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Abstract

The probabilistic serial mechanism (PS) is one of the most well-understood and studied
mechanisms for the assignment problem. While PS is ordinal efficient, it is not strat-
egyproof. However, it has been shown that PS is partially strategyproof and that this
is the strongest incentive concept satisfied by PS so far. Partial strategyproofness is
a parametric incentive concept, where the degree of strategyproofness of a mechanism
depends on the given setting. Strategyproofness lies at the upper end of the parametric
spectrum with a degree of strategyproofness equal to 1.

The main result of this thesis is that the degree of strategyproofness for PS converges
to 1 as markets get large. The motivation for this result are calculations of the degree of
strategyproofness from (Mennle and Seuken, 2017c) and the large market results from
(Kojima and Manea, 2010).

This result leads to an elegant, parametric proof that PS is strategyproof in the large.
Furthermore, it deepens our understanding of the incentives of PS in large markets
and allows us to give upper bounds on the market size, such that a certain degree of
strategyproofness for PS can be guaranteed. Similarly, it can also give lower bounds
on the degree of strategyproofness for PS, in settings with sufficiently large quotas of
objects.

Our secondary result considers settings where there are as many agents as objects
and where all objects have unit capacity. In these settings, the set of utility functions
which are uniformly relatively bounded indifferent is, in general, not identical to the
set of utility functions for which PS is strategyproof. This disproves a conjecture that
was proposed in the construction of partial strategyproofness in (Mennle and Seuken,
2017c).
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Introduction

The assignment problem concerns itself with the allocation of indivisible objects to
self-interested agents. These agents have private preferences over the objects. In the
assignment problem monetary transfers are not allowed, therefore, this is a distinct
problem compared to auctions or other settings with transferable utility. One common
situation where the assignment problem arises is by allocating students to public schools.
Here, all students submit their preferences over the different schools. The education
department then has to allocate each student to a school (Abdulkadiroğlu and Sönmez,
2003; Abdulkadiroğlu, Pathak and Roth, 2005). Other situations are, for example,
allocating entry level positions in labour markets (Roth, 1984; Featherstone, 2011) and
allocating accommodation in subsidized housing (Abdulkadiroğlu and Sönmez, 1998).

One of the most well-understood and studied random assignment mechanism is the
probabilistic serial mechanism, which was first proposed by (Bogomolnaia and Moulin,
2001). As input for this mechanism, the agents report their preference orders over a
given set of objects. The output of this mechanism is a probability distribution over this
set of objects. This allocation can be computed with the simultaneous eating algorithm.
For this algorithm, the objects are interpreted as divisible goods of probability shares.
Every object has probability shares equal to its quota. The quota or capacity of an
object defines to how many agents it can be assigned to. At the start of the algorithm,
every agent starts consuming probability shares from its most preferred object at a speed
which is identical for all agents. Whenever the quota of an object is exhausted, all agents
that were consuming probability shares of this object start consuming probability shares
from their next most preferred object that still has a positive capacity. The agents keep
eating probability shares at equal speeds based on this rule until they have consumed
probability shares that add up to 1 or until no object has any capacity left. The random
assignment for each agent is described by the probability shares the agent has consumed
from each object. Consider the following example that illustrates this algorithm:

Example 1. Let there be three objects with unit capacity and three agents that report
the following preference orders:

�1: a � b � c, �2: b � a � c, �3: b � c � a. (1.1)

The notation a � b means that object a is strictly preferred to object b. The eating speeds
of all agents are identical and such that at time t = 1 each agent has consumed probability
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shares that sum up to 1. At the start of the simultaneous eating algorithm (time t = 0),
agents 2 and 3 start consuming probability shares of object b, while agent 1 consumes
probability shares of object a. At t = 1/2 the object b has no more probability shares left,
therefore, agent 2 switches to consuming prabability shares from object a, which has a
remaining capacity of 1/2. Agent 3 starts consuming the untouched object c. Then, at
time t = 3/4, all probability shares from object a are consumed. Hence, all agents now
consume the remaining 3/4 probability shares of object c until the capacity of c drops to
zero. Agent 1 has consumed 3/4 of the probability shares of object a and 1/4 of object c,
hence, it has a chance of 3/4 to receive object a and a chance of 1/4 to receive object c.
We can denote this by (3/4, 0, 1/4), which indicates the assignment probability for agent
1 to get objects a, b and c respectively. For agent 2 we get (1/4, 1/2, 1/4) and for agent 3
we get (0, 1/2, 1/2). Figure 1.1 illustrates the resulting eating schedules.

t
0 11/2 3/4

agent 1
a c

agent 2 b a c

agent 3 b c

Figure 1.1: Illustration of the eating schedules for PS, given the preferences in (1.1).

From the perspective of a mechanism designer, the probabilistic serial mechanism is
interesting, as it satisfies ordinal efficiency. The well-known random serial dictatorship
mechanism only satisfies ex-post efficiency, which is a less demanding efficiency concept
than ordinal efficiency. Another desired property of mechanisms is strategyproofness,
i.e., no agent can change the outcome of the mechanism to its advantage by reporting
a different preference order than its true one. While the random serial dictatorship
mechanism can not be manipulated by such misreports, the probabilistic serial mechanism
can be manipulated and is, therefore, not strategyproof. When the probabilistic serial
mechanism was introduced by Bogomolnaia and Moulin (2001), they showed that it
satisfies weak stochastic dominance strategyproofness, which is a less demanding notion
of strategyproofness. A mechanism is weakly stochastically dominant strategyproof if
the assignment based on truthful reporting is not strictly stochastically dominated by
any other assignment resulting from a misreport by one agent.

Mennle and Seuken (2017c) recently introduced an intermediate incentive concept
called partial strategyproofness and showed that it is satisfied by the probabilistic serial
mechanism. A mechanism is partial strategyproof, if truthful reporting is a dominant
strategy on the subset of all possible von Neumann-Morgenstern utility functions that
satisfy uniformly bounded relative indifference. A utility function satisfies uniformly
bounded relative indifference if, for any two objects, the relative difference in utility
is bounded by r. Consider the following examples for uniformly bounded relatively
indifferent utility functions.

2
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Example 2. Let Ô = {a, b, c, d} be a set of objects. Let ui be the following utility function

ui(a) = 4, ui(b) = 2, ui(c) = 1, ui(d) = 0. (1.2)

Then ui is uniformly bounded relatively indifferent with respect to r = 1/2. This is because

ui(b)

ui(a)
=

2

4
≤ 1

2
,

ui(c)

ui(b)
≤ 1

2
,

ui(d)

ui(c)
≤ 1

2
. (1.3)

Analogously, the utility function u′i where u
′
i(a) = 9, u′i(b) = 3, u′i(c) = 1, u′i(d) = 0 is

uniformly bounded relatively indifferent with respect to r = 1/3.

Hence, a mechanism is r-partially strategyproof if truthful reporting is a dominant
strategy for the subset of uniformly bounded relatively indifferent utility functions with
respect to r. We denote the set of utility functions that satisfy this property by URBI (r).
Note that there may exist utility functions that are not uniformly bounded relatively
indifferent but for which truthful reporting is a dominant strategy for the given mecha-
nism. This phenomenon is considered in our secondary result.

We can see that if r = 1 then URBI (r) is identical to the set of all possible utility func-
tions. Therefore, 1-partial strategyproofness is equal to strategyproofness. At the other
end of the spectrum, as r approaches zero, we reach an incentive concept that Mennle and
Seuken (2017c) called lexicographic dominance strategyproofness (LD-strategyproofness).
A mechanism is LD-strategyproof if the assignment based on truthfully reported pref-
erences lexicographically dominates any other assignment with respect to the truthful
preference order of the given agent. Therefore, r-partial strategyproofness parametrized
the spectrum of incentive concepts between LD-strategyproofness and strategyproofness.
The maximal bound r that is satisfied for a mechanism in the given setting is called the
degree of strategyproofness and is denoted by ρ. Partial strategyproofness is the strongest
incentive concept satisfied by the probabilistic serial mechanism so far.

Figure 1.2 illustrates the relation of the different incentive concepts described above.

Strategyproofness

⇓ ⇑ ∗r = 1

r-partial strategyproofness

⇓ ��⇑

Weak SD-SP

��⇑ ⇓
∗ρ→ 1

SP in the large

⇓ ⇑∗r → 0

LD-SP

Figure 1.2: Relations between incentive concepts (SP = strategyproofness, SD = stochas-
tic dominance, LD = lexicographic dominance).1

1This figure is adapted from an earlier version of (Mennle and Seuken, 2017c).
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A different approach is to analyse the incentives of mechanisms in large markets, i.e.,
when the number of participating agents gets large. A mechanism is strategyproof in the
large if it is strategyproof in the limit where markets grow large and there are finitely
many utility functions the agents can choose from. Strategyproofness in the large was
introduced by Azevedo and Budish (2015). They also showed that the probabilistic
serial mechanism is strategyproof in the large. Furthermore, a similar result has already
been shown by Kojima and Manea (2010). They showed that the probabilistic serial
mechanism becomes strategyproof if the quotas of objects are large enough and there are
finitely many utility functions the agents can choose from.

Mennle and Seuken (2017c) contributed to the analysis of incentives in large markets,
by making use of an alternative definition of partial strategyproofness, which enables algo-
rithmic verification. This allowed the authors to calculate the degree of strategyproofness
of the probabilistic serial mechanism in different settings. Furthermore, they observed
that the degree of strategyproofness ρ may converge to 1 as markets get large. This
conjecture is related to, but not implied by the result of Kojima and Manea (2010) and
the fact that the mechanism is strategyproof in the large.

The main result of this thesis is that the degree of strategyproofness of the probabilistic
serial mechanism converges to 1 as markets get large. More specifically, we show that
for any finite setting and any r ∈ [0, 1), there exists a minimal quota of objects M such
that the degree of strategyproofness ρ for the probabilistic serial mechanism is at least as
large as r.

This leads to an elegant, parametric proof that the probabilistic serial mechanism
is strategyproof in the large. In this parametric proof, we use a result from (Mennle
and Seuken, 2017c), which states that if the degree of strategyproofness of a mechanism
converges to 1 in large settings, then it is strategyproof in the large (This is also indicated
in figure 1.2). Moreover, we show that the resulting formula for the minimal quota of
objects M can be used to give upper bounds on the minimal quota to ensure r-partial
strategyproofness of the probabilistic serial mechanism in a given setting. Conversely,
given a setting with large enough quotas of objects, the formula can be used to give a
lower bound on the degree of strategyproofness for the probabilistic serial mechanism.

Finally, we considered settings where the number of agents is equal to the number of
objects and every object has unit capacity. We found that in these settings, the subset
of utility functions for which the probabilistic serial mechanism is strategyproof is, in
general, not identical to URBI (r). Thereby, we disprove the conjecture that these sets
are identical for the described settings. This conjecture was proposed in the construction
of partial strategyproofness in (Mennle and Seuken, 2017c).

4
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Related Work

Since this thesis builds strongly on the work of Mennle and Seuken (2017c) and Kojima
and Manea (2010) and others already introduced in section 1, we refrain from mentioning
these results here again. Nevertheless, we present other related work on the topic of the
assignment problem and the probabilistic serial mechanism.

2.1 The Assignment Problem

Concerning the trade-off of efficiency and strategyproofness, there are two important
impossibility results for the assignment problem.

Bogomolnaia and Moulin (2001) showed that for any setting with four or more agents,
there can not exist a mechanism that is strategyproof, ordinal efficient and treats equals
equal. Equal treatment of equals means that if any two agents report the same preference
order then they get identical assignment probabilities for the objects.

Featherstone (2011) showed that rank efficiency is incompatible with strategyproofness
and even with weak stochastic dominance strategyproofness. An assignment is rank efficient
if the distribution of ranks across agents can not be stochastically dominated by any
other assignment. Note that this is a more demanding concept of efficiency than ordinal
efficiency. Aside from this impossibility result, Featherstone (2011) also showed that
rank efficient mechanisms can be created using a linear program. Finally, he showed that
despite the weak incentive concepts that are satisfied by rank efficient mechanism, for some
of them truthful reporting is an equilibrium strategy in low information environments.

These results nicely describe the frontier of the current work regarding the assignment
problem. We observe that the satisfiable efficiency concepts grow stronger the more we
relax the notion of strategyproofness. Therein, we can see the importance of the concept
of partial strategyproofness studied in this thesis, as it lies between strategyproofness
and weak stochastic dominance strategyproofness.

If we consider mechanisms where agents report their complete von Neumann-Morgenstern
utility functions there is another impossibility result from Zhou (1990). No mechanism
satisfies strategyproofness, Pareto optimality and symmetry. A mechanism satisfies
symmetry if any two agents with identical utility functions have identical utilities for the
object assigned to them by the mechanism. Note that in this setting, Pareto optimality
is equivalent to ex-ante efficiency (Bogomolnaia and Moulin, 2001).
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2.2 The Probabilistic Serial Mechanism

Since Bogomolnaia and Moulin (2001) first introduced the probabilistic serial mechanism
(PS), it was extended to the full preference domain, i.e., including weak preferences, by
Katta and Sethuraman (2006). Moreover, Kojima (2009) extended PS to settings where
agents can demand multiple objects.

