
Replicating Parser Behavior using Neural
Machine Translation

Carol V. Alexandru, Sebastiano Panichella and Harald C. Gall
Software Evolution and Architecture Lab

University of Zurich, Switzerland
{alexandru,panichella,gall}@ifi.uzh.ch

Abstract—More than other machine learning techniques, neu-
ral networks have been shown to excel at tasks where humans tra-
ditionally outperform computers: recognizing objects in images,
distinguishing spoken words from background noise or playing
“Go”. These are hard problems, where hand-crafting solutions
is rarely feasible due to their inherent complexity. Higher level
program comprehension is not dissimilar in nature: while a
compiler or program analysis tool can extract certain facts from
(correctly written) code, it has no intrinsic ‘understanding’ of
the data and for the majority of real-world problems, a human
developer is needed - for example to find and fix a bug or to
summarize the bahavior of a method. We perform a pilot study
to determine the suitability of neural machine translation (NMT)
for processing plain-text source code. We find that, on one hand,
NMT is too fragile to accurately tokenize code, while on the
other hand, it can precisely recognize different types of tokens
and make accurate guesses regarding their relative position in the
local syntax tree. Our results suggest that NMT may be exploited
for annotating and enriching out-of-context code snippets to
support automated tooling for code comprehension problems. We
also identify several challenges in applying neural networks to
learning from source code and determine key differences between
the application of existing neural network models to source code
instead of natural language.

I. INTRODUCTION

Deep learning has become an ever more prominent tool for
solving hard problems in computer science [1] and other dis-
ciplines; particularly those problems, where humans typically
outperform their artificial counterparts. For example, people
can easily spot and identify multiple objects in an image, even
if they are occluded, badly lit or otherwise hard to discern from
the surrounding imagery. Manually writing a program with
the same purpose is extremely hard and has kept researchers
busy for decades, whereas machine learning, and especially
deep learning, has provided several breakthroughs in image
recognition technology within the past decade alone [2].

In a way, program comprehension (PC) falls into the same
problem category: while an interpreter can read a program line
by line, link different sources and execute arbitrarily complex
pieces of (correctly written) code, it has no inheret under-
standing of the program - it is just a ‘dumb’ automaton, hand-
crafted by a human designer. To actually comprehend what is
going on in a given piece of code, to fix a bug or to change
some specific program behavior, a human developer is most
often required, unless the bug or change falls into a narrow
category of problems that have been solved programmatically.
From this point of view, PC is another hard problem where
humans outperform machines and where research is struggling
to yield effective automated means of answering relatively

simple questions: ‘Why does this method crash given some
specific input?’, ‘Is this code thread safe?’, ‘Why does this
assertion fail?’. Questions like these might be answered by an
experienced developer just by reading the source code, but a
program that can answer all three questions necessitates an
immensely complex, yet narrowly targeted toolchain.

As such, we argue that for many PC tasks, a traditional
model of the source code (as a compiler builds it) is not
enough. We believe that in the long run, deep learning could
be a key towards automating PC. The goal, of course, is to
create automated tools that can aid developers more effectively
in understanding and modifying source code. However, Rome
was not built in a day, and as a first step in the right direction,
we ask: can neural networks learn the first lesson of mastering
a new programming language, namely recognizing its syntactic
components? After all, even for more complex comprehension
tasks (i.e., how two separate pieces of code interact), any deep
learning model would first need to learn an internal model of
the source code itself in order to know “what is what”.

Hence, we explore the ability of neural machine transla-
tion (NMT) to interpret plain-text source code directly. Our
contributions are: (i) a fast and simple tool for gathering
NMT training data from GitHub1, (ii) an examination of
the suitability of NMT to tokenize source code and annotate
tokens with typing and location metadata, (iii) an outline for
future avenues of research applying NMT towards PC.

II. RELATED WORK

Recurrent neural networks (RNN) have found widespread
use in other fields, with natural language processing being
most closely related to source code processing. Sequence-
to-sequence translation, as outlined by Sutskever et al., has
been shown to match or even outperform existing systems
when translating sentences from one language to another [3].
Vinyals et al. discovered that neural machine translation can
also parse natural language sentences into parse trees with
similar performance as the Berkley Parser [4]. Both these
examples show that a relatively simple RNN can mimmick
more complex, human-engineered and state-of-the-art tooling
behavior. These results in natural language processing inspire
confidence that deep learning may also be effective for solving
similar problems in source code processing. In fact, White
et al. show that RNNs significantly outperform n-gram based
models for predicting the next token in a sequence [1].

