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Zusammenfassung

Das Thema dieser Arbeit ist die Abschatzung der Resultate von SPARQL-Query Abfra-
gen auf RDF Daten. In Standard-Datenbankumgebungen wird ’Approximate Query
Processing’ oft benutzt, um die Resultate zu schétzen. Ein Beispiel, wo sich die Alterna-
tive zur exakten Ausfiihrung des Queries lohnen kann ist, wenn Ressourcen eingeschrankt
sind - wie die Rechenkapazitiat, Speicherplatz, Zugriff zur Datenbank oder Geld. Die
Anniéherung des Resultats kann als Entscheidungsgrundlage fiir weitere Uberlegungen
zu einer solchen Informationsabfrage-Strategie dienen.

In der Arbeit wird eine Methode aus drei vorgestellten Vorgehen ausgewahlt, um die
Abschéatzung in den gewlinschten Semantic Web Kontext zu transferieren. Der gewéhlte
Algorithmus benutzt Bloom Filter, um Zwischenresultate darzustellen und sie dann fiir
das Schlussresultat miteinander zu vereinen. Die Implementierung des Algorithmus
wurde in Java geschrieben und dann in Experimenten mit Betrachtung der Laufzeit und
des relativen Abschétzungsfehlers ausgewertet. Die Analyse der Daten zeigt, dass die
Methode noch nicht geniigend optimiert ist, um generell positive Resultate zu liefern.
Schlussendlich wird ein Fazit gezogen, das Limitierungen und Verbesserungsideen des
Abschatzungsprozesses priasentiert und einen Ausblick auf zukiinftige Arbeit zeigt.






Abstract

The topic of this thesis is SPARQL query approximation on RDF data. In standard
database contexts, using approaches for approximating query results is common. An
example of a motivation for using query approximation instead of accurate execution is
that resources in the form of computing power, disk space, money, and database access
can be restricted. Approximating the query results can serve as a decision basis for or
against further processing of a querying strategy.

The thesis analyses an approach to transfer one of three presented methods for query
approximation to the Semantic Web context. The chosen algorithm uses Bloom filters
to represent datasets of query conditions and additionally to join the sub results for the
result approximation. The algorithm was implemented in Java code and compared to
the actual query execution on the aspects of runtime and relative error of the results.
The evaluation has shown that the approach is not yet sufficiently elaborated for over-
all positive results. With the limitations and optimization ideas that are presented, a
conclusion is drawn with an outlook to future work.
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Introduction

Data is everywhere - and the capability to store it on hardware has grown heavily in the
last years. It was estimated that in the year 2007, 290 optimally compressed Exabytes
could be stored with analogue and digital technology worldwide, with the digital part
being dominant [Hilbert and Lépez, 2011]. It is clear that in the meantime, that size has
grown - how much can only be speculated. With this development, the term Big Data
has emerged; it is used “to refer to the increase in the volume of data that are difficult
to store, process, and analyse through traditional database technologies” [Hashem et al.,
2015).

Dealing with this lot of data, i.e. to make it searchable and interpretable, is an impor-
tant task. With normal query execution, as there is more data stored in a database,
generally the queries take longer to execute. This can be countered partially with a
good and up-to-date index on the data. To execute a query on a huge data set without
an index is time-consuming (as can be seen in a specific context e.g. in [Jamard and
Gardarin, 2007]). Often times, data from distributed databases has to be joined to get
a complete result. In the case of Linked Data, it can happen that these data sets are
huge; and so the network load is high for sending them all to a central place to be joined.

Approximate Query Processing (AQP) is used to estimate the result of a database query.
It generally trades off the correctness of the result for faster execution time. This can
be a good alternative to exact query execution when either the database to be queried
is huge, the runtime of the query is crucial, or when both constraints come together. It
can be used as an indication for the decision whether the actual query is worth executing
or not. In the environment of traditional databases, estimating the result of queries is
a procedure that is well-known and implemented in many use cases (for example, Or-
acle uses it to optimize query plans [Dell’Era, 2007]). Some approaches for AQP that
have been taken and will be presented in this thesis include the following: Sampling
the data set and conducting the query on the sample [Agarwal et al., 2014], creating
histograms of the data [Muralikrishna and DeWitt, 1988] or using Bloom filters: [Bloom,
1970] and [Papapetrou et al., 2010].

One use case where AQP can be meaningful is with data from the Semantic Web (see
Section 2.1). This data has overall a large size and is distributed, which can cause many
joins of data sets for queries. More detailed insight is provided in the paper ”What is
the Size of the Semantic Web”, which includes a section that shows the size of several



2 CHAPTER 1. INTRODUCTION

data dumps of different endpoints [Hausenblas et al., 2008].