The probabilistic serial mechanism can be described by using different sets of axioms.
Kesten et al. (2011) characterized PS in the general case as the only mechanism which
satisfies ordinal fairness and non-wastefulness. In addition to this, they provided a
characterization using sd-efficiency, sd-envy-freeness and upper invariance. Note that
”sd” stands for stochastic dominance. Independently, Hashimoto and Hirata (2011)
showed that PS can be characterized using sd-efficiency, sd-envy-freeness and truncation
robustness in the case where the ”null-object” always exists. Moreover, they provide
a characterization based on the Rawlsian principle. In the setting where agents can
demand multiple objects, Heo (2014) characterized the extended PS using sd-efficiency,
sd proportional-division lower-bound and two other auxiliary axioms.

Later, Bogomolnaia and Heo (2012) showed a stronger characterization of PS compared
to (Kesten et al., 2011) and (Hashimoto and Hirata, 2011) by using the weaker axiom
of bounded invariance instead of upper invariance or truncation robustness. Moreover,
Bogomolnaia and Heo (2012) made use of the observations in (Heo, 2014) and provided
simpler proofs for the results of (Kesten et al., 2011) and (Hashimoto and Hirata, 2011).

Hashimoto et al. (2014) provided the strongest characterization in the general case
so far. PS is the only mechanism that satisfies sd-efficiency, sd-envy-freeness and weak
invariance, where weak invariance is implied by both, bounded invariance and upper
invariance. In the case where the null-object always exists, weak invariance is substitute
with weak truncation robustness. Weak truncation robustness is implied by truncation
robustness and bounded invariance independently.

Finally, Bogomolnaia (2015) characterized PS for the full domain, which even allows for
non-integer quotas of objects. Moreover, they showed that in the strict ordinal preference
domain, PS is the only mechanism that is sd-efficient, sd-envy-free, and strategyproof on
the lexicographic preference domain extension for lotteries.

Balbuzanov (2016) showed that PS is convex strategyproof, which is implied by partial
strategyproofness (Mennle and Seuken, 2017c) and implies weak sd-strategyproofness.
Che and Kojima (2010) showed that as the number of quotas for each object approach
infinity the probabilistic serial mechanism and the random serial dictatorship mechanism
become equivalent. This result was generalized by Liu and Pycia (2016), who showed that
any ordinal mechanisms that are asymptotically efficient, symmetric and asymptotically
strategyproof lead to identical assignments in large markets.

6
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Model

A random assignment problem is denoted by Γ = (N, (�i)i∈N , Ô, (qa)a∈Ô). The set of
agents N = {1, 2, 3, ...} is indexed by i and finite but arbitrarily large. The set of proper
objects Ô = {a, b, c, ...} is also finite and indexed by j or a, b, c, . . . . Note that there
exists a null object φ /∈ Ô, which is not in Ô. By q = (qa, qb, . . . ) we denote the quotas of
objects j ∈ Ô where qj ∈ N>0. The quota of an object is also called its capacity. Note
that qφ =∞.

A strict preference order �i: a � b � c denotes the strict preferences of agent i over
objects in O := Ô ∪ {φ}, i.e., a � b means that object a is strictly preferred to object
b. Weak preferences are denoted by a �i b. If the set of objects Ô is fixed, denote by
P the set of all possible strict preference orders over Ô. A preference profile is denoted
by (�i)i∈N = (�1,�2,�3, . . . ). When N is fixed we write � for (�i)i∈N . Denote by PN
the set of all possible strict preference profiles for a given set of agents N .

A deterministic assignment is denoted by the matrix X = (Xia), where X has |N |
rows and |O| columns. For X it holds that ∀i ∈ N , ∀a ∈ Ô, Xia ∈ {0, 1}, ∀i ∈ N ,∑

a∈OXia = 1 and ∀a ∈ O,
∑

i∈N Xia ≤ qa. Xia is 1 if agent i receives object a and 0
otherwise. The constraints ensure that every agent only gets one object and every object
is assigned at most qa many times.

A random assignment is denoted by a matrix P = (Pia), where ∀i ∈ N , ∀a ∈ Ô,
Pia ≥ 0, ∀i ∈ N ,

∑
a∈O Pia = 1 and ∀a ∈ O,

∑
i∈N Pia ≤ qa. Pia denotes the probability

of agent i to receive object a.
Von Neumann-Morgenstern utility functions ui : O → [0, 1] for deterministic assign-

ments are extended to expected utility functions in random assignments by

ui(P ) =
∑
a∈O

ui(a) · Pia. (3.1)

Note that in this thesis we refer to both of them as utility functions. A utility function
ui is consistent with �i if ui(a) > ui(b) ⇔ a �i b. U�i set of all utility functions ui
consistent with �i.
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PS and Incentive Concepts

In this section we are setting the stage for the formal statement of the main result. This
includes the formal definition of the probabilistic serial mechanism (PS) through the
symmetric simultaneous eating algorithm, as well as multiple incentive concepts and their
relation to PS.

4.1 Probabilistic Serial Mechanism (PS)

The probabilistic serial mechanism (PS) was originally proposed by Bogomolnaia and
Moulin (2001). Kojima and Manea (2010) have extended PS to their setting, which is
the same as the setting in this thesis. The mechanism is defined through the symmetric
simultaneous eating algorithm. For this algorithm, each object is viewed as a divisible
good of probability shares. At any time t ∈ [0, 1], every agent ”eats” with speed one from
its most preferred object among the objects still available. An object a is available as
long as the combined consumption of all agents does not exceed the quota qa of object a.
By the time t = 1, each agent has consumed a certain amount of probability shares of
some objects, this amount corresponds to the PS assignment.

Formally, given a random assignment problem Γ = (N, (�i)i∈N , Ô, (qa)a∈Ô), the PS
assignment is defined by the symmetric simultaneous eating algorithm as follows: First,
define

∀a ∈ O′ ⊂ O, N(a,O′) = {i ∈ N | a �i b,∀b ∈ O′}, (4.1)

which is the set of all agents whose first preference among the object in O′ is a. Set

O0 = O, t0 = 0, ∀i ∈ N, ∀a ∈ Ô, P 0
ia = 0, (4.2)

where Ov denotes the set of available objects at time tv and P via tracks the con-
sumed probability shares by i of object a up to tv. Moreover, for all v ≥ 1, given
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O0, t0, (P 0
ia), . . . , O

v−1, tv−1, (P v−1
ia ) define:

tv = min
a∈Ov−1

{
max

{
t ∈ [0, 1] |

∑
i∈N

P v−1
ia +

∣∣N(a,Ov−1)
∣∣ (t− tv−1) ≤ qa

}}
, (4.3)

Ov = Ov \
{
a ∈ Ov−1 |

∑
i∈N

P v−1
ia +

∣∣N(a,Ov−1)
∣∣ (t− tv−1) = qa

}}
, (4.4)

P via =

{
P v−1
ia + tv − tv−1 if i ∈ N(a,Ov−1)

P v−1
ia otherwise.

(4.5)

Since O is a finite set, there exists v̄ such that tv̄ = 1. Thus, the assignment of PS
is PS (�) := P v̄. See example 1 in the introduction for a simplified walkthrough of the
algorithm.

The crucial step in this algorithm is to identify when the next object will be consumed
entirely and, therefore, the agents will have to start consuming another object. This is
done in the calculation of tv. The object that runs out first is determined by evaluating
for every object when its capacity will drop to zero, based on the current number of agents
consuming it. The smallest of these times will be tv. The set of the remaining objects is
updated accordingly and the random assignment matrix is updated by making use of
the fact that the consumption times of probability shares are equal to the assignment
probability of an object.

4.2 Strategyproofness and Kojima and Manea (2010)

As mentioned in the introduction, a mechanism is strategyproof if no one agent can
beneficially manipulate its outcome. The formal definition is the following:

Definition 1 (Strategyproofness). A mechanism ϕ is strategyproof (SP) if, for all
agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN , all misreports �′i∈ P and all
consistent utility functions ui ∈ U�i, we have

ui
(
ϕ
(
�i,�N\{i}

))
≥ ui

(
ϕ
(
�′i,�N\{i}

))
. (4.6)

Recall that the probabilistic serial mechanism is not strategyproof but satisfies the
weaker notion of convex strategyproofness (Balbuzanov, 2016), which implies the even
less demanding weak stochastic dominance strategyproofness (Bogomolnaia and Moulin,
2001).

Kojima and Manea (2010) investigated the incentives of PS in large markets. They
found that for any given agent, PS is strategyproof if there are sufficiently many copies
of each object, i.e., the quotas of the objects are high enough.

10
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Fact 1 (Theorem 1, (Kojima and Manea, 2010)). Let ui be an expected utility function
consistent with a preference �i.

(i) There exists M such that if qa ≥M for all a ∈ Ô, then

ui
(
PS
(
�i,�N\{i}

))
≥ ui

(
PS
(
�′i,�N\{i}

))
(4.7)

for any preference �′i∈ P, any set of agents N 3 i and any preference profile
�N\{i}∈ PN\{i}.

(ii) Claim (i) is satisfied for M = xD/d, where x ≈ 1.76322 solves xln(x) = 1,
D = maxa�ib�iφ ui(a)− ui(b), and d = mina�ib,a�iφ ui(a)− ui(b).

This means that for a fixed utility function and if the quotas of all objects are large
enough, PS is strategyproof for any agent with this utility function. However, PS is not
necessarily strategyproof for other agents with other utility functions in the same setting.
This argument can be extended to any finite number of utility functions.

Fact 2 (Corollary, (Kojima and Manea, 2010)). Suppose that the set Ô of proper object
types and the set U of expected utility functions on the outcome of PS over the given
objects O are fixed and finite. There exists M such that if qa ≥ M for all a ∈ Ô, then
for any set of participating agents, truth-telling is a weakly dominant strategy in the
probabilistic serial mechanism for every agent whose utility function is in U .

From Fact 2, Kojima and Manea (2010) deduced that PS becomes strategyproof in
large assignment problems, where the utility functions of all agents belong to a finite set.

4.3 Strategyproofness in the Large

Azevedo and Budish (2015) considered the incentives of mechanisms in large settings
in general and formalized the intuition that the manipulative power of a single agent
diminishes as there is more and more competition for the objects. They called this
concept strategyproofness in the large. Note that this is a generalization of the insight
Kojima and Manea (2010) deduced from Fact 2 for PS.

In contrast to the settings above, Azevedo and Budish (2015) takes an interim perspec-
tive on the assignment problem. This means the agents do not have full knowledge of the
reports of other agents. This uncertainty is addressed by using probability distributions
over all possible reports for other agents. The original definition of strategyproofness in
the large requires that truthful reporting is the best strategy in expectation against any
probability distribution of other agents’ reports. The reports of other agents are drawn
identically and independently from the same distribution.

Note that strategyproofness in the large is a more demanding incentive concept than
approximate Bayes-Nash incentive compatibility. Strategyproofness in the large demands
a best strategy for any probability distribution of reports, while for approximate Bayes-
Nash incentive compatibility, truthful reporting is only the best strategy in the probability

11
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distribution associated with the Bayes-Nash equilibrium setting (Azevedo and Budish,
2015).

We will adapt the definition of strategyproofness in the large to our setting with an
ex-post perspective. Hence, we remove the uncertainty of other agents’ reports and
assume complete knowledge of their reports. From this perspective, the condition of
strategyproofness in the large has to be satisfied for all possible reports of other agents,
rather than just in expectation for reports drawn i.i.d. from a common distribution.
Therefore, the ex-post version of strategyproofness in the large is more demanding than
the original interim definition by Azevedo and Budish (2015).

Before we formally define strategyproofness in the large, we need to define how exactly
markets get large. Settings get large by increasing the number of agents. However, there
are additional conditions that have to hold to make the resulting setting an assignment
problem which is consistent with our model.

We adopt the notion of large settings from Kojima and Manea (2010). Fix a set of
objects. If the number of agents increases, the number of objects has to increase as well
such that at least one object can be assigned to any agent. This means that the sum of
all quotas has to be larger or equal to the number of agents in the assignment problem.
While this would be achievable if we just keep adding copies of one specific object, we
want the quotas to grow more uniformly. Therefore, as the number of agents gets larger,
not only the sum of the quotas has to get larger but also the minimum of the quotas.