1The tool, ParseNN, is open source: https://bitbucket.org/sealuzh/parsenn

https://bitbucket.org/sealuzh/parsenn

III. APPROACH

Parsers traditionally use a rule-based lexer to group source
code characters. The resulting tokens are fed into a parser to
construct a parse tree. We follow the same two-step process,
however both translations are performed by an NMT model.
Since parse trees can be much more deeply nested and since
they are generally more complex than natural language parse
trees, the result of the second step in this preliminary study is
not a parse tree, but rather an annotation sequence identifying
the type for each token, as well as its depth in the parse tree,
indicating the relative location of different tokens.

A. Neural Machine Translation

Luong et al. describe NMT as a neural network modelling
the conditional probability p(y|x) of translating a source
sequence x1,, xn to a target sequence y1, ..., ym [5]. The
model consists of an encoder, that creates some numerical
representation s for each source sequence, while a decoder
generates one output word at a time. Thus, the conditional
probability of translating any particular sentence is defined as:

ln p(y|x) =
m∑
j=1

ln p(yj |y1, ..., yj−1, s)

In other words, the probability of any single word yj being
appended to the output depends both on the input and on any
previously generated output words. Recurrent neural networks
(RNN), consisting of Long Short-Term Memory (LSTM) [6]
or gated recurrent units (GRU) [7], lend themselves naturally
to model this problem because they make predictions based
not only on input data, but also on previous internal states.
While the basic sequential model works with input and output
sequences consisting of single words, it is also possible to use
sequences where each word has more than one feature [8].

To map words to their numerical representation, vocabu-
laries Vx and Vy are created for the input and the output
sequences. They contain a mapping from words to integers
for the top-k most common words in each dataset. They also
contain four control words, for the start and end of sentence,
padding and unknown words (assigned to all uncommon words
not present in the vocabulary).

To further improve predictions by an RNN, attention-based
models compute context vectors to determine the relevant
information in the source sequence for the next output word.
The context vector may be computed over the entire input
sequence (global attention), or only parts of it by attempting to
align which words in the input sequence are most predictive for
the next output word (local attention). Through input feeding,
the previous context vector may be fed back into the model
at each step, such that the ‘attention’ moves over the source
sequence continuously. Finally, instead of only going forward
through the sequences, a bi-directional RNN can average
predictions going through the sequences both forward and in
reverse, which can also improve predictions.

As with all neural networks, the training goal is to minimize
the prediction error of the model by tweaking its internal

weights using one of several optimization techniques. The
prediction error, typically called loss, is defined as:

loss = − 1

N

N∑
j=1

ln pyj

Usually, per-word perplexity is used as the performance metric
for sequence prediction models. Perplexity is defined as:

perplexity = e−
1
N

∑N
j=1 ln pyj = eloss

Metaphorically speaking, the perplexity x of a model indicates
that it predicts the correct word as often as an ‘x-sided‘ die.
Thus, better models exhibit lower perplexity and with larger
target vocabularies, increased preplexity is expected.

B. Training data

As we are training two separate models for the two trans-
lation steps, we need four kinds of data, as shown in table I.
For the first translation step to tokenize source code, we avoid
using the tokens themselves in the output sequence because
many of them would be ‘unknown’ (e.g., class and method
names are often unique in the dataset). Instead, we use a
sequence of just three simple lexing instructions: (a) ‘0’ →
continue (or begin) the current token, (b) ‘1’ → end the
current token, (c) ‘ ’ → skip the current character. For the
second translation step, we do use tokens as words in the input
sequence (where some may be “unknown”), but these words
can still be annotated correctly thanks to the surrounding
context - they are not necessarily informative.

The example provided in Table I shows the original input se-
quence (A1), the lexing instructions (A2) required to produce
the given tokens (B1), as well as the corresponding annotations
(B2). It shows that the tokens public and ; are on the same
level (a statement level element, most likely), while the other
elements are located further down the tree. Some levels are
noticably missing, which is because the original AST created
by the parser creates many nodes not represented by a literal
token. We address this problem in section IV.

Neural translation models in natural language normally
operate at the sentence-level. As there are no ‘sentences’ in
source code, we decided to simply split the input data on
newlines. This has one particular disadvantage, namely that
the resulting model cannot recognize multi-line tokens (such as
multi-line strings). We discuss this problem, as well as possible
alternatives in section IV. For now, when the parser we use
to generate the training data encounters a multi-line token, the
corresponding input and output sequences are thrown away
and excluded from the training data.

C. Training Data Acquisition

To gather the training data, we first used the GitHub API
to obtain the Git URLs of the top 1000 Java projects hosted
on GitHub, ordered by the number of stars they received. We
then wrote a tool to automatically apply the following process
for each of the projects:

1) First, the Git repository is cloned.