In this thesis, an approach is taken to estimate queries on data of the Semantic Web
and compare the results to normal query execution. The chosen algorithm will be imple-
mented in a Java program and experimentally tested for result correctness and runtime
values.

1.1 Motivation

The aim of this thesis is to find and test out a method for query approximation in a
specific context. For that, firstly, three selected approaches to approximate queries will
be presented and analysed for suitability. From these approaches, one is chosen to be
implemented in Java source code. This is done to evaluate in experiments how well our
derived algorithm compares to the actual query execution.

The setting for our approach is a query execution across distributed databases, each with
thematically consistent data in the form of RDF triples. The objective of the query ap-
proximation is to find out how many results a specific SPARQL query has. SPARQL is
a querying language similar to SQL, but especially built for Semantic Web data [W3C
Recommendation, 2008] and is introduced in Section 2.1. Our approach uses Bloom
filters to approximate selective data JOINS. Several other approaches were considered
for usage but withdrawn because of practical reasons that will be explained in Section
2.2. Bloom filters can store a large amount of data space efficiently, and then perform
membership tests on further data. They are efficient for cases where only a small quan-
tity of elements qualifies for membership in the set that formed the Bloom filter. Thus,
it is intuitively a suitable approach for queries in the Semantic Web, as often the result
size of a query is immensely smaller than the size of the queried dataset.

With an estimate of the result size of the query, it can be decided if the exact query
execution is worth the actual execution. This could be interesting for cases where we
don’t actually know if the query is formulated too loose and has too many results. An-
other example is, when several queries are generated to find out a specific information
and the user only wants to execute the query with the most results. It could further be
used as a decision-making help when, for example, information is not freely accessible
and we have to pay with some resources to get an accurate answer. For deciding if a
query should be executed, a close enough estimation of the result cardinality serves the
purpose in these cases. Resources like time (assuming the approximation is faster than
the exact execution), money (if database access is costly) or computing power can be
saved if the query does not have to actually be executed.

The experiment compares the approximation approach with Bloom filters against a com-
plete calculation of results. For this, the algorithm is run with different input parameters
that decide on the Bloom filter accuracy. The test set consists of 20 different queries.
The result will be analysed and compared with respect to the correctness of the result
and the computing time used for each approach.
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1.2 Thesis Outline

In the following Chapter 2 an outlook to some related work will be presented.

Chapter 3 introduces the definition and explanation of some basic information that is
important for the understanding of this thesis’ contents. This covers specifically the
basics of the Semantic Web, Linked Data, RDF, and SPARQL. In Section 3.2 the Bloom
filter is introduced.

Then, in Chapter 4, different methods of approximating queries are shown. Section 4.1
discusses the pro and cons they would have in this context. Furthermore, the reason
for choosing the Bloom filter for our approach is explained. The algorithm used for
the query approximation is presented in Section 4.2. Finally, the expectations for the
performance of the implemented algorithm in the experiments are shown in Section 4.3.
The implementation of the algorithm is done in Chapter 5. In Section 5.1, the basic
Java code structure is explained. The actual purpose and objective of the experiments
with respect to the expectations is highlighted in Section 5.2. At last, the setup of the
experiments will be presented in Section 5.3.

The following Chapter 6 covers the evaluation of the results. In Section 6.1, the results
are presented and discussed. Additionally, some limitations concerning this thesis and
points for future work will be discussed in Section 6.2.

Finally, conclusions are drawn in Chapter 7.
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Related Work

There is some work already done in the area of RDF Query Processing. In this section,
I will present an outlook on such related work.

In the first paper An Evolutionary Perspective on Approximate RDF Query
Answering a framework is created that uses an evolutionary algorithm [Guéret et al.,
2008]. The objective of the approach is approximating queries with imperfect infor-
mation; be it uncertain data or users not knowing how to formulate the queries for
the information they look for, which could result in inadequate queries. The authors
"propose a different approach which consists of, iteratively, guessing a set of complete as-
signments for the query variables (a ”candidate solution”), verifying those assignments,
and if no solutions are found, loop and trying again” [Guéret et al., 2008]. With further
iterations, the algorithm should perform better and converge towards an approximate
solution. For verifying in a fast way if the candidates fit the constraints, Bloom filters are
used. The method can deal with uncertainty of data, approximate answers and approx-
imate queries. Furthermore, in the conclusions, it has a positive outlook to scalability.
A different approach is taken in the paper Efficient approximate SPARQL query-
ing of Web of Linked Data [Reddy and Kumar, 2010]. The algorithm uses ontologies
published in the web to approximate SPARQL queries. Based on information of the
ontology, the query gets relaxed at runtime. With this approach, they extend previous
work already done that relaxes queries [Huang et al., 2008].