Formally, consider a sequence of settings (Nn, Ôn, qn)n≥1, where Ôn = Ô and n = |Nn|.
We require the following two conditions to hold:

min
j∈Ô

qnj
n→∞−−−→∞ and for any n,

∑
j∈Ô

qnj ≥ n. (4.8)

A mechanism is strategyproof in the large, if the mechanism is strategyproof in the
limit where the number of agents approaches infinity (n → ∞) and the agents choose
their utility functions from a finite set. Formaly,

Definition 2 (SP in the Large, adapted from (Azevedo and Budish, 2015)). Given a fixed,
finite set of utility functions {u1, . . . , uK} and a sequence of settings (Nn, Ôn, qn)n≥1

which get large as specified above. Then, a mechanism ϕ is strategyproof in the large
(SP-L) if, for any ε > 0, there exits n0 ∈ N such that for all settings where n ≥ n0, no
agent with a utility function from {u1, . . . , uK} can gain more than ε by misreporting.

Note that PS is strategyproof in the large, as this definition of SP-L is consistent with
the reasoning of Kojima and Manea (2010) that PS is strategyproof in large settings.

12



4.4. PARTIAL STRATEGYPROOFNESS 13

4.4 Partial Strategyproofness

Mennle and Seuken (2017c) introduced the strongest incentive concept satisfied by PS
so far, which is partial strategyproofness. In this section, we present the results from
(Mennle and Seuken, 2017c), which are necessary for stating and discussing of our main
result.

After the formal definition of partial strategyproofness, we present the decomposition
of partial strategyproofness. Then, we define the degree of strategyproofness and present
how it can be calculated for small settings, using an alternative definition of partial
strategyproofness.

4.4.1 Definition

In order to define partial strategyproofness we need the concept of uniformly relatively
bounded indifferent utility functions.

Definition 3 (URBI (r), from (Mennle and Seuken, 2017c)). A utility function ui
satisfies uniformly relatively bounded indifference with respect to bound r ∈ [0, 1] (short:
URBI (r)) if, for all objects a, b ∈ Ô with ui(a) > ui(b), we have

r ·

(
ui(a)−min

j∈Ô
ui(j)

)
≥ ui(b)−min

j∈Ô
ui(j) (4.9)

We write ui ∈ URBI (r) if ui satisfies uniformly relatively bounded indifference with
respect to bound r.

Informally, a utility function is uniformly relatively bounded indifferent with respect to
r ∈ [0, 1] if the relative difference in utility of any two consecutive objects is bounded by r.

0

0

ui(b)

ui(a)

U�′
i

U�iũi

ui

H(�i,�′i)

URBI (r) ∩ U�i

Figure 4.1: Geometric interpretation of URBI (r), adapted from (Mennle and Seuken,
2017c).

13



14 CHAPTER 4. PS AND INCENTIVE CONCEPTS

Figure 4.1 provides a geometric interpretation of URBI (r). Consider the preference
order �i: a � b, then the set of consistent utility functions U�i is the area under the
indifference hyperplane H(�i,�′i). If a utility function satisfies URBI (r) it has to be
r-relatively uniformly bounded away from the indifference hyperplane. This is true for all
utility functions in the shaded area, e.g., for the utility function labeled ui. Any utility
function that is consistent with �i but does not lie in the shaded area, e.g., the point
labeled ũi, does not satisfy URBI (r). Note that the dashed line which binds URBI (r)
away from the indifference hyperplane has slope r. Therefore, we can see that if r = 1
we get URBI (r) = U�i . See example 2 in the introduction for examples of specific utility
functions that satisfy uniformly relatively bounded indifference.

A mechanism is partially strategyproof if it is strategyproof for all uniformly relatively
bounded indifferent utility functions.

Definition 4 (Partial Strategyproofness, from (Mennle and Seuken, 2017c)). Given a
setting (N, Ô, q) and a bound r ∈ [0, 1], a mechanism ϕ is r-partially strategyproof (in
the setting (N, Ô, q)) if, for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN ,
all misreports �′i∈ P and all utility functions ui ∈ U�i ∩URBI (r), we have

ui
(
ϕ
(
�i,�N\{i}

))
≥ ui

(
ϕ
(
�′i,�N\{i}

))
. (4.10)

Recall from section 1 that 1-partial strategyproofness is identical to strategyproofness.
Moreover, as r approaches zero, we reach lexicographic dominance strategyproofness
(LD-strategyproofness). Therefore, r-partial strategyproofness parametrized the spectrum
of incentive concepts between LD-strategyproofness and strategyproofness. Figure 1.2
in section 1 illustrates the relation of partial strategyproofness to some other incentive
concepts.

4.4.2 Decomposition

Next, we will take a look at the decomposition of Partial strategyproofness. This
decomposition will us allow to differentiate partial strategyproofness from regular strate-
gyproofness and makes it easy to see that PS is partial strategyproof.

In order to define the building blocks of the decomposition, we introduce some notions
from (Mennle and Seuken, 2017c).

The neighbourhood of �i, denoted by N�i ⊂ PN , is the set of strict preference orders
that differ from �i by only one swap of consecutively ranked objects.

Moreover, we define U(a,�i) = {b ∈ Ô | b �i a} as the upper contour set of object
a ∈ O at �i. This is the set of objects which are strictly preferred to a under �i.
Analogously, L(a,�i) = {b ∈ Ô | a �i b} is the lower contour set of object a ∈ O at �i.

Swap monotonicity restricts how the assignment probabilities of a mechanism may
change if two consecutive objects are swapped.

14



4.4. PARTIAL STRATEGYPROOFNESS 15

Definition 5 (Swap Monotonicity, from (Mennle and Seuken, 2017c)). A mechanism ϕ
is swap monotonic if, for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN , all
misreports �′i∈ N�i in the neighbourhood of �i such that a �i b but b �′i a, one of the
following holds:

• either: ϕi
(
�i,�N\{i}

)
= ϕi

(
�′i,�N\{i}

)
,

• or: ϕia
(
�i,�N\{i}

)
> ϕia

(
�′i,�N\{i}

)
and ϕib

(
�i,�N\{i}

)
< ϕib

(
�′i,�N\{i}

)
.

If a mechanism is swap monotonic and one considers misreporting by swapping two
consecutive objects in ones preference order, then the assignment probability of these
objects will either stay the same or the probability of the object that was swapped
upwards will strictly increase, while the probability of the other object will strictly
decrease.

While still considering consecutive swaps for misreporting, upper and lower invariance
define a behaviour of the assignment probabilities for objects that are strictly less or
strictly more preferred than the swapped objects.

Definition 6 (Upper Invariance, from (Mennle and Seuken, 2017c)). A mechanism
ϕ is upper invariant if, for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈
PN , all misreports �′i∈ N�i with a �i b but b �′i a, we have that ϕib

(
�i,�N\{i}

)
=

ϕib
(
�′i,�N\{i}

)
for all b ∈ U(a, Ô).

If a mechanism is upper invariant, then swapping two consecutive objects in the
preference order will not affect the assignment probabilities of the objects ranked above
these two objects. Analogously, if the mechanism is lower invariant, such a swap will not
affect the assignment probabilities of objects ranked below the swapped objects.

Definition 7 (Lower Invariance, from (Mennle and Seuken, 2017c)). A mechanism ϕ is
upper invariant if, for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN , all mis-
reports �′i∈ N�i with a �i b but b �′i a, we have that ϕib

(
�i,�N\{i}

)
= ϕib

(
�′i,�N\{i}

)
for all b ∈ L(a, Ô).

Mennle and Seuken (2017c) showed that these three concepts are a decomposition of
strategyproofness.

Fact 3 (Decomposition of SP, from (Mennle and Seuken, 2017c)). A mechanism ϕ is
strategyproof if and only if it is swap monotonic, upper invariant and lower invariant.

Furthermore, partial strategyproofness can be decomposed into swap monotonicity
and upper invariance.

Fact 4 (Decomposition of Partial Strategyproofness, from (Mennle and Seuken, 2017c)).
Given a setting (N, Ô, q), a mechanism ϕ is partially strategyproof (i.e., r-partially
strategyproof for some r > 0) if and only if it is swap monotonic and upper invariant.

15



16 CHAPTER 4. PS AND INCENTIVE CONCEPTS

This shows that partial strategyproofness is a weaker concept than stragetyproofness.
Moreover, one can easily verify that PS is swap monotonic and upper invariant. Hence,
PS is partially strategyproof.

Fact 5 (Proposition 3, (Mennle and Seuken, 2017c)). Given a setting (N, Ô, q), the
probabilistic serial mechanism is r-partially strategyproof for some r > 0.

4.4.3 Degree of Strategyproofness (ρ(N,Ô,q))

If a mechanism is r-partially strategyproof, then by definition it is also r′-partially
strategyproof, where 0 < r′ < r ≤ 1. Naturally, we are interested in the largest bound r
for which a mechanism is partially strategyproof. This largest bound is well-defined and
is called the degree of strategyproofness.

Definition 8 (Degree of Strategyproofness, from (Mennle and Seuken, 2017c)). Given
a setting (N, Ô, q) and a mechanism ϕ the degree of strategyproofness (in the setting
(N, Ô, q) is defined as

ρ(N,Ô,q)(ϕ) = max{r ∈ [0, 1] | ϕ is r-partially strategyproof in (N, Ô, q)}. (4.11)

To see that this maximum is well-defined, note that URBI (r) is topologically closed.
Therefore, if a mechanism is r′-partially strategyproof for all r′ < r, then it must also be
r-partially strategyproof (Mennle and Seuken, 2017c).

Furthermore, Mennle and Seuken (2017b) provided an additional definition of partial
strategyproofness which allows for algorithmic verification of partial strategyproofness
and calculating the degree of strategyproofness for small markets. This additional
definition uses a generalized version of stochastic dominance, which is called r-dicscounted
dominance.

Definition 9 (r-Discountd Dominance (r-DD), from (Mennle and Seuken, 2017b)). For
a bound r ∈ [0, 1] and a preference order �i∈ P, where �i: j1 � j2 � · · · � j|Ô| and
assignment vectors xi, yi we say that xi r-discounted dominates yi at �i if for all ranks
K ∈ {1, . . . , |Ô|}, we have

K∑
k=1

xi,jk ≥
K∑
k=1

yi,jk . (4.12)

Note that for r = 1 this is equivalent to stochastic dominance. For any r < 1 the
assignment probabilities of the object in rank k of the preference order �i is discounted
by the kth power of r.

Recall, that stochastic dominance is used to define SD-strategyproofness which is
equivalent to strategyproofness. Analogously, r-DD can be used to define r-DD strat-
egyproofness, which is equivalent to partial strategyproofness as Mennle and Seuken
(2017b) have shown.

16



4.4. PARTIAL STRATEGYPROOFNESS 17

Definition 10 (r-DD-Strategyproofness, adopted from (Mennle and Seuken, 2017b)).
Given a setting (N, Ô, q) and a bound r ∈ [0, 1), a mechanism ϕ is r-DD-strategyproof if,
for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN and all misreports �′i∈ P,
ϕ(�i,�N\{i}) r-discount dominates ϕ(�′i,�N\{i}) at �i.

Fact 6 (Proposition 7, (Mennle and Seuken, 2017b)). Given a setting (N, Ô, q) and a
bound r ∈ [0, 1), a mechanism ϕ is r-partially strategyproof if and only if it is r-DD-
strategyproof.

In the first definition of partial strategyproofness it would be necessary to check
inequalities for an infinite set of utility functions in order to verify if a mechanism is
r-partially strategyproof, which can not be achieved by any implementation. However,
since there are finitely many preference profiles and misreports in any finite setting, there
are finitely many possible assignments. Therefore, a procedure can be implemented to
test the inequalities of r-DD strategyproofness in small markets to verify if a mechanism
is partially strategyproof. The markets need to be small since the procedure has to
iterate through all possible preference profiles and the respective misreports. The number
of misreports grows exponentially in the number of objects. The number of preference
profiles grows exponentially in the number of agents and the number of objects. Therefore,
calculations for large markets are infeasible. Moreover, the inequalities that define r-DD
can be used to calculate the degree of strategyproofness for a given mechanism.

17





5

Main Result

In this section, the main result of this thesis is presented, which is that the degree
of strategyproofness of PS, ρ(N,Ô,q)(PS ), converges to 1 as the settings get large. We
first consider related work to learn if this result was expected, before presenting the
result itself. Then, we show how it leads to a parametric proof of the fact that PS is
strategyproof in the large, before discussing other implications.

5.1 Convergence of ρ(N,Ô,q)(PS )

Recall that markets get large in a uniform way with respect to the quotas of objects. This
means that in a sequence of settings (Nn, Ôn, qn)n≥1, where Ôn = Ô and n = |Nn|, we not
only require that the demand of the agents is met (

∑
j∈Ô q

n
j ≥ n), but also that the min-

imal quota of objects approaches infinity as n approaches infinity (minj∈Ô q
n
j

n→∞−−−→∞).