TABLE I
EXEMPLARY TRAINING DATA

ID Sequence Seq. type Example
A1 Plain text code Characters public String s = "Hello, World";
A2 Lexing instructions Characters 000001 000001 1 1 000000000000011
B1 Tokens Words [public] [String] [s] [=] ["Hello, World"] [;]

B2 Annotations Words|Integers [ClassOrInterfaceModifier|11] [ClassOrInterfaceType|13] [VariableDeclaratorId|14] [VariableDeclarator|13] [Literal|17] [FieldDeclaration|11]

TABLE II
ONE SUCCESSFUL AND ONE FAILED TRANSLATION (ERRORS HIGHLIGHTED)

Successful
translation

List<Throwable> errors = TestHelper.trackPluginErrors();
000110000000011 000001 1 0000000001100000000000000001111
[ClassOrInterfaceType|14] [TypeArguments|15] [ClassOrInterfaceType|18] [TypeArguments|15] [VariableDeclaratorId|15] [VariableDeclarator|14]

[Primary|19] [Expression|17] [Expression|17] [Expression|16] [Expression|16] [LocalVariableDeclarationStatement|11]

Failed
translation

@Test(expected = NullPointerException.class)
10001100000001 1 000000000000000000000000011

2) The bare Git tree is traversed to obtain the Git blob IDs
of all Java files present in the latest revision.

3) An ANTLR-generated lexer and parser are then used to
parse each file and simultaneously extract all four data
sequences, meanwhile ensuring that all the sequences are
aligned correctly. Accidentally skipping any line in any
of the sequences would result in a fatal misalignment of
the training data. As we need each word (be it individual
characters, tokens or annotations) to be separated by a
blank space for further training, we replace any existing
spaces within a word with an unassigned unicode charac-
ter (0xFF00) and then concatenate the words using spaces
when writing them to file.

By the end of this process, we had obtained four data files, all
containing space-separated words which can directly be used
by the translation model. The automated extraction process
for 1000 Java projects took 4.3 hours. From this data, we
eventually used 25 million sentences for training and a separate
2 million for validation.

D. Model Training and evaluation

We experimented with different frameworks (based on Ten-
sorflow and Torch) as well as different hyperparameters for the
models. We found OpenNMT [8] to be most suitable (in terms
of speed, resource requirements and ease of use), as it is a ma-
ture, full-featured framework rather than a research prototype.
All models were trained until no improvement in preplexity
was made for 2 full training epochs, and using the following
OpenNMT default parameters unless otherwise noted: 2 layers,
500 hidden LSTM units, input feeding enabled, batchsize:
64, dropout probability: 0.3 and a learning rate decay rate
of 0.5 applied at the end of each epoch where perplexity did
not improve. Combining both models, we built an annotation
engine that translates plain-text source code to annotated token
sequences. Table II shows examples for both successful and
failed translations. The source and target vocabulary sizes are
denoted as Vxsize and Vysize .

Tokenization. For translating plain-text source code (Vxsize :
2189) to lexing instructions (Vysize : 7) we trained a bi-
directional RNN operating on input and output sequences up
to 100 words (characters) long. After training for 7 epochs,
requiring 24 hours for each epoch, the resulting model exhib-
ited a perplexity of 1.11. Although this is very low, given that

the target vocabulary is tiny, and the number of tokens per
sequence quite large (a single line of code can contain dozens
of characters), any single mistake leads to a faulty tokenization
(see the second row in table II). A similar training session
using a uni-directional RNN diverged in the second epoch.

Token annotation. For annotating tokens (Vxsize : 50004,
Vysize : 91), we trained both a uni-directional (5½ hours per
epoch) and a bi-directional (7 hours per epoch) model for
11 epochs on sequences up to 50 words in length. Both
models reached the same perplexity of 1.28, although the
uni-directional one learned more quickly in the beginning.
This is a good result given the non-trivial target vocabulary.
Given how we constructed our training data, we know that
some predictions cannot accurately be made: some input
sequences consist only of a single curly bracket (}), and
without additional context it is impossible to predict the scope
and depth of such a token. Using a different code splitting
strategy, as discussed in section IV, would certainly alleviate
this issue and may improve the perplexity.

Conclusion. NMT is not very well suited for tokenizing
source code, but it is highly capable of recognizing token
types and their relative locations in an implied parse tree.

IV. FUTURE WORK

Our results suggest that NMT can effectively annotate tok-
enized source code given enough training data, but our strategy
for tokenizing source code using lexing instructions is ineffec-
tive. It may be better to first use a naive tokenization to reduce
the sequence length (e.g., splitting on non-alphanumerics)
and to train a model for extracting proper tokens from that
sequence. A direct translation from characters to tokens may
also be attempted, given that attention may be enough to
replace rare target-tokens (names of variables, method, etc.)
with the correct characters from the input sequence.