Another paper that relies on ontologies to approximate queries is Searching the Se-
mantic Web: Approximate Query Processing based on Ontologies by [Corby
et al., 2006]. This method is based on the assumption that users that want to query
the data can have differing viewpoints to those of designers of ontologies and query lan-
guages. This misunderstanding could lead to inefficient querying of the Semantic Web.
The paper presents its own search engine for querying the Semantic Web, and introduces
with it a new query language.

These approaches all differ in their method of querying Linked Data. However, they
are all trying to optimize query execution by approximating the resulting value. To
the knowledge of the author of this thesis, there has been made no comparison of using
plain Bloom filters to approximate SPARQL queries to the correct query computation.
The contribution of this thesis includes the creation of an approximation algorithm, the
implementation of it in Java and the comparison to the exact query execution.
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Background

In this chapter, I will give a short overview on background information to some of
the topics that are related to this thesis. It will only cover the basics needed to gain
an introductory insight into the field of the Semantic Web, Linked Data, RDF and
SPARQL. This is done to help to understand the following chapters of the thesis.

3.1 Semantic Web and RDF

According to Tim Berners-Lee, one of the people who greatly influenced the term, the
Semantic Web is an extension of the known Web constructed to make sharing and search-
ing for data easier. The Web in its current state is optimized to human consumption. In
contrast, searching and sharing in the Semantic Web should be equally optimal for hu-
mans and computers. One of the key concepts was meant to bring structure to the web,
to link data in a well-defined manner producing a graph spanning over different data
sources. Ideally, this would produce a connection over all data in the Semantic Web.
This serves the goal that computers could search for, process, and interpret semantic
content without having to possess some high scaled artificial intelligence or having to
implement complicated algorithms. The structure would provide the context for infor-
mation that we, as humans, can easily understand. An example for this would be if
one decided to search for all male names that start with a B. When it is not defined, a
computer does not know if a word is a persons’ name instead of a towns’, for example.
In this context, information (like a name), would have a kind of tag that further defines
“what” it is - and thus it would be easy to filter for names of a person. Since tags can be
invented by anyone, they have to be given a more comprehensive meaning that sets it in
a global context. These objectives are served with different approaches, for example with
XML (to create tags) and RDF (to give the tags a general context). In this example, it
would be simple to add the requirement that it had to be a male name. Since all data
is connected in this ideal, it would be just another join clause in a query. [Berners-Lee
et al., 2001]

Linked Data is a term that evolved from the Semantic Web ideology, it was also coined
by Tim Berners-Lee. It is one of the core concepts of the Semantic Web ideal. It uses
RDF to connect information from different sources. [Berners-Lee, 2006]
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According to the World Wide Web Consortium (WS3C), the Resource Description Frame-
work or RDF is a directed, labelled graph data format for representing information in
the Web” [W3C Recommendation, 2008]. In an RDF graph, there are three different
node types which are connected by predicates, serving as edges in the graph. For simplic-
ity, we are omitting the, for this thesis, irrelevant parts of the RDF syntax. Interesting
for us are the literal nodes and the reference nodes. Both represent resources, in case of
the literal it can be any text string, for the reference node it has to be a URIL. An RDF
triple consists of two nodes and a predicate that represents the uni-directional relation
between the two nodes. It can be seen as a statement in the form of ”Subject Predicate
Object”, e.g. the triple

<http://data.linkedmdb.org/resource/film/2820>
<http://purl.org/dc/terms/title>
Tarzan

can be read as: ”The film with id 2820 has a title which is Tarzan”. An excerpt of what
a part of the graph could look like is seen in Figure 3.1.

http://data.linkedmdb.org/resource /film/
2820

http://purl.org/dc

rdf:type terms/title

http://data.linkedmdb.org/

. Tarzan
resource /movie/film

Figure 3.1: Example part of an RDF graph

Since as much data as possible is linked in the Semantic Web (thus the term Linked
Data), the graph is in reality much more extended. The predicate is denoted as the edge
that connects two nodes. Here, we have two different node types that differ in the way
they are shown in the graph. ”Tarzan” is a literal and as such inside a square. The
other two nodes are URIs and with this, reference nodes and drawn inside a circle.
The RDF query language that is used in this thesis is SPARQL. In the thesis, only
SPARQL Select Queries have been used for the evaluation. A typical SPARQL Select
Query can be formulated similar to:
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SELECT ?title Zactor WHERE {
?film <http://data.linkedmdb.org/resource/movie/actor> 7actor.
?film <http://purl.org/dc/terms/title > ’'Tarzan’
b
Listing 3.1: Example SPARQL Query

The dot ’.” serves the same purpose as an AND term in a SQL query. SPARQL generally
was designed to have a similar syntax to SQL, so a further explanation of this is omitted.
For further information on SPARQL, the W3C has made a reference website [W3C

Recommendation, 2008].