Kojima and Manea (2010) as well as Azevedo and Budish (2015) considered the
incentive properties of PS in large markets. (Azevedo and Budish, 2015) showed that
PS is strategyproof in the large, i.e., for a finite set of utility functions from which the
agents can choose, in the limit where n→∞, PS is strategyproof. Kojima and Manea
(2010) showed that if there are enough copies of each object and only finitely many utility
functions to choose from, then PS is strategyproof in large settings.

Since PS is strategyproof for large settings and a finite set of utility functions, it can
be expected that this behaviour may also be realized for an infinitely large set of utility
functions.

Mennle and Seuken (2017c) introduced the incentive measure of partial strategyproof-
ness, which comes with a bound ρ called the degree of strategyproofness. The bound ρ is
specific for each setting and mechanism. In order to gain more insight into the incentive
properties of PS, Mennle and Seuken (2017c) calculated the values of ρ for different
settings with three and four objects. Figure 5.1 shows the results of their calculations.

We can see that in addition to the theoretical point of view presented above, these
calculations also point to the possibility that the degree of strategyproofness for PS
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Figure 5.1: Plot of ρ(N,|Ô|,q)(PS) for |Ô| = 3 (left) and m = 4 (right) objects, for varying

numbers of agents n and evenly distributed quotas qj = n/|Ô|, taken from
(Mennle and Seuken, 2017c).

converges to 1 as the settings get large. This was conjectured by Mennle and Seuken
(2017c) and the confirmation of this conjecture is the main result of this thesis.

Theorem 1. Given a fixed set of objects Ô, and any r ∈ [0, 1).

(a) There exists M ∈ N such that for all settings (N, Ô, q), with minj∈M qj ≥M , and

ρ(N,Ô,q)(PS ) ≥ r. (5.1)

(b) Claim (a) is satisfied for M ≥ xD̃/d̃, where x ≈ 1.76322 solves xln(x) = 1,

D̃ = r−
|Ô|
2

+1, d̃ = min{ 1√
r
− 1, 1}.

Theorem 1 says that for any setting and any r ∈ [0, 1), the degree of strategyproofness
is larger or equal than r if the quotas of all objects are larger than M . The number M ∈ N
only depends on the chosen r and the number of objects. Note that it is independent of
the number of agents in the setting. Nevertheless, the number of agents influences the
quotas of the objects, as the demand of the agents must be covered. Therefore, a larger
number of agents implies larger quotas of objects, which in turn allows choosing larger
bounds r. Hence, as the number of agents gets arbitrarily large, the respective bound r
gets arbitrarily close to 1, i.e., converges to 1.

5.2 A Parametric Proof

The major implication of this result is that it leads to a parametric proof for the fact
that PS is strategyproof in the large.

As mentioned above, Theorem 1 was conjectured by Mennle and Seuken (2017c). Based
on this conjecture, they showed the following:
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Fact 7 (Theorem 3, Statement 3, (Mennle and Seuken, 2017c)). Fix a finite set of
utility functions {u1, . . . , uK} and a sequence of settings (Nn, Ôn, qn)n≥1 with |Nn| = n,
Ôn = Ô,

∑
j∈Ô q

n
j ≥ n and minj∈Ô q

n
j →∞ as n→∞. If the degree of strategyproofness

of the mechanism ϕ converges to 1 as n→∞, then ϕ is strategyproof in the large. The
converse may not hold.

In words, this means that for any mechanism ϕ and any finite set of utility functions, if
the settings get large as specified above and the degree of strategyproofness converges to
1 as the number of agents gets arbitrarily large, then the mechanism ϕ is strategyproof
in the large.

Using this fact for PS together with Theorem 1 leads to a short, elegant, parametric
proof for the fact that PS is strategyproof in the large.

Fact 8. The probabilistic serial mechanism is strategyproof in the large.

Proof: By Theorem 1, we know that the degree of strategyproofness for PS converges
to 1 as settings get large. Therefore, by Fact 7, PS is strategyproof in the large.

�

5.3 Other Implications

In addition to the parametric proof presented above, part (b) of Theorem 1 allows us to
give bounds for the minimal degree of strategyproofness in a given setting and the maxi-
mal necessary quotas of objects for a given setting to ensure r-partial strategyproofness.
We look at these two bounds separately.

Firstly, for a fixed number of objects |Ô| and any r ∈ [0, 1), we can give an upper
bound M on the minimal quota of objects necessary to guarantee that PS is r-partially
strategyproof for any setting with |Ô| objects, independent of the number of agents. For
any r ≥ 1/4 this bound is

M(r, |Ô|) =
⌈ x

r
|Ô|+1

2 (1−
√
r)

⌉
, (5.2)

where x ≈ 1.76322 solves xln(x) = 1. This means, if we would like PS to be r-partially
strategyproof for a fixed r ∈ [0, 1) and a fixed setting (N, Ô, q), then we can guarantee
that PS is r-partially strategyproof if minj∈Ô qj ≥M(r, |Ô|). However, it is possible that
PS is r-partially strategyproof for a lower minimal quota of objects.

Secondly, for a fixed number of objects |Ô| and a lower bound of the quotas of objects
M ≤ minj∈Ô qj we get a lower bound for the degree of strategyproofness. This bound can
not be expressed analytically in general, as this requires to solve a polynomial of degree
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|Ô| + 12. However, the bound can be numerically calculated for given settings. Note
that the solutions of such a polynomial might be a complex number where the imaginary
part is non-zero. In order to get a lower bound for the degree of strategyproofness, we
need a real-number solution. While calculating the bounds for different inputs, one could
observe that real-number solutions appear for sufficiently large minimal quotas M .

In order to illustrate the quality of these bounds, we calculated them for the settings
for which we also know the actual degree of strategyproofness from (Mennle and Seuken,
2017c).

The bounds for the settings with three objects and different numbers of agents are
shown in figure 5.2.
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Figure 5.2: Plot of ρ(N,|Ô|,q)(PS) for |Ô| = 3 objects, for varying numbers of agents n

and evenly distributed quotas qj = n/|Ô|, including the lower bounds for ρ
based on part (b) of Theorem 1 (adapted from (Mennle and Seuken, 2017c)).

Note that for three agents and a minimal quota of M = 1, there is no real-number
solution. One can see that the lower bounds of the degree of strategyproofness get closer
to the actual value as the number of agents and, therefore, the minimal quota of objects,
gets larger.

Conversely, we can calculate the upper bound of the minimal quota of objects to ensure
ρ(N,|Ô|,q)(PS) ≥ 0.98. By evaluating the formula in (5.2) for r = 0.98 and |Ô| = 3, we get

M = 176. In the settings from (Mennle and Seuken, 2017c) where quotas are uniformly
distributed and exactly match the demand of the agents, this would require a maximum
of 528 agents to guarantee a degree of strategyproofness of 0.98.

In the case of four objects, the settings considered by (Mennle and Seuken, 2017c) did
not produce real-number solutions. The first lower bound for the degree of strategyproof-
ness with four agents arises with a minimal quota of 8 per object, which would be the case
for 32 agents in the setting of (Mennle and Seuken, 2017c). Using |Ô| = 4 and M = 8 we

2The polynomial is Mr(|Ô|+1)/2 −Mr|Ô|/2 − x. A first step to solve it, would be to substitute r = u2,
which leads to a polynomial without fractional exponents of degree |Ô|+ 1.
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get a lower bound 0.45 ≤ ρ(N,|Ô|,q)(PS) for the degree of strategyproofness. In order to en-
sure a degree of strategyproofness of at least 0.80, the upper bound of the minimal quota of
objects is M = 19, i.e., 76 agents in terms of the setting from (Mennle and Seuken, 2017c).

Finally, these bounds allow more precise strategic advice for agents in a market that
uses PS. From Mennle and Seuken (2017c) we know that the following advice is applicable
for any market that uses a partial strategyproof mechanism:

”They are best off reporting their preferences truthfully as long as their preference
intensities for any two objects are sufficiently different; otherwise, if they are close to
being indifferent between some objects, then their potential gain from misreporting may
be positive but it is limited in the sense of approximate strategyproofness” (Mennle and
Seuken, 2017c, page 23).

Given that the minimal quota of objects M in the setting is large enough, we can
give a lower bound r on the degree of strategyproofness, which allows us to reduce the
uncertainty in the term ”sufficiently”. Therefore, if for any two objects the preference
intensities differ by a factor smaller3 than r, then truthful reporting is definitely a
dominant strategy. However, if the intensities differ by a factor larger than r, it may still
be a dominant strategy to report truthfully if the factor is sufficiently smaller than 1.
This is particularly useful in large markets, as it is infeasible to algorithmically calculate
the degree of strategyproofness in large markets.

Note that the potential gain from misreporting is limited since partial strategyproofness
implies approximate strategyproofness.

3Note that since r ∈ [0, 1) a smaller factor r implies a larger difference in utility.
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6

Tightness of the URBI (r) domain for PS

In this section, we examine if the set of utility functions for which PS is strategyproof is
equivalent to URBI (r), in a setting with as many agents as objects and where all objects
have unit capacity.

Informally, r-partial strategyproofness says that truthful reporting is a dominant
strategy for every agent with a utility function in URBI (r). However, this does not
prevent the existence of utility functions outside of URBI (r) which also make truthful
reporting a dominant strategy. Nevertheless, it has been shown that URBI (r) is the
largest set of utility functions that makes truthful reporting a dominant strategy among
all the r-partially strategyproof mechanisms (Mennle and Seuken, 2017c). This means
that even if there is a utility function outside of URBI (r) that makes truthful reporting a
dominant strategy for a given r-partially strategyproof mechanism ϕ, there exists another
r-partially strategyproof mechanism ψ where the same utility function gives rise to a
beneficial manipulation.

In the case of PS, which is r-partially strategyproof, Mennle and Seuken (2017c) showed
that in a setting with three agents and three objects with unit capacity, the set of utility
functions that make truthful reporting a dominant strategy is exactly equal to URBI (r).
This observation led to the conjecture for any setting where the number of agents is equal
to the number of objects and where all objects have unit capacity. It proposes that the
set of utility functions for which truthful reporting is a dominant strategy under PS is
identical to the set URBI (r), where r is defined by the degree of strategyproofness of PS
in the respective setting.

We present the reasoning of Mennle and Seuken (2017c) for the case of three agents
and three objects with unit capacity. Furthermore, we show that a similar statement
holds true for four agents and four objects with unit capacity but does not hold for five
agents and five objects with unit capacity.
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3-by-3 Settings (adapted from (Mennle and Seuken, 2017b): Consider the
setting where N = {1, 2, 3}, Ô = {a, b, c} and for all j ∈ Ô, qj = 1. Let the agents have
the following preferences:

�1 : a � b � c, (6.1)

�2 : b � a � c, (6.2)

�3 : b � c � a. (6.3)

If all agents report there preferences truthfully under PS we get

PS1 (�1,�2,3) =

(
3

4
, 0,

1

4

)
. (6.4)

If agent 1 misreports
�′1 : b � a � c, (6.5)

we get

PS1

(
�′1,�2,3

)
=

(
1

2
,
1

3
,
1

6

)
. (6.6)

Whether this manipulation is beneficial for agent 1 or not depends on the utility function
of agent 1. Let u1 ∈ U�1 be the utility function of agent 1. Then the expected gain in
utility from this misreport is

u1

(
PS1

(
�′1,�2,3

))
− u1 (PS1 (�1,�2,3)) = −1

4
u1(a) +

1

3
u1(b)− 1

12
u1(c). (6.7)

This is weakly negative if and only if

u1(a)− u1(c)

u1(b)− u1(c)
≤ 3

4
. (6.8)

Note that this is exactly the condition that has to hold such that u1 ∈ UBRI (3/4).
Moreover, we know from the calculations of Mennle and Seuken (2017c) that for this
setting, PS has a degree of strategyproofness of ρ(N,Ô,q)(PS) = 3/4 (See figure 5.1 in

section 5).
If there exists a utility function u′1 /∈ UBRI (3/4) such that truthful reporting is a

dominant strategy, it must also give no rise for misreporting in the situation presented
above. Therefore, it has to satisfy the condition derived in (6.8) to not give rise for any
misreport, but violate the condition that defines UBRI (3/4). However, as argued above,
these two conditions are identical to each other, therefore, there does not exist such a
utility function u′1. Hence, in the setting with three agents and three objects with unit
capacity, the set of utility functions that make truthful reporting a dominant strategy is
exactly URBI (3/4).
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4-by-4 Settings: Next, we show that in the setting where N = {1, 2, 3, 4}, Ô =
{a, b, c, d} and for all j ∈ Ô, qj = 1, the set of utility functions that make truthful
reporting a dominant strategy is exactly URBI (1/2). We already know that PS has a
degree of strategyproofness of ρ(N,Ô,q)(PS) = 1/2 (See figure 5.1 in section 5).

The approach will be similar to the one in the 3-by-3 setting. We will present pref-
erences of agents and derive the conditions for a weakly negative expected utility gain
from certain manipulations. These conditions together will coincide with the definition
of URBI (1/2) in the 4-by-4 setting.

