ordered by 1
attribute) Lo

6.11 Complete runtime in the MonetDB vs. R experiment (in without ordering
mode) ...

6.12 Time consumption in the Internal experiment on relations with 1°000’000
tuples (in without ordering mode)

6.13 Calculation time in the Internal experiment on relations with 20 at-
tributes in the application part and different number of tuples in relation
(in without ordering mode)

6.14 Complete runtime of two functions, performed in VirtualBox(VB) and on
server (H) . . . o o

6.15 Complete runtime in the MonetDB vs. R experiment, run under host
operating system (ordered by 1 attribute)

6.16 Complexity evaluation for 10°000°000 tuples, run under non-virtualized
environment (ordered by 1 attribute) L0

72

33

List of Tables

5.1 Operations in vector-based Gram-Schmidt algorithm and number of their
executions Lo

6.1 Values of the input parameters for experimental evaluation

E.1 Complete runtime in with ordering mode, ordered by one attribute (in
SEC.) vt e e e
E.2 Complete runtime in with ordering mode on relations with 10 attributes
in the descriptive and 20 attributes in the application part (in sec.)
E.3 Complete runtime in with ordering mode, on relations with 30% Or-
der_By ratio and 20 attributes in the application part (in sec.)
E.4 Preparation time in with ordering mode, ordered by one attribute (in
0011
E.5 Complete runtime in without ordering mode (insec.)
E.6 Preparation time in without ordering mode (in msec.)
E.7 Time for data transfer to and from R (insec.)
E.8 Time consumption by used MAL-instructions (in sec.)
E.9 Complete runtime in with ordering mode, ordered by one attribute and
run in non-virtualized environment (insec.)
E.10 Time consumption in with ordering mode, on relations with 1’°000°000
tuples, odered by one attribute and run in non-virtualized environment
(I SEC.) « v v o