3.2 Bloom filter

A Bloom filter is a structure to store data in a space-efficient manner and test whether
elements are included in the stored data set or not [Bloom, 1970]. It is a term coined
after Burton H. Bloom. He presented the concept of the filter in his paper ”Space /
Time trade-offs in hash coding with allowable errors” and the following section elabo-
rates further on this description of the Bloom filter. The structure consists of an array of
m bits, initially all set to 0 as a symbol for an empty data set. To build the filter, each
element from the data to be stored gets hashed. For this, k different hash functions
are applied. The k results of the hash functions each correspond to an index in the
array. The content of these resulting array indices is then set to 1. After all elements
are processed this way, the resulting structure represents the data set and additionally
serves as a filter for performing membership tests on the set. To perform a membership
test on an element, it gets hashed just like the stored data before. The bits in the filter
that correspond to the hash result are then inspected - if all have been previously set to
1, the element could be a member in the set. If even one bit in the filter is 0, the tested
element is definitely not contained in the set.

The construction of the Bloom filter allows no false negatives, but there is a possibility
for false positives. A false negative means that a value that is actually a member of the
set would be rejected by the membership test with the Bloom filter. This means, in the
case of the Bloom filter we can be sure that when the test has a negative result, the
value is definitely not included in the set. A false positive means the opposite; that an
element that actually does not exist in the set gets a positive result with a membership
test. The reason for this being possible in the Bloom filter is because of the k indices
getting put to 1 for a single element insertion. With the filter getting fuller, it is more
possible that a certain combination of indices set to 1 overlap in such a way that it fits
the k hash function results of a false positive element. This possibility (called false
positive probability (FPP)) depends on the size of the filter, the fullness of the filter
and the number of used hash functions. This dependency is shown with the following
formulas from the paper ”Compressed Bloom Filters” [Mitzenmacher, 2001]. According
to this, the following formulas apply: After we have put all n elements into the filter
with k hash functions and total size of the filter m, the probability that a bit in
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the filter is set to 1 is:

From equation 3.1 Bloom deducted that the FPP is equal to:

e (1)) = () 5

As the size of the array is increased, the FPP can be decreased. At the same time
though the space efficiency of the Bloom filter is decreased, so it is a trade-off that must
be considered for the experimentation. [Bloom, 1970]

In practice, the Bloom filter is applied in several different use cases. It is primarily
efficient for cases where only a small part of a large chunk of data is in the defined
set when testing for membership. One example for practical usage of Bloom filters
is identifying malicious URLs when they are entered in the web browser. The Google
Chrome browser used to keep a local Bloom filter for checking URLs against, and when a
URL matched the filter and thus was possibly malicious, a full check of it was performed
[Yakunin, 2010]. Bloom filters can also be used in databases. For example, Google
BigTable and Apache HBase use Bloom filters to check if a row or column exists in
a data set and thus reduces unnecessary disk access for those that do not match the
filter [Chang et al., 2006]. Another environment where Bloom filters are used is Peer
to Peer systems. Bitcoin uses Bloom filters to filter and verify payment transactions
faster [Antonopoulos, 2014]. B-Trackers use Bloom filters "to avoid peers discovering
providers they already know” [Hecht, 2011].

&Q
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Query Approximation Method

This chapter presents a small selection of query approximation methods. These methods
were mostly meant to be used in a traditional database environment, so they likely have
to be adapted to fit the RDF data concept. It will be analysed how well the approach
fit the desired context. Additionally, it will be chosen what method is going to be
implemented and evaluated in this thesis.

4.1 Candidates

In this chapter three methods of query approximation in databases will be presented.
They will then be analyzed for their suitability for the Semantic Web data we want
to use it on. After that, the chosen method is explained in more detail. At last, the
proposed algorithm will be explained. The first method that is reviewed is the approach
using histograms to estimate queries. The essential paper that was reviewed regarding
this topic is [Muralikrishna and DeWitt, 1988].

In that paper, Equi-Depth Histograms For Estimating Selectivity Factors For
Multi-Dimensional Queries, we are presented an algorithm with which we can create
equi-depth histograms for multi-dimensional data. It then proposes a new storage struc-
ture for optimal storage and search of the histogram, the H-tree. Finally, two schemes
are presented to show how to estimate queries with the help of these structures and
algorithms. These schemes were experimentally tested in two runs. The objective was
to find out the maximum error the two schemes had and then, with the second run, to
explore the average behavior of the second scheme.