First, consider the following preferences:

�1 : a � b � c � d, (6.9)

�2 : b � c � d � a, (6.10)

�3 : c � a � b � d, (6.11)

�4 : c � b � d � a, (6.12)

and the following misreport of agent 1:

�′1 : b � a � c,� d. (6.13)

Then we get the following assignments under PS:

PS1 (�1,�2,3,4) =

(
3

4
, 0, 0,

1

4

)
, (6.14)

PS1

(
�′1,�2,3,4

)
=

(
1

2
,
1

2
, 0, 0

)
. (6.15)

Let u1 ∈ U�1 again be the utility function of agent 1. Then the expected gain in utility
from this misreport is

u1

(
PS1

(
�′1,�2,3,4

))
− u1 (PS1 (�1,�2,3,4)) = −1

4
u1(a) +

1

2
u1(b)− 1

4
u1(d). (6.16)

This is weakly negative if and only if

u1(a)− u1(d)

u1(b)− u1(d)
≤ 1

2
. (6.17)

Next, consider the preferences

�1=�2 : a � b � c � d, (6.18)

�3=�4 : a � c � d � b, (6.19)

(6.20)

27



28 CHAPTER 6. TIGHTNESS OF THE URBI (R) DOMAIN FOR PS

and the following misreport of agent 1:

�′1 : a � c � b,� d, (6.21)

Then we get the following assignments under PS:

PS1 (�1,�2,3,4) =

(
1

4
,
1

2
, 0,

1

4

)
, (6.22)

PS1

(
�′1,�2,3,4

)
=

(
1

4
,
1

3
,
1

3
,

1

12

)
. (6.23)

The expected gain in utility from this misreport is

u1

(
PS1

(
�′1,�2,3,4

))
− u1 (PS1 (�1,�2,3,4)) = −1

6
u1(b) +

1

3
u1(c)− 1

6
u1(d). (6.24)

Therefore, the expected gain in utility is weakly negative if and only if

u1(c)− u1(d)

u1(b)− u1(d)
≤ 1

2
. (6.25)

Observe that the conditions in (6.17) and (6.25) are equivalent to the conditions that
ui ∈ URBI (1/2). Therefore, for any utility function that is not in URBI (1/2), there
exists a situation where misreporting is beneficial. Hence, in the setting of four agents and
four objects with unit capacity, the set of utility functions for which truthful reporting is
a dominant strategy is exactly URBI (1/2).

5-by-5 Settings: In the setting of five agents and five objects with unit capacity, i.e.,
N = {1, 2, 3, 4, 5}, Ô = {a, b, c, d, e} and ∀j ∈ Ô, qj = 1, PS has a degree of strategyproof-
ness of ρ(N,Ô,q)(PS) = 1/2, which can be determined via the algorithm used by Mennle

and Seuken (2017b). In contrast to the previous cases, the set of utility functions for which
truthful reporting is a dominant strategy in this setting is strictly larger than URBI (1/2).

Consider the following utility function:

u1 = (7.99, 4, 2, 1, 0). (6.26)

Note that this utility functions violates URBI (1/2), since

u1(a)− u1(e)

u1(b)− u1(e)
=

4

7.99
>

1

2
. (6.27)

Using an implementation of PS, we could evaluate the potential utility gain for every
possible preference profile and every possible manipulation for the given setting by
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iterating through all of them.4 This computation showed that for the utility function u1

in (6.26) there is no beneficial misreport, despite the fact that it violates URBI (1/2).

Thereby, we disprove the conjecture that the set of utility functions for which PS
is strategyproof coincides with URBI (r) in settings with equal numbers of agents and
objects and where the objects have unit capacity.

4The implementation makes use of the fact that PS is neutral and anonymous, i.e., the mechanism is
independent of the names of objects and the names of agents. This allows to consider a subset of all
possible preference profiles, as the allocations for the remaining profiles can be inferred by renaming
the agents and objects of considered profiles.
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Proof of the Theorem

We will prove Theorem 1 in three steps: Firstly, we will prove Lemma 2 which states that
there is a basis for the set of utility functions that satisfy uniformly relatively bounded
indifference and are consistent with a given preference order. Moreover, we will adjust
Fact 1 form (Kojima and Manea, 2010) to work with this basis. Fact 1 states that the
probabilistic serial mechanism (PS) is strategyproof in large settings for finitely many
strict utility functions. Note that the base utility functions from Lemma 2 are not all
strict. Together, these statements will allow us to prove Lemma 3, which established
that for any r ∈ [0, 1) there is a lower bound on the quotas of objects such that, if the
bound is satisfied, PS is r-locally partial strategyproof.

Secondly, by Fact 9, r-local partial strategyproofness implies r2-partial strategyproof-
ness. With this, we can extend the claim of Lemma 3 to partial strategyproofness in
Lemma 5.

Finally, Lemma 5 directly implies Theorem 1 as it holds for all r ∈ [0, 1). Figure 7.1
illustrates these steps.

Lemma 2: There exits a

Base of URBI (r) ∩ U�i

Fact 1: PS is strategyproof if minj∈Ô qj is large

enough and the set of strict utility functions is finite.

Lemma 3: PS is r-locally PSP

if minj∈Ô qj is large enough.

Fact 9: If a mechanism is

r-locally PSP it is r2-PSP.

Lemma 5: PS is r-PSP

if minj∈Ô qj is large enough.

Theorem 1: For any r, ρ(N,|Ô|,q)(PS) ≥ r

if minj∈Ô qj is large enough.

Figure 7.1: Visual representation of the proof idea, PSP = partial strategyproofness.
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7.1 Basis of URBI (r) ∩ U�i
In order to find a basis for a given set, it is necessary that this set is convex. Therefore,
we first establish that the set URBI (r) ∩ U�i is convex by proving the following lemma:

Lemma 1. For any r ∈ [0, 1] and any given preference order �i∈ P the set URBI (r)∩U�i

is convex.

Proof: Fix a preference order �i∈ P and r ∈ [0, 1]. For any utility functions u ∈
URBI (r) ∩ U�i and any two objects a, b ∈ Ô we have by definition

r ·

(
ui(a)−min

j∈Ô
ui(j)

)
≥ ui(b)−min

j∈Ô
ui(j). (7.1)

In order to show that URBI (r) ∩ U�i is convex, we need to show that any convex
combination u∗i of utility functions in URBI (r)∩U�i is again in URBI (r)∩U�i . Formally,

∀u′i, u′′i ∈ URBI (r)∩U�i and ∀µ ∈ [0, 1], u∗i = µu′i+(1−µ)u′′i ∈ URBI (r)∩U�i . (7.2)

Since u′i and u′′i are in U�i their convex combination u∗i is naturally again in U�i .
Moreover, minu∗i = µminu′i + (1− µ) minu′′i since u′i and u′′i are minimal for the same
object. Therefore, we only need to show that the conditions for URBI (r) are still satisfied.

For any two objects a, b ∈ Ô where u∗i (a) > u∗i (b) we get:

r

(
u∗i (a)−min

j∈Ô
u∗i (j)

)
= r

((
µu′i(a) + (1− µ)u′′i (a)

)
−min

j∈Ô

(
µu′i(j) + (1− µ)u′′i (j)

))
(7.3)

= rµ

(
µu′i(a)−min

j∈Ô
u′i(j)

)
+ r(1− µ)

(
µu′′i (a)−min

j∈Ô
u′′i (j)

)
(7.4)

≥ µ

(
µu′i(b)−min

j∈Ô
u′i(j)

)
+ (1− µ)

(
µu′′i (b)−min

j∈Ô
u′′i (j)

)
(7.5)

= u∗i (b)−min
j∈Ô

u∗i (j). (7.6)

�

Since we now know that URBI (r) ∩ U�i is convex, it is possible to find a basis such
that the convex set URBI (r) ∩ U�i is contained in the positive linear hull of the basis.
This means that for any ui ∈ URBI (r)∩U�i there exists a set of utility functions B 3 bsi
such that ui can be expressed as a linear combination ui(j) =

∑|Ô|−1
s=1 µsb

s
i (j), where for
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all s, µs ≥ 0.

In order to formally present this basis we need to introduce the rank of an object for a
given agent. Let rank i(j) be the position of object j in the preference order �i, e.g., if
�i: a � b � c, then rank i(a) = 1, rank i(b) = 2. Now we can state the following lemma:

Lemma 2. For any given set of objects Ô, any preference order �i∈ P and any r ∈
[0, 1], we have that any utility function ui ∈ URBI (r) ∩ U�i can be expressed as linear

combination ui(j) =
∑|Ô|−1

s=1 µsb
s
i (j), where for all s ∈ {1, . . . |Ô| − 1}, µj ≥ 0, and for all

bsi ∈ B(r, |Ô|,�i),

bsi (j) =

{
1

r|Ô|−ranki(j)−s
if rank i(j) ≤ |Ô| − 1 and |Ô| − rank i(j)− s ≥ 0

0 otherwise.
(7.7)

Note that not every linear combination of basis elements bsi (j) will produce a valid
utility functions that is consistent with �i. For a better understanding of how this basis
looks like, consider the following example.

Example 3. For a fixed a set of objects Ô = {a, b, c, d}, a preference order �i: a � b � c
and r ∈ [0, 1], we would have:

B(r, 4,�i) = {b1i , b2i , b3i } =
{( 1

r2
,
1

r
, 1, 0

)
,

(
1

r
, 1, 0, 0

)
, (1, 0, 0, 0)

}
(7.8)

where b1i = (b1i (a), b1i (b), b
1
i (c), b

1
i (d)) =

(
1
r2
, 1
r , 1, 0

)
.

Proof: Firstly, we show that any linear combination of base utility functions that is
consistent with �i. Since �i is a strict preference order, the only base utility function
that is consistent with �i is b1(j). Note that every base utility function bsi (j) is strictly
decreasing for the first few objects with respect to �i and is constant afterwards. There-

fore, every linear combination ui(j) =
∑|Ô|−1

s=1 µsb
s
i (j), where for all s ∈ {1, . . . |Ô| − 1},

µs ≥ 0 and µ1 > 0, is consistent with �i.

Secondly, we show that every base utility functions satisfies URBI (r). Note that we
can simplify the definition of URBI (r), since minj∈Ô b

s
i (j) = 0. Therefore, we get

∀a, b ∈ Ô, where bsi (a) > bsi (b)⇒ rbsi (a) ≥ bsi (b). (7.9)

For any consecutive pair of objects a, b ∈ Ô, where bsi (a) ≥ bsi (b) we have one of three
cases:

• Case bsi (a) = 0: Then blisb) = 0 as bsi (a) ≥ bsi (b) and r · 0 ≥ 0 trivially holds for
any r.

• Case bsi (a) > 0 and bsi (b) = 0: Then the condition r · bsi (a) ≥ 0 trivially holds
for any r ∈ [0, 1].
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34 CHAPTER 7. PROOF OF THE THEOREM

• Case bsi (a) > 0 and bsi (b) > 0: Then we have that rank i(a) + 1 = rank i(b).
Therefore, we have that

rbsi (a) = r
1

r|Ô|−rank i(a)−s
=

1

r|Ô|−(rank i(a)+1)−s
=

1

r|Ô|−rank i(b)−s
= bsi (b). (7.10)

Thus rbsi (a) ≥ bsi (b) holds for any r ∈ [0, 1].

Therefore, every base utility functions satisfies URBI (r). Moreover, this establishes that

any linear combination ui(j) =
∑|Ô|−1

s=1 µsb
s
i (j) satisfies URBI (r).

Finally we need to prove that the positive linear hull of B(r, |Ô|,�i) contains all of
URBI (r) ∩ U�i . In order to show that URBI (r) is contained in the linear hull of the
base utility functions, we show that we have as many linear independent base elements
as there are degrees of freedom in URBI (r).

The inequalities that define URBI (r) need to hold for any two objects a, b ∈ Ô, where
a �i b. However, due to the transitive nature of weak inequalities ”≥” and the monotone
decrease of the utility function with respect to the preference order �i, it is sufficient to
ensure the inequality on successive neighbours with respect to the preference order �i.
Therefore, if there are |Ô| objects, then there are |Ô| − 1 inequalities that need to hold
for a strict preference order �i∈ P. This is exactly the number of base elements defined
in the Lemma, as l runs from 1 to |Ô| − 1.

It remains to be shown that the utility functions bsi ∈ B(r, |Ô|,�i) are linearly in-
dependent, i.e., no bsi can be created as a linear combination of other elements of
B(r, |Ô|,�i). Observe that the element bsi has s trailing zeros. This is due to the
condition |Ô| − rank i(j) − s ≥ 0 in the definition of bsi . With every increase of the
counting variable s the condition breaks one rank earlier and thus leads to an additional
zero. Hence, if we remove the kth base utility function from the set, there is no linear
combination of the remaining base utility functions to create a utility function with
a strictly positive utility for the object at rank k and a utility of zero for all objects
with rank larger than k. Thereby, the set of utility functions B(r, |Ô|,�i) is linearly
independent.