A. Alternative input data separation.

We split our input data on newlines. This means that
our training sequences are variable in length and that many
sequences likely exhibited similar features. On one hand, this
makes for a more regular data set, where the neural network
can more easily learn certain patterns (e.g., public at the

beginnig of a line can easily be recognized as a modifier).
On the other hand, this makes it more difficult for the neural
network to correctly translate irregular code. There exist
alternatives that may be worth exploring:

• Splitting the data such that the resulting token sequences
have a fixed length. This implies that the input sequence is
variable-length, because each token may entail a different
number of characters. This would likely make the ap-
proach more robust to strangely formatted code, as there
is no longer any assumption of where on a line a token
occurs more often. On the other hand, more training data
would be needed and the model would also need longer
to train in order to perform well.

• Simlilarily, a fixed input length could be used, i.e., split-
ting the input every n characters. This has the drawback
that characters at the beginning and end may not describe
an entire token. For these characters, a special ‘partial’
token could be used in the target sequence.

• Splitting based on semantics: for example for Java, we
may split the token sequences into class and method
definitions, control statements (for, while etc.) and
block statements. We suspect that this approach could
slightly outperform our current approach, since there
are fewer ‘spurious’ sequences, such as single closing
brackets, but only experimentation will tell.

B. Translating text or tokens to parse trees

While Vinyals et al. have already shown that NMT can parse
natural language sentences into parse trees, doing the same for
source code is more difficult: Typical natural language tree
banks work with under 50 different token types [9], a typical
Java grammar may have up to 100. Natural language trees are
also much less deeply nested compared to source code. To
make a direct translation from naively tokenized source code
to a linearized tree representation, it is likely necessary to use
multiple features for each target token, either (i) the token
type (same as in this study) and the parent token or scope, or
(ii) the token type and whether the current token starts or ends
a child scope. It may also make sense to use a meta-model
representation of the code (e.g., FAMIX [10]), instead of the
source language grammar when creating the training data.

C. Parsing noisy, out-of-context sources

Code snippets found on online forums or StackOverflow are
often taken out of their original program context and may be
missing parts necessary for compilation or further processing
(such as imports or variable definitions). Furthermore, they
may contain noise, such as ellipses or generic placeholders
(like foo or X). Even island parsers have difficulty parsing
noisy code and we propose that neural machine translation
could significantly improve on existing techniques. Concretely,
one can (i) train a simple sequence-learning model (with the
goal of predicting the next token or character) on correctly
formatted code from GitHub, (ii) use the model to detect and
catalogue noise in sources from StackOverflow, (iii) apply the
same noise to the original sources used to train the model

generating synthetic ‘noisy’ input sequences, and (iv) train
a new model that de-noises the code using placeholders or
best-match tokens from the original training data. Contrary to
existing methods of working with code from StackOverflow
(e.g., displaying full snippets deemed relevant [11]), a model
able to parse these snippets could form the basis for more
sophisticated recommender systems.

V. CONCLUSION

This pilot study yields a negative and a positive result: NMT
is not the ideal model for simply tokenizing source code, but
it is certainly a strong contender for annotating source code
with contextual information. Our training data creation tool
can easily be adapted to create large-scale datasets containing
other kinds of sequences (and annotations) to perform further
experiments. Creating full-fledged parse-trees is more difficult
when working with source code than when working on natural
language, but simpler representations (e.g., using meta models)
may be feasible.

We conclude that NMT can learn the first lesson in master-
ing a programming language: recognizing syntax and identify-
ing types of tokens. Perhaps, NMT and related neural network
models can learn to understand more complex concepts as well
- from scratch, rather than by the hand of a developer hard-
coding solutions for specific problems.

ACKNOWLEDGEMENTS

This research is partially supported by the Swiss National
Science Foundation (Project №149450 – “Whiteboard”). We
thank the Nvidia Corporation for providing the Titan X GPU
used for this research.

REFERENCES

[1] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Mining Software Repos-
itories (MSR), 2015 IEEE/ACM 12th Working Conference on, May 2015.

[2] A. Karpathy and F. Li, “Deep visual-semantic alignments for
generating image descriptions,” CoRR, vol. abs/1412.2306, 2014.
[Online]. Available: http://arxiv.org/abs/1412.2306

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014. [Online].
Available: http://arxiv.org/abs/1409.3215

[4] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E.
Hinton, “Grammar as a foreign language,” CoRR, vol. abs/1412.7449,
2014. [Online]. Available: http://arxiv.org/abs/1412.7449

[5] M. thang Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation.”

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[7] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the
properties of neural machine translation: Encoder-decoder approaches,
2014.

[8] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “OpenNMT:
Open-Source Toolkit for Neural Machine Translation,” ArXiv e-prints.

[9] A. Taylor, M. Marcus, and B. Santorini, “The penn treebank: An
overview,” 2003.

[10] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-
model for language-independent refactoring,” in Principles of Software
Evolution, 2000. Proceedings. International Symposium on, 2000.

[11] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident programming
prompter,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. ACM, 2014.

http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1412.7449
http://dx.doi.org/10.1162/neco.1997.9.8.1735