The paper is very thorough in its exploration of a possible query estimation approach.
It starts with explaining why equi-depth histograms are used. They produce a better
error quote than equi-width histograms with data that is not uniformly distributed.
Equi-depth histograms use buckets that all have the same number of elements in them,
contrary to equi-width histograms buckets that all cover the same width over the possible
range of attributes. With the control of the depth of buckets we can control the maxi-
mum estimation error. Then, we are presented an algorithm to generate such equi-depth
histograms for multiple attributes. This is then called a multi-dimensional histogram.
At the beginning of the algorithm, a decision has to be made on the number of total
buckets m and how to divide that into numbers of buckets of the specific i, which
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gives us n;. The algorithm is structured in such a way that it begins with the bucket
that contains all tuples. The tuples are sorted in their pre-constructed bucket along the
dimension i and then partitioned into n; segments, which form the smaller buckets.
The tree structure that is created is a variation derived from the idea of the R-tree. It
uses the before mentioned hierarchical partitioning for storage. That means, on each
level 1 of the tree, we represent the partitioning of the i-th dimension. The final
buckets are represented as the leave nodes from the tree. This approach is also used to
search for fitting tuples. For each query, a query box is defined. We have to search for
overlapping or fitting values in each level of the tree, corresponding to the dimension in
the query. It is differentiated between f-buckets, whose content lies completely in the
query box, and p-buckets that only overlap the query box. With this search approach,
both kind of buckets will be retrieved and they can easily be distinguished from each
other. In the two different schemes, the amount of tuples are estimated based on dif-
ferent formulas. The Half Scheme and the Uniform Scheme were then experimentally
tested. Additionally to those experiments, the paper presents experiments with the same
approach applied on a random sample of the original tuple space. [Muralikrishna and
DeWitt, 1988]

An advantage of that approach are that the maximum error of the estimation can be
controlled via the sample size and the number of buckets. Furthermore, the approach
does not only work with uniformly distributed data, which we do not have in our scope of
work. And lastly, it has the advantage that the histogram has to be created once. After
that, a simple search in the tree can be used for all queries, and then the estimation is
computed with one of the two formulas. This speeds up the query estimation retrieval a
lot compared to an approach that has to compute the estimation for each query anew.

A disadvantage is that the approach was tested with multi-dimensional tuples consisting
of integer values. Deciding what the dimensions are and how to sort the data is intuitive
with integers, but not that much with SPARQL queries and RDF tuples that do have
URIs or literals as values. This would require a solution to make the transfer to the
problem scope. Moreover, the translation of a SPARQL query to the query box that is
used for the approximation is not as simple as it was in the experiments. A further dis-
advantage that comes to mind is that the histogram is static and can become dated fast.
So each time the data is modified, or after a specific amount of time, a new histogram
would have to be calculated to guarantee the timeliness of the result. For the scope of
the experiments, this would not pose a problem; however, in reality data on the web is
modified often.

The second approach is Sampling-based Approximate Query Processing (S-AQP). The
more specific explanation of such an approach is explained in Knowing When You’re
Wrong: Building Fast and Reliable Approximate Query Processing Sys-
tems [Agarwal et al., 2014]. The focus of this paper lies on estimating the error that we
get with approximating queries with different sampling methods. It presents an expla-
nation of basic sampling methods and additionally creates a pipeline architecture that
uses their findings in a practical S-AQP example. First, an overview on AQP is given.
Sampling is mentioned as ”one of the most common and generic approaches to approzi-

12
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mation of analytical queries” [Agarwal et al., 2014]. Instead of querying the whole data
set, we execute the query over a sample set. The procedure of sampling can be done in
different ways; for example, sampling the rows of the database n times at random. Since
this sampling is random, it can be said to be drawn from a sampling distribution. This
distribution is helpful in providing a confidence interval for the estimated query result.
The paper presents three different methods for estimating the sampling distribution and
then analyzes the usefulness of these techniques with real data and real queries. The
result is that no method is superior in general, and that they have to differentiate the
cases to decide which method should be used. This is done with a diagnostic. At this
stage, the proposed architecture for approximating queries is presented. It uses a Logical
Query Plan that consists of three parts: The query estimation on the sample dataset,
the error computation and the part that executes the diagnostic test. These parts can be
run in parallel and communicate with each other. They do not run on a single sample,
but on several distributed sample sets. In their approach, they added support for a re-
sampling operator for when the selected random sample performed badly. This pipelined
process was a naive solution with overhead that unnecessarily slowed down the query
approximation. So, a further round of optimization was done to speed up the runtime.
The logical query plan, the physical query plan and the storage layer were all adapted
to maximize the efficiency of this approximation approach. [Agarwal et al., 2014]

In the end, this approach had great results and sped up the approximate query execu-
tion by a factor of 10-200. However, most of the speed up was achieved with specific
and quite complex adaptions of not only the algorithm but also the underlying querying
framework. For the scope of this thesis, these adaptations would be far too complex and
time-consuming to implement. Far more appropriate would be to implement only the
basic approach. It consists of sampling the data, querying the sample, controlling the
error with the confidence interval and resampling if necessary. Such an approach would
be a possible method for query approximation.