With the condition that µ1 > 0, we have that the linear hull of B(r, |Ô|,�i) contains
all of URBI (r) ∩ U�i . This completes the proof of this Lemma.

�

7.2 Local Partial Strategyproofness

The definition of local partial strategyproofness is similar to the definition of partial
strategyproofness, however, insead of all possible misreports only the misreports in the
neighbourhood N�i are considered. Recall that neighbourhood N�i is the set of strict
preference orders that differ from �i by only one swap of consecutively ranked objects
with respect to �i.
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Definition 11 (Local Partial Strategyproofness). Given a setting (N, Ô, q) and a bound
r ∈ [0, 1], a mechanism ϕ is r-local partial strategyproof (in the setting (N, Ô, q)) if,
for all agents i ∈ N , all preference profiles (�i,�N\{i}) ∈ PN , all misreports in the
neighbourhood �′i∈ N�i and all utility functions ui ∈ U�i ∩URBI (r), we have

ui
(
ϕ
(
�i,�N\{i}

))
≥ ui

(
ϕ
(
�′i,�N\{i}

))
. (7.11)

In order to prove Lemma 5 in section 7.4, we will use the following fact from Mennle
and Seuken (2017a):

Fact 9 (Theorem 1,(Mennle and Seuken, 2017a)). Given a setting (N, Ô, q), if a mecha-
nism ϕ is r-locally partially strategyproof, then it is r2-partially strategyproof.

This fact means, that in order to show that a mechanism ϕ is r-partial strategyproof
it suffices to show that the mechanism is

√
r-locally partially strategyproof for the more

demanding bound
√
r > r.

7.3 Lemma for Local Partial Strategyproofness

The following lemma adapts the result from (Kojima and Manea, 2010) for local partial
strategyproofness. Informally, for a given setting and a given bound r, PS is r-locally
partially strategyproof for sufficiently large quotas of objects. Moreover, the lemma
provides a lower bound on the quotas of objects such that the claim is guaranteed to
hold.

Lemma 3 (adapted form (Kojima and Manea, 2010)). For any setting (N, Ô, q) and
for any r ∈ [0, 1)

(a) there exists M ∈ N such that if ∀j ∈ Ô : qj ≥ M , then PS is r-local partial
strategyproof. Formally, for all utility functions bsi ∈ B(r, |Ô|,�i), we have

bsi
(
PS (�i,�N\{i})

)
≥ bsi

(
PS (�′i,�N\{i})

)
(7.12)

∀i ∈ N,�i∈ P,�′i∈ N�i , ∀ �N\{i}∈ PN\{i}.

(b) Claim (a) is satisfied for M ≥ xD̃/d̃, where x ≈ 1.76322 solves xln(x) = 1,

D̃ = r−|Ô|+2, d̃ = min{1
r − 1, 1}.

In order to prove Lemma 3, we rely on facts and notations, which are directly adopted
from (Kojima and Manea, 2010). We now introduce the facts and notations necessary to
prove part (a) of Lemma 3.

In analogy to the example 1 in the introduction, Kojima and Manea (2010) use
the concept of eating functions. An eating function is a right-continuous function
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ei : [0, 1] → O, where ei(t) ∈ O is the object that agent i is eating at time t. Right-
continuous means that ∀t ∈ [0, 1), ∃ε > 0, such that ei(t) = ei(t

′), ∀t′ ∈ [t, t+ ε).

For an eating function e The number of agents that eat object a at a given time t is
denoted by na(t, e) = |{i ∈ N | et) = a}|.

The share of an object a that is eaten away by time t is denoted by va(t, e) =∫ t
0 na(s, e)ds. Note that va(·, e) is right-continuous.

For a preference profile �∈ PN , we denote by e� the eating function generated by the
symmetric simultaneous eating algorithm if all agents report truthfully. If agent i misre-
ports �′i instead of �i, then we denote the resulting preference profile by �′= (�′i,�N\{i}).

In order to compare the length of the time intervals in which agent i consumes a
different object when reporting �i than when reporting �′i, the following functions are
used:

β(t) =

∫ t

0
1
e�
′

i (s)�ie
�
i (s)

ds, γ(t) =

∫ t

0
1
e�i (s)�ie

�′
i (s)

ds, δ(t) = β(t) + γ(t), (7.13)

where for any logical expression p, 1p = 1 if p is true and 1p = 0 otherwise. The function
β(t) returns the summed up length of all time intervals up to t, where agent i strictly
prefers the object it eats under � (truthful report) to the object it would eat under �′
(misreport). Analogously, γ(t) returns the summed up length of all time intervals up to
t, where agent i strictly prefers the object it eats under �′ (misreport) to the object it
would eat under � (truthful report). The summed up length of all time intervals up to t,
where the object eaten by agent i differs from � to �′ is measured in δ(t). Consider the
following example:

Example 4. Fix N = {1, 2, 3}, Ô = {a, b, c} and qj = 1 for all j ∈ Ô. The agents have
the following preferences:

�= ((a �1 b �1 c), (b �3 c �2 a), (b �3 a �3 c)). (7.14)

Then we get the assignment probabilities for agent 1: PS1(�) = (3/4, 0, 1/4). If agent 1
misreports �′1= b �′1 c �′1 a, then we get PS1(�′) = (1/6, 1/3, 1/2). Figure 7.2 illustrates
the corresponding eating functions. Moreover, the figure shows the thick time intervals
where the eating functions do agree with each other. The sum of the length of these
intervals is equal to δ(1) = β(1) + γ(1). Furthermore, the length of the longer, thick, left
interval is equal to γ(1) and the length of the shorter, thick interval is equal to β(1).5

Furthermore, Kojima and Manea (2010) define the set of objects {a1, a2, . . . , al̄}, which

5Note that the time interval where the misreport is beneficial for agent 1 is significantly shorter than
the time interval where the misreport is detrimental for agent 1 (β(1) < γ(1)). The difference in the
length of these intervals is central to the proof of Fact 1 from (Kojima and Manea, 2010).
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t0 1

e�i (t) a c

e�
′

i (t)
b c a1/3 5/6

3/4

Figure 7.2: Illustration of Example 4, inspired from (Kojima and Manea, 2010).

are �i-prefered to e�i (t) at some time t, under �′ . Formally,

{a1, a2, . . . , al̄} = {a ∈ Ô | ∃t ∈ [0, 1), a = e�
′

i (t) �i e�i (t)}. (7.15)

The set is labeled such that a1 �′i a2 �′i · · · �′i al̄. For every l = 1, 2, . . . , l̄, define Tl
as the first time when al is consumed under e�

′

i and is �i-prefered to the consumption
under e�i , i.e.,

Tl = inf
t∈[0,1)

{al = e�
′

i (t) �i e�i (t)}. (7.16)

Note that 0 < T1 < T2 < · · · < Tl̄ < 1. As a technical notation convention, set T0 = 0
and Tl̄+1 = 1.

Let k denote the number of proper objects a ∈ Ô that are �i-preferred to the null
object, k = |{a ∈ Ô | a �i φ}|. Note that l̄ ≤ k, since for all l, al = e�

′

i (t) �i e�i (t) �i φ.

Finally, we define the following auxiliary eating function: Fix a preference profile �
and an agent i. Let �′ be the preference profile which is composed of a misreport of
agent i and the original preference profile for all other agents. Then, define

ēi(t) =

{
e�i (t) if �i (t) =�′i (t)

φ otherwise.
(7.17)

Under ēj , every agent j 6= i eats its most preferred object among the ones still available,
considering the consumption of agent i according to ēi. Note that through the possible
changes of i’s eating behaviour, the eating functions ē, e�i and e�i may differ from each
other.

After the introduction of these notations, we present the lemmas from (Kojima and
Manea, 2010), which are the crucial building blocks to prove their main result. These
lemmas are denoted by ”KM-Lemma”. The lemmas build up on each other and some
will be used to show our adjusted version of the result of Kojima and Manea (2010).

KM-Lemma 1 (Lemma 1, (Kojima and Manea, 2010)). For all t ∈ [0, 1] and a ∈ Ô,

va(t, e
�) ≥ va(t, ē) and va(t, e

�′) ≥ va(t, ē). (7.18)
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KM-Lemma 2 (Lemma 2, (Kojima and Manea, 2010)). For all t ∈ [0, 1],

vφ(t, e�)− vφ(t, ē) ≥ −δ(t). (7.19)

KM-Lemma 3 (Lemma 3, (Kojima and Manea, 2010)). For all t ∈ [0, 1] and a ∈ Ô,

va(t, e
�)− va(t, ē) ≤ δ(t). (7.20)

KM-Lemma 4 (Lemma 4, (Kojima and Manea, 2010)). For all t ∈ [0, 1] and a ∈ Ô,

va(t, e
�)− va(t, e�

′
) ≤ δ(t). (7.21)

KM-Lemma 5 (Lemma 5, (Kojima and Manea, 2010)). For all l = 1, . . . , l̄,

β(Tl+1)− β(Tl) ≤
δ(Tl)

qal
. (7.22)

KM-Lemma 6 (Lemma 6, (Kojima and Manea, 2010)). If qa ≥M for all a ∈ Ô, then

β(Tl+1)− β(Tl) ≤
γ(1)

M

(
1 +

1

M

)l−1

, ∀l = 0, 1, . . . l̄. (7.23)

As elaborated in the proof of part (a) of Lemma 3 below, we want to apply these KM-
Lemmas for local manipulations that involve objects with positive utility. However, since
the base utility functions of URBI (r) ∩ U�i can also assign a utility of zero to multiple
objects, we need a slightly adjusted version of KM-Lemma 6 in order for the proof to work.

Let t̃ be the time when bsi (e
�
i (t̃)) = bsi (e

�′
i (t̃)) = 0 holds for the first time, i.e.,

t̃ = inf{t′ ∈ [0, 1] | bsi (e�i (t′)) = bsi (e
�′
i (t′)) = 0}. (7.24)

Note that by definition of t̃ we have that ∀t > t̃, bsi (e
P ′
i (t)) = bsi (e

P ′
i (t′)) = 0.

We define l̃ ≤ l̄ such that
Tl̃−1 < t̃ ≤ Tl̃. (7.25)

Lemma 4 (adapted from Lemma 6 (Kojima and Manea, 2010)). If qa ≥ M for all
a ∈ Ô, then

β(Tl+1)− β(Tl) ≤
γ(t̃)

M

(
1 +

1

M

)l−1

, ∀l = 0, 1, . . . l̃ − 1. (7.26)

Note that the difference to KM-Lemma 6 is the time at which the function γ is
evaluated and the maximal index of l for which the lemma holds.
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Proof: [adapted from Kojima and Manea (2010) ] The proof of this lemma will be done
by induction on l.

For l = 0 the induction hypothesis holds trivially as β(T0) = β(T1) = 0.

For l = 1, we use KM-Lemma 5 to get that β(T2)− β(T1) ≤ δ(T1)
qa1

, where δ(T1) = γ(T1)

as β(T1) = 0. Furthermore, since γ is monotonically increasing, T1 ≤ t̃ and qal ≥M by
assumption, we get

β(T2)− β(T1) ≤ δ(T1)

qa1
=
γ(T1)

qa1
≤ γ(t̃)

qa1
≤ γ(t̃)

M
=
γ(t̃)

M
·
(

1 +
1

M

)0

. (7.27)

Thereby, the induction hypothesis holds for l = 1.

Now, let l ≥ 2. Suppose that the induction hypothesis holds for l = 0, 1, . . . , l − 1. We
prove that it also holds for l. We want to apply KM-Lemma 5, thus, we first consider
the term δ(Tl):

δ(Tl) = γ(Tl) + β(Tl) ≤ γ(t̃) + β(Tl). (7.28)

Note, that even if l = l̃ − 1, Tl = Tl̃−1 ≤ t̃ by the definition of l̃, therefore, γ(Tl) ≤ γ(t̃).

We can write β(Tl) using a telescope sum and then apply the induction hypothesis:

β(Tl) =
l−1∑
g=1

β(Tg+1)− β(Tg) ≤
γ(t̃)

M

l−1∑
g=1

(
1 +

1

M

)g−1

. (7.29)

Note that this last sum is a partial sum of a geometric series. Therefore, we can use the

formula
∑n

k=0 q
k = qn+1−1

q−1 and get

γ(t̃)

M

l−1∑
g=1

(
1 +

1

M

)g−1

=
γ(t̃)

M
·
(
1 + 1

M

)l−1 − 1(
1 + 1

M

)
− 1

= γ(t̃)

((
1 +

1

M

)l−1

− 1

)
. (7.30)

If we combine (7.28) with (7.30), then we get

δ(Tl) ≤ γ(t̃) + γ(t̃)

((
1 +

1

M

)l−1

− 1

)
= γ(t̃)

(
1 +

1

M

)l−1

. (7.31)

Since qal ≥M by assumption, KM-Lemma 5 and (7.31) imply that

β(Tl+1)− β(Tl) ≤
γ(t̃)

M

(
1 +

1

M

)l−1

, (7.32)

which completes the proof of the induction step.