An advantage would again be that we can run all the queries on the same sets of sample
data. If a group of queries have an unsatisfactory confidence interval, they can be ex-
ecuted over the same resampled sample data. With this, the overhead of the sampling
can be softened. However, there is no general sample command in SPARQL compara-
ble to the one used in traditional databases. Although there exists a sample function
in SPARQL, the implementation is not obliged to return a random sample. The only
requirement in the SPARQL specification is that the sample command has to return an
arbitrary value of the set given as input [W3C Recommendation, 2013]. It could be that
this is always the first possible value in the set. Moreover, the whole resampling could
not be taken over from the paper as this is again standardized for SQL. It would have to
be adjusted to the SPARQL query language as good as possible, as SQL has a far more
extensive functionality. The rest would have to be newly implemented.

Another advantage this approach has over the histogram approach is that it does not
matter which format the data is in. There would have to be no adaptions done because
of the fact that the values are literals.

13
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The last presented approach is the query approximation with the help of Bloom fil-
ters. The basic information about Bloom filters were given in the identically named
Section 3.2. This approach is based on the idea that the query is split into subqueries.
These subqueries are then executed separately. Each subquery result set is then trans-
formed into a Bloom filter. This transformation does include the use of other filters
calculated in previous steps to simulate a Join of different subqueries. The exact algo-
rithm is explained in detail in the following Section 4.2.

The advantage of using Bloom filters is that the method is quite intuitively rendered to
our task domain. It does not have any constraints that speak against the RDF data, e.g.
the data does not have to be transformed into a form that would make sorting possible.
It also does not implicitly demand any functionality of the query language. We can
just enter a plain String as an input value for the Bloom filter. Moreover, the Bloom
filter structure seemed to present an easy way of controlling the accuracy of the result.
This could be done via the FPP value, which can be adapted by choosing appropriate
values for the number of hash functions and the size of the filter (with a given number
of element insertions).

A further advantage is that the Bloom filter itself serves as a data structure as well as
an integral part of the algorithm, as can be seen in Section 4.2. It makes the algorithm
a piece less complex. Also it doubles as a compressed data storage, which brings up the
idea of sending it over the network instead of the data chunk. This could be an interest-
ing factor for possible experimentation. The final reason for choosing the Bloom filter
method for this thesis is the complexity of the algorithm approach. Also, this method
does not restrict its basic usage to a specific data type or query language. That means it
did not have to be transferred, which would have again cost time. Since the time for this
thesis is restricted, the approach with the least workload has been chosen. With that,
the possibility of unpredictable implementation issues during the practical part could be
minimized. Bloom filters are well studied and there are complete classes coded for their
usage.

4.2 Proposed Algorithm

In this section, an algorithm using Bloom filters to approximate query results is pre-
sented. For easier understanding, an example taken from the sample queries that were
evaluated and a pseudo code extract is shown. Suppose we have a SPARQL query like
Listing 4.1, which searches for all films and their genre that have an Italian director.

14



4.2. PROPOSED ALGORITHM 15

SELECT ?film ?director ?genre WHERE {
?director <http://dbpedia.org/ontology/nationality>
<http://dbpedia.org/resource/Italy >.
?film <http://dbpedia.org/ontology/director> 7?director.
?x <http://www.w3.org/2002/07/owl#sameAs> ?film .
?x <http://data.linkedmdb.org/resource/movie/genre> ?genre.

Listing 4.1: Example SPARQL Query

In the following context, an unbound variable is seen as a variable that has no pre-set
value to it. That means it is a placeholder for various possible values. When the query
gets executed, these variables get bound to concrete values that fit the conditions in the
query. In SPARQL, the variables are indicated with a question mark (”?”) in front of
their name. An example for a binding to the variable ?director (with the first subquery
as the only context) is <http://dbpedia.org/resource/Gabriele_Muccino>. In the
first step of the algorithm, each unbound variable gets assigned its own Bloom filter,
which is still empty. The query is split up into triple patterns by the dot (”.”). So, the
first triple pattern looks like this:

?director
<http://dbpedia.org/ontology/nationality>
<http://dbpedia.org/resource/Italy>

These triple patterns are then parsed into their own query, with the * selector that does
not specify a single unbound variable anymore, but shows all variables and their bindings
in the result. It looks like Listing 4.2 for our sample query.

SELECT * WHERE {
?director <http://dbpedia.org/ontology/nationality>
<http://dbpedia.org/resource/Italy >

b

Listing 4.2: Example SPARQL Query

Then, each subquery is mapped to their unbound variables so that we know which vari-
ables appear in which subqueries. Unless noted otherwise, the following line numbers
reference Algorithm 1, which shows in pseudo-code the client side of the algorithm. Of
the set of variables (here: ?director, ?film, ?genre, 7x), the first one is picked (line 2).
Then we iterate over the set of queries mapped to this variable (line 4). The subquery
is sent with the picked variable, any previous filters for that variable and a desired ex-
actness measure (that will be explained later) to the servlet. The servlet is on the same
virtual server as the SPARQL endpoint, and sends back a Bloom filter with all results

15
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for the picked variable (line 6). This filter is then used for the other subqueries that
also search for the picked variable (line 7). Only the results that were already present in
the previous result sets are allowed to build the new Bloom filter that will be sent back.
This process until now simulates the natural JOIN of the results of the queries in one
variable.

When all subqueries for the first picked variable have been processed, the next variable
is picked and the belonging subquery set is handled in a similar manner. However, when
the subquery has two unbound variables of which one variable has already been handled
in the algorithm, its final computed filter is also used for the filter of the new variable.
This means for our algorithm, that we send a previous filter of the variable and an addi-
tional variable to our servlet (line 5 and 6). In our example query, that would happen if
first ?director got processed and then ?film is the next variable. In the subquery
of the triple pattern ?film <http://dbpedia.org/ontology/director> 7director
both variables appear. So, the result set has one binding for each variable; one for
?film and one for ?director. The ?film binding can only be added to the new Bloom
filter if two conditions hold: Firstly, the binding for ?film appears in any previous filter
made by a subquery (Algorithm 2 line 7). Secondly, the binding for ?director is rep-
resented in the resulting Bloom filter of the ?director cycle (Algorithm 2 line 6). In
our example case, the filter for ?film is still empty, so nothing will be filtered for that
variable.

This procedure represents the JOIN of results with multiple (in our case two) overlap-
ping variables. At the end of the iteration over the variables, the resulting Bloom filter
cardinality is saved as the approximation value (line 10). In pseudo code, the process
after the mapping of the Variables to their subqueries looks the following way:

1 Client approximateQuery(q, map, prevFilters, fpp)

2 forall Variable v of Query q do

3 S = map.getSubqueriesOf(v)

4 forall Subquery s in S do

5 additionalVar = (s.listOfVars() without v);

6 Filter bf = adaptFilter(s, v, additionalVar, prevFilters, fpp);
7 prevFilters.put (v, bf);
8 end
9

end
10 return cardinality of prevFilters.last();

Algorithm 4.1: Pseudo-Code of algorithm on the client

This approach was constructed in such a way that a Bloom filter has a certain correctness,
the FPP. This can be sent to the Servlet, which then hands the argument over to
the BloomFilter constructor. The FPP is the probability that an element that is not
contained in the set still gets not filtered out when doing the membership test with the
filter.

16
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Servlet adaptFilters(s, v, additionalVar, prevFilters, fpp)

ResultList r = Endpoint.executeSelectQuery(s);

List acceptedBindings;

a = additionalVar;

forall ResultBinding b of ResultList r do
Boolean cond1l = b.getBindingFor(a) is in prevFilters.get(a);
Boolean cond2 = b.getBindingFor(v) is in prevFilters.get(v);
if condl and cond2 are true then

acceptedBindings.add(b.getBindingFor(v));

© W N O A W N =

10 end
11 return createBloomFilter(acceptedBindings, fpp);

Algorithm 4.2: Pseudo-Code of algorithm on the servlet

4.3 Expectations

In this section of the chapter I will present the expectations on how the chosen approach
compares to the exact calculation of a query result. We want to compare the methods
with regard to the runtime and the relative result difference (i.e., the error the approx-
imation produces). The expectations for the experiments are presented as hypotheses,
to give structure to the experiments and the following evaluation of the results.

Hypothesis 1. Under normal conditions the approximation should be faster than cal-
culation in some cases; but overall it should not be much slower. This would be the
optimal outcome, because the approximation does serve the goal of speeding up queries.
This effect should be seen more clearly in a network with high traffic, where the load
of the Bloom filter is very light in comparison to the result set for the actual query
execution.

Hypothesis 2. The query approximation should be less error prone with a lower chosen
FPP. The relative error to FPP relation is expected to start at a relative high level. The
curve should drop significantly at the beginning of lowering the FPP, up to a specific FPP
value and then practically stagnate. This expectation is made because it is assumed that
a Bloom filter gets more correct with a lower FPP, i.e. it will be less likely to overestimate
the sub-query result. However, with a tiny FPP it is expected that one filter on its own
does not get any more correct. The resulting error should then come mostly from the
join of the filters which should then stay constant.

Hypothesis 3. Similar to the error curve, the approximation time in relation to the
decreasing FPP should also drop. This is because a lot of false positive results get filtered
out and don’t have to be joined anymore. However, with a smaller FPP the Bloom filter
size increases and testing for membership could affect the runtime more negatively. So
it is assumed that after a critical FPP optimum, the time curve should then rise again
to represent the overhead of the filter that is chosen too big.