�
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Now that we have proven the adjusted version of KM-Lemma 6, we can prove part (a)
of Lemma 3.

Proof of Part (a):
From Lemma 1 we know that the set of utility functions URBI (r)∩U�i is convex and by
Lemma 2, every utility function ui ∈ URBI (r)∩U�i , can be written as linear combination
of bsi ∈ B(r, |Ô|,�i). Therefore, in order to show r-local partial strategyproofness of PS
it suffices to show that PS is strategyproof for the utility functions bsi ∈ B(r, |Ô|,�i).

Fix a setting (N, Ô, q) and r ∈ [0, 1). Note that each utility functions bsi ∈ B(r, |Ô|,�i)
is decreasing with respect to a fixed preference order �i∈ P. Furthermore, the set of
objects Ô can be split into a part of objects with strictly decreasing utilities with respect
to �i and a part of objects with utility zero. Consider the following example as an
illustration only:

b3i =
(
b3i (a), b3i (b), b

3
i (c), b

3
i (d), b3i (e), b

3
i (f)

)
=

(
1

r2
,
1

r
, 1, 0, 0, 0

)
∈ B(r, 6,�i), (7.33)

the set of objects Ô can be split into

Ô>(b3i ) = {a, b, c} and Ô0(b3i ) = {d, e, f}. (7.34)

Note that this split can be done for any bsi ∈ B(r, |Ô|,�i).
Fix any agent i ∈ N , a preference order �i and any utility function bsi ∈ B(r, |Ô|,�i).

We simplify the notation of the splits of the set of objects as follows: Ô> = Ô>(bsi ) and
Ô0 = Ô0(bsi ).

Since Ô = Ô> ∪ Ô0, proving Lemma 3 is equivalent to showing local partially strat-
egyproofness for all bsi ∈ B(r, |Ô|,�i) on Ô>, Ô0 and across these sets. The remainder
of this proof is, therefore, split into three parts: (i) Considering local manipulations
on Ô>, (ii) considering the only possible local manipulation across Ô> and Ô0 and (iii)
considering local manipulations on Ô0.

Part (i): Local manipulations on Ô0:
According to Fact 5 the probabilistic serial mechanism is r-partially strategyproof for
some r > 0. Furthermore, by Fact 4 a mechanism is partially strategyproof if and only if
it is swap monotonic and upper invariant. Therefore, PS is swap monotonic and upper
invariant.

If there is only one object in Ô0, then there are no local manipulations that have to
be checked within this set. Therefore, assume that |Ô0| ≥ 2. PS is locally partially
strategyproof on Ô0 if the following holds:

bsi
(
PS (�i,�N\{i})

)
≥ bsi

(
PS (�′i,�N\{i})

)
(7.35)

for all �i∈ P , for all misreports �′i∈ N�i where only swaps of objects in Ô0 are considered
and for all possible reports of other agents �N\{i}∈ PN\{i}. Pick two consecutive objects
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d, e ∈ Ô0 and swap there order in �i to create the misreport �′i. By the upper invariance
of PS we know that the assignment probabilities for objects in the upper contour set
U(d,�i) will not change. Therefore, no utility gain or loss can originate from objects that
agent i prefers over d, especially from no object in Ô>. Moreover, possible changes in the
assignment probability of objects d, e can not lead to utility gain or loss, as they have a
utility of zero. Similarly, any changes for objects less preferred than e by i can also not
lead to utility gain or loss. Thereby, swapping consecutive objects of Ô0 is never beneficial.

Part (ii): Local Manipulation across Ô> and Ô0:
The set Ô> is defined such that it contains all objects with strictly positive utility.
Therefore, the swap of consecutive objects c, d across Ô> and Ô0 is a swap of objects
where bsi (c) = 1 and bsi (d) = 0. According to the upper invariance of PS, the assignment
probabilities for objects in the upper contour set U(c,�i) will not change. The misreport
�′i is created by swapping the order of c and d in �i. Based on Fact 4, PS is swap
monotonic. Therefore, the assignment probabilities of c and d can either stay as they are
or the assignment probability of c decreases and the assignment probability of d increases.
However, since bsi (d) = 0, such a manipulation can not increase, the expected utility of
the assignment.

Part (iii): Local manipulations on Ô>.
In order to show local-partial strategyproofness of PS on Ô>, we use an adaptation of
the result of (Kojima and Manea, 2010).

As mentioned above, the eating function e�i (t) returns which object is consumed by
agent i for any time t ∈ [0, 1]. Furthermore, as the time t runs from 0 to 1, the time
an agent is eating a certain object a is equivalent to the assignment probability of this
object to agent i under PS. Therefore, we can calculate the expected utility of PS by
integrating the eating function over time:

bsi (PS (�i)) =

∫ 1

0
bsi
(
e�i (t)

)
dt. (7.36)

This allows us to write the expected utility loss from misreporting �′i instead of �i as

bsi
(
PS (�i,�N\{i})

)
− bsi

(
PS (�′i,�N\{i})

)
=

∫ 1

0
bsi
(
e�i (t)

)
− bsi

(
e�
′

i (t)
)
dt. (7.37)

Let t̃ be the time when bsi (e
P
i (t̃)) = bsi (e

P ′
i (t̃)) = 0 holds for the first time, i.e.,

t̃ = inf{t′ ∈ [0, 1] | bsi (ePi (t′)) = bsi (e
P ′
i (t′)) = 0}. (7.38)
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The fact that ∀t > t̃, we have bsi (e
P ′
i (t)) = bsi (e

P ′
i (t′)) = 0, implies that

∫ 1
t̃ b

s
i (e�i (t))−

bsi

(
e�
′

i (t)
)
dt = 0. Hence,

∫ 1

0
bsi
(
e�i (t)

)
− bsi

(
e�
′

i (t)
)
dt =

∫ t̃

0
bsi
(
e�i (t)

)
− bsi

(
e�
′

i (t)
)
dt. (7.39)

Next, we want to show that this expected utility loss from misreporting is strictly
larger than zero, which is identical to showing that the expected utility gain is weakly
negative.

In their proof, Kojima and Manea (2010) used the following inequality to bound the
utility loss from below:∫ 1

0
ui
(
e�i (t)

)
− ui

(
e�
′

i (t)
)
dt ≥ dγ(1)−Dβ(1), (7.40)

where
D = max

a�ib�iφ
ui(a)− ui(b) d = min

a�ib,a�iφ
ui(a)− ui(b). (7.41)

This means that D is the maximal utility difference and d the minimal utility difference
of ui. As the authors only allow utility functions consistent with strict preference profiles,
d > 0 will always be true. However, in our case, where we use the base utility functions
bsi ∈ B(r, |Ô|,�i), the smallest utility difference is zero. This means that this bound
could not be used to show that the utility difference is bounded from below by zero. The
only thing left on the right side of the inequality in (7.40) is −Dγ(1), which is clearly
smaller than zero. Nevertheless, with the fact that the utility does not change after t̃
and by the definition of t̃, it follows that d > 0 for all t < t̃.

Therefore, we re-define d and D as d̃ and D̃ as follwos: Let e, f ∈ Ô, |Ô| ≥ 2 and
bsi ∈ B(r, |Ô|,�i), then

D̃ = max
e�if�iφ

bsi (e)− bsi (f) = r−|Ô|+2, (7.42)

d̃ = min
e�if,e�iφ,bsi (e)>0

bsi (e)− bsi (f) = min
{1

r
− 1, 1

}
. (7.43)

By the definition of t̃ there does not exist a t < t̃ such that bsi (e�i (t)) = bsi

(
e�
′

i (t)
)

= 0.

Therefore, the following inequality is valid as well:∫ t̃

0
b
(
e�i (t)

)
− b

(
e�
′

i (t)
)
dt ≥ d̃γ(t̃)− D̃β(t̃). (7.44)

Now, we use Lemma 4 to get an estimate for β(t̃). By summing up the segments
β(Tg+1) − β(Tg) until Tg ≥ t̃, we can give an upper bound for β(t̃). Then, we apply
Lemma 4 to estimate these segments and sum them up using the formula for geometric
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series, while considering that β(T1) = 0.

β(t̃) ≤
l̃−1∑
g=0

β(Tg+1)− β(Tg) ≤
l̃−1∑
g=0

γ(t̃)

M
·
(

1 +
1

M

)l̃
= γ(t̃)

((
1 +

1

M

)l̃
− 1

)
. (7.45)

Since l̃ ≤ k ≤ |Ô|, where k is the number of proper objects in Ô, we also get

γ(t̃)

((
1 +

1

M

)l̃
− 1

)
≤ γ(t̃)

((
1 +

1

M

)k
− 1

)
≤ γ(t̃)

((
1 +

1

M

)|Ô|
− 1

)
. (7.46)

Therefore, we get∫ t̃

0
bsi
(
e�i (t)

)
− bsi

(
e�
′

i (t)
)
dt ≥ γ(t̃)

(
d̃− D̃

((
1 +

1

M

)|Ô|
− 1

))
, (7.47)

which is non-negative if

M ≥ 1(
d̃
D̃

+ 1
)1/|Ô|

− 1

. (7.48)

This concludes part (iii) and part (a) of Lemma 3, as we found a M such that PS is
partially strategyproof under the given conditions.

�

Finally, for part (b) of Lemma 3 we need one more lemma from (Kojima and Manea,
2010). Define

Λ̃ =
γ(t̃)

M

(
1 +

1

M

)k−1

. (7.49)

KM-Lemma 7 (adapted from Lemma 7, (Kojima and Manea, 2010)). Suppose qa ≥M
for all a ∈ Ô. Then for all a ∈ Ô and t ≤ Tl̃ with t+ Λ̃ ≤ t̃,

va
(
t, e�

)
= qa ⇒ va

(
t+ Λ̃, e�

′
)

= qa. (7.50)

This KM-Lemma says that if an object runs out at time t under truthful reporting,
then the same object will have run out by t+ Λ̃ for the preference profile where one agent
misreported.

Note that the KM-Lemma 7 is almost identical to the original, however, we redefined
Λ in (7.49) to depend on γ(t̃) instead of γ(1). We denote this redefinition by Λ̃6.

6The adjusted Λ̃, does not affect the proof presented by Kojima and Manea (2010).
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Proof of Part (b):
As in part (a) it suffices to consider the utility functions bsi ∈ B(r, |Ô|,�i), since every util-
ity function ui ∈ URBI (r)∩U�i , can be written as linear combination of bsi ∈ B(r, |Ô|,�i).

In order to prove part (b), we use KM-Lemma 7 to obtain a tighter estimate of the
possible utility loss, which can then be transformed into the claimed estimate for M .

Assume that qa ≥ M for all a ∈ Ô. The consequence of KM-Lemma 7 that

val̃−1

(
Tl̃−1 + Λ̃, e�

′
)

= qal̃−1
if Tl̃−1 + Λ̃ ≤ t̃ leads to

∀t > min{Tl̃−1 + Λ̃, t̃}, bsi

(
e�
′

i (t)
)
≤ bsi

(
e�i (t)

)
. (7.51)

For technical purposes, we extend e�i such that for all t ∈ [−Λ̃, 0), e�i (t) = e�i (0).
Therefore,

∀t ∈ [0, t̃], bsi

(
e�
′

i (t)
)
≤ bsi

(
e�i (t− Λ̃)

)
. (7.52)

If we apply this to the expected utility difference, we obtain

bsi (PS(�))− bsi (PS(�′)) (7.53)

=

∫ t̃

0
bsi
(
e�i (t)

)
− bsi

(
e�
′

i (t)
)
dt (7.54)

=

∫ t̃

0
max

{
0, bsi

(
e�i (t)

)
− bsi

(
e�
′

i (t)
)}

dt+

∫ t̃

0
min

{
0, bsi

(
e�i (t)

)
− bsi

(
e�
′

i (t)
)}

dt

(7.55)

≥ d̃γ(t̃) +

∫ t̃

0
min

{
0, bsi

(
e�i (t)

)
− bsi

(
e�i (t− Λ̃)

)}
dt, (7.56)

where d̃ = min{1
r − 1, 1}. In equation (7.56), we estimated the positive parts of the

utility difference, which sum up to γ(t̃) using the minimal positive utility difference d̃.

Moreover, we made use of (7.52) to substitute b
(
e�
′

i (s)
)

.

Next, since bsi (e�i (t))− bsi
(
e�i (t− Λ̃)

)
≤ 0 for all t ∈ [0, t̃], we can drop the minimum.

Furthermore, we use basic arithmetic operations for integrals to transform the equation.

(7.56) = d̃γ(t̃) +

∫ t̃

0
bsi
(
e�i (t)

)
− bsi

(
e�i (t− Λ̃)

)
dt (7.57)

= d̃γ(t̃) +

∫ t̃

0
bsi
(
e�i (t)

)
ds−

∫ t̃−Λ̃

−Λ̃
bsi
(
e�i (t)

)
dt (7.58)

= d̃γ(t̃) +

∫ t̃

t̃−Λ̃
bsi
(
e�i (t)

)
dt−

∫ 0

−Λ̃
bsi
(
e�i (t)

)
dt (7.59)
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= d̃γ(t̃) +

∫ 0

−Λ̃
bsi
(
e�i (t)

)
− bsi

(
e�i (t+ t̃)

)
dt (7.60)

≥ d̃γ(t̃)− D̃Λ̃, (7.61)

where D̃ = r−|Ô|+2, given |Ô| ≥ 2. In the last integral, we know that the utility differ-
ences of the objects consumed in the interval [−Λ̃, 0) compared to the objects consumed
in [t̃−Λ̃, t̃) are surely less than the maximal utility difference D̃ and use this as an estimate.

Substituting the definition of Λ̃ we get

bsi (PS(�))− bsi (PS(�′)) ≥ d̃γ(t̃)− D̃Λ̃ = d̃γ(t̃)− D̃γ(t̃)

M

(
1 +

1

M

)k−1

, (7.62)

which simplifies to

bsi (PS(�))− bsi (PS(�′)) ≥ d̃γ(t̃)

M

(
M − D̃

d̃

(
1 +

1

M

)k−1
)
. (7.63)

Supposed that M ≥ xD̃/d̃, where x ≈ 1.76322 solves xln(x) = 1. Let e ≈ 2.71828 denote
Euler’s number. Note that D̃/d̃ ≥ k, where k is the number of proper objects in Ô. With
M ≥ xD̃/d̃ ≥ xk we get

(
1 +

1

M

)k−1

<

(
1 +

1

xk

)k
=

((
1 +

1

xk

)xk)1/x

< e1/x. (7.64)

As x = e1/x and by using M = xD̃/d̃ and (7.64), it follows that

bsi (PS(�))− bsi (PS(�′)) ≥ d̃γ(t̃)

M

(
x
D̃

d̃
− D̃

d̃
e1/x

)
= 0. (7.65)

Hence the claim of part (a) holds if M ≥ xD̃/d̃.
This concludes the proof of part (b) and, therefore, the proof of Lemma 3.

�
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7.4 Lemma for Partial Strategyproofness

As a next step, we extend the claim of Lemma 3 for local partial strategyproofness to
partial strategyproofness, using Fact 9. We get the following lemma:

Lemma 5. For any setting (N, Ô, q) and for any r ∈ [0, 1)

(a) there existsM ∈ N such that if ∀j ∈ Ô : qj ≥M , then PS is r-partially strategyproof.
Formally, ∀ui ∈ URBI (r) ∩ UPi, ∀i ∈ N,�′i∈ P,∀ �N\{i}∈ PN\{i}, we have

ui
(
PS
(
�i,�N\{i}

))
≥ ui

(
PS
(
�′i,�N\{i}

))
. (7.66)

(b) Claim (a) is satisfied for M ≥ xD̃/d̃, where x ≈ 1.76322 solves xln(x) = 1,

D̃ = r−
|Ô|
2

+1, d̃ = min{ 1√
r
− 1, 1}.

Proof: Fix a setting (N, Ô, q) and a r ∈ [0, 1). Define rloc =
√
r, note that for all

r ∈ [0, 1),
√
r > r and

√
r ∈ [0, 1). Therefore, by Lemma 3 we know that in the given

setting and with rloc ∈ [0, 1) there exists a M ∈ N such that if ∀j ∈ Ô : qj ≥ M , PS is
rloc-locally partial strategyproof. Futhermor, we know that this holds for M = xD̃/d̃,

where x ≈ 1.76322 solves xln(x) = 1, D̃ = r
−|Ô|+2
loc , d̃ = min{ 1

rloc
− 1, 1}.

Part (a): From Fact 9 we know that if a mechanism is rloc-locally partially strategyproof,
it is (rloc)

2-partially strategyproof. By definition of rloc we have (rloc)
2 =

√
r

2
= r.

Thereby, in the given setting and with r ∈ [0, 1) there exists a M ∈ N such that if
∀j ∈ Ô : qj ≥M , PS is r-partially strategyproof.

Part (b): If we substitute rloc for its definition
√
r we get the according formulas for

D̃ and d̃, i.e.,

D̃ = r
−|Ô|+2
loc = r−

|Ô|
2

+1, (7.67)

d̃ = min{ 1

rloc
− 1, 1} = min{ 1√

r
− 1, 1}. (7.68)

�
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7.5 Proof of Theorem 1

Finally, Theorem 1 is directly implied from Lemma 5.

Theorem 1. Given a fixed set of objects Ô, and any r ∈ [0, 1).

(a) There exists M ∈ N such that for all settings (N, Ô, q), with minj∈M qj ≥M , and

ρ(N,Ô,q)(PS ) ≥ r. (7.69)

(b) Claim (a) is satisfied for M ≥ xD̃/d̃, where x ≈ 1.76322 solves xln(x) = 1,

D̃ = r−
|Ô|
2

+1, d̃ = min{ 1√
r
− 1, 1}.

Proof:
Part (a): The degree of strategyproofness for PS is defined as

ρ(N,Ô,q)(PS ) = max{r ∈ [0, 1] | PS is r-partially strategyproof in (N, Ô, q)}. (7.70)

From Lemma 5 we know that for any given r ∈ [0, 1) we can find a M ∈ N such that
if ∀j ∈ Ô : qj ≥M , PS is r-partially strategyproof for all agents. Hence, ρ(N,Ô,q)(PS ) ≥ r.

Part (b): The estimate for M follows directly from Lemma 5.
�
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Discussion

In this section we will discuss two things concerning the proof of Theorem 1: Firstly, we
discuss why Lemma 5 in the proof of the theorem is not directly implied by the result
from Kojima and Manea (2010). Secondly, we discuss an alternative approach to prove
the theorem, which turned out to not be feasible due to a false intuition about misreports
under PS.

8.1 Lemma 5 and Kojima and Manea (2010)

Recall Fact 2, which is a corollary in (Kojima and Manea, 2010). It states that for
any fixed setting with a finite set of proper objects Ô and a fix finite set of utility
functions U , there exists a lower bound M on the minimal quota of objects such that PS
is strategyproof in the given setting.

In Lemma 5, we show that for any finite setting (N, Ô, q) and any r ∈ [0, 1) there
exists a lower bound M on the minimal quotas of objects such that PS is r-partially
strategyproof in the given setting.

The key difference in the conditions of these two claims is that in Lemma 5, we do not
assume a finite set of utility functions. Instead, the lemma ensures that truth-telling is a
dominant strategy for any of the infinitely many utility functions that satisfies URBI (r).
Therefore, no matter how big the finite set of utility functions for the corollary in Kojima
and Manea (2010) is, it will never cover all possible utility functions.

Furthermore, applying the result of Kojima and Manea (2010) (Fact 2) on the finite set
of utility functions that form a basis of URBI (r)∩U�i for every agent i and every possible
preference order �i, does not work either. The statement from Kojima and Manea (2010)
assumes that the utility functions are consistent with strict preference orders, however, as
we see in Lemma 2, not all base utility functions are strictly decreasing. This condition
can not simply be dropped in Fact 2, since this will break the formula for the lower bound
on the object quotas M . Recall that this formula is M = xD/d, where x ≈ 1.76322
solves xln(x) = 1, D = maxa�ib�iφ ui(a)−ui(b), and d = mina�ib,a�iφ ui(a)−ui(b). If we
calculate d for a not strictly decreasing base utility function we get zero, which prevents
the existence of M .
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Hence, the special structure of the base of URBI (r)∩U�i has to be taken into account.
In order to proof Lemma 5, we considered local partial strategyproofness in Lemma 3,
which allowed us to resolve the issue where multiple objects have utility zero. Furthermore,
we adjusted the result of Kojima and Manea (2010) such that it can applied for misreports
that involve objects from the strictly decreasing part of the base utility functions.

8.2 A False Intuition

Under PS, one might have the intuition that whatever the truthful ranking is, it is never
beneficial to report an object with utility zero at any other rank but last. This means if
there is an object with utility zero (a zero-object), you will always want to report it last.
The idea behind this intuition is, that the time you need to eat this zero-object could be
used to eat an object with positive utility, which would still increase the over-all utility,
even if the gained utility is small.

If this intuition is true, then we could directly proof Lemma 5 about partial strate-
gyproofness in large markets as follows. For any given r, we would need to show that
for any utility function in URBI (r) PS is strategyproof for all preference profiles and all
possible misreports. We would do this by showing the claim for the base utility functions
bsi ∈ B(r, |Ô|,�i). To cover all possible misreports, note that any misreport can be created
in two steps: first, misreport the orders of the objects with positive utility with respect
to bsi , second, create the desired misreport by swapping the zero-objects accordingly.
For the first step, misreporting any object with positive utility is not beneficial by the
adjusted result from (Kojima and Manea, 2010) if the minimal quota of objects is large
enough. The second step can then be covered by the introduced intuition if it is true.

However, it turns out that this intuition is wrong. There are settings where reporting
a zero-object above another object with positive utility can be beneficial under PS.
Consider the following counterexample for this intuition.

Let N = {1, 2, 3, 4}, Ô = {a, b, c, d} and qj = 1 for all objects j ∈ Ô. The true
preference order of agent 1 is �1: a � b � c � d with a utility function u1 = (4, 2, 1, 0),
therefore, object d is a zero-object. Note that u1 ∈ URBI (1/2), moreover, it is a base
utility function for URBI (1/2) ∩ U�1 . Consider the situation where agents report the
following preferences:

�′1 : b � c � a � d (8.1)

�2 : b � d � c � a (8.2)

�3 : c � b � d � a (8.3)

�4 : d � c � b � a. (8.4)

Here, agent 1 misreported �′1: b � c � a � d. We get

PS1

(
�′1,�2,3,4

)
=

(
1

4
,
1

2
,
1

4
, 0

)
, (8.5)
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which yields an expected utility of 2.25 for agent 1.
According to our intuition, any misreport where the zero-object d is not reported last

should result in a lower expected utility than the misreport �′i. Now consider that agent
1 misreports �′′1: b � d � a � c, i.e., he swaps the zero-object d with object c. We get

PS1

(
�′′1,�2,3,4

)
=

(
1

3
,
1

2
, 0,

1

6

)
, (8.6)

which yields an expected utility of 2.33 for agent 1, which is larger than 2.25.

Moreover, if we consider the base utility function u′1 = (1, 0, 0, 0), we see that even
swapping the two zero-objects c and d can yield a gain in utility. This happens because
the sequence in which agent 1 eats the probability shares of the objects influences the
eating schedule of the other agents. Note that the intuition holds for three agents and
three objects, where each object has unit capacity.
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Conclusion

In this thesis, we considered the probabilistic serial mechanism (PS) for assignment
problems. We saw that while it is ordinal efficient, it is not strategyproof. Nevertheless,
PS satisfies r-partial strategyproofness. Partial strategyproofness is a parametric incentive
concept, where 1-partial strategyproofness is equal to normal strategyproofness (Mennle
and Seuken, 2017c).

As our main result, we have shown that the degree of strategyproofness for PS converges
to 1 in large markets. We achieved this by showing that for any finite setting and any
r ∈ [0, 1) there exists a minimal quota of objects such that the degree of strategyproofness
for PS in the given setting is at least as large as r. This implies convergence because as
the markets get large, the quotas of objects also have to get large in order to meet the
demand of the agents. However, the result does not depend on the number of agents
participating in the mechanism but only on the minimal quota of objects.

This result allowed for an elegant, parametric proof of the fact that PS is strategyproof
in the large. Moreover, we have seen that the condition on the minimal quota of objects
can be used to give upper bounds on the necessary quota of each object to guarantee a
certain degree of strategyproofness for a given setting. Furthermore, given the quotas
of objects is large enough, the condition can also be used to give a lower bound on the
degree of strategyproofness in a given setting. Also, these bounds allow us to give better
advice for agents participating in PS, based on the number of objects, their quotas and
the utility function of the agent.

In addition to this, we considered settings where the number of agents equals the
number of objects and every object has unit capacity. In these settings, we showed that
the subset of utility functions for which the probabilistic serial mechanism is strategyproof
is not identical to the subset of utility functions that satisfy uniformly relatively bounded
indifference. However, this is true for three agents and three objects with unit capacity,
as well as for four agents and objects. Whether this condition is satisfied for larger
settings is a matter of future research.

These results deepen our understanding of the incentives of PS in large markets beyond
the results for finitely many utility functions from (Kojima and Manea, 2010). Our
results are valid for all possible utility functions. Future research may make use of the
proof idea to show similar convergence results for different mechanisms, where a result
for large markets exists.
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