17
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Implementation

This chapter will give an overview on the practical implementation done in the scope of
this thesis. Section 5.1 presents the structure of the Java code implementation of the
program written for the experiments. Section 5.2. will cover a short introduction on the
experiments that were done. In Section 5.3. the setup for the experiments is described
in more detail.

5.1 Java Client / Server Implementation

The Query approximation and execution itself consists of a program written in Java. It
is built in a client / server architecture. For input of the client program, the queries to
be run are stored in a textfile. There is also an input file for the address of the webserver
the SPARQL endpoint and the servlet run on. For correct query execution, the client
part of the application uses OpenRDF' /Sesame to create a SPARQLRepository. To this
repository it sends the TupleQuery that the input h transformed to. As a result, it gets
back a TupleQueryResult, that can be processed like an iterator through the resulting
BindingSets.

To simulate a distributed database environment, the AND clauses of the query are
wrapped into SERVICE clauses. This causes the SPARQL endpoint to evaluate each
clause at its own, send the subquery to the endpoint that URL that is specified in
the clause, and then join the result sets. In our example, the service URL is the same
everywhere, but it still forces the chosen SPARQL endpoint to follow the before explained
behaviour. This detour was chosen because the effort to handle distributed databases
would be too big and is out of the scope of the thesis. It is not one of the goals of this
paper to find out how a SPARQL query can be split up onto databases that might answer
that query. The whole process of correct query results gets more complicated when
datasets on the databases are overlapping, and the merging of the result into a correct
answer is a complex process. Still, we wanted to take into consideration that subqueries
could be answered from different databases, so we chose to use the SERVICE clauses.
Furthermore, if just one big query without SERVICE clauses was sent to the Blazegraph
endpoint it could be optimized internally which would again bring an advantage that
does not happen in the case with distributed databases.
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The same reasoning can be applied as to why not just a COUNT query was sent; the
resulting count answers of the subqueries could not be merged into an exact answer if
the databases were distributed; so only the resulting answer data was counted. The
servlet code is packed into a .war file by Apache Maven, and then deployed on the
same Apache Tomcat as the endpoint web application is run on. It accesses the data
storage file of the SPARQL endpoint application and queries this data directly instead
of using the application interface. The objects that are sent between the client and
servlet are BloomFilterRequestBeans and BloomFilterResponseBeans serialized by
JSON/Jackson. The implementation that was used for the BloomFilter class is from
Google Guava (the repository can be found on Github [The Google Guava Authors,
2011])).

5.2 Experiments

The experiments are conducted to get results that can either confirm or reject the ex-
pectations made above. In the experiments, we run a total of 20 different queries. The
chosen queries can be seen in the appendix. For the scope of this thesis, simple SELECT
queries with a chain flow of AND clauses were chosen. At first, the exact calculation is
run. The execution time and the result number are measured and then saved into an
Excel file. This is done to have a comparison to the approximation data.

For the approximation, the queries get run with different FPP values as input. Each of
the 20 queries is run with 10 FPP values, ranging from 1072 to 10~!'. The runtime of
the approximation gets measured again and is saved into an Excel file for each query,
together with the approximation result. With this data we can later analyse the three
expectation points; overall runtime performance, relative error with respect to the FPP
and runtime with respect to the FPP.

5.3 Setup

For the experiments, an environment was setup with the thought in mind to find out
the desired comparison aspects. Some aspects were left as near to real world situations
as possible, some aspects could be neglected for our evaluation. For the database and
database interface we chose to use a Blazegraph endpoint. It was set up as a web
application on an Apache Tomcat Servlet container (version 8.0.21). The datasets loaded
into the Blazegraph engine were the following:

+ ChEBI (Chemical Entities of Biological Interest), which contains Linked Data
about chemical substances and connections between them (see https://www.ebi.
ac.uk/ chebi/ faqForward.do).

« DrugBank, a Linked Data collection containing detailed information about drugs
and drug target data (see http://www.drugbank.ca/ ).

20
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+ Geonames, a database that encompasses countries and other geographical places
(see hitp: // www.geonames.org/ ).

« Jamendo, a database containing Creative Commons licensed music (see hittp:
// dbtune.org/jamendo/ ).

+ KEGG is the Kyoto Encyclopedia of Genes and Genomes (see hitp: // www.genome.
Jp/ kegg/ keggl.html).

+ LinkedMDB, the Linked Movie Database (see http: //www.linkedmdb.org/ ).

« NYTimes, a database containing carious categories of news vocabulary, includ-
ing people, organizations and locations (see http:// data.nytimes.com/, https://
datahub.io/ de/ dataset/ nytimes-linked-open-data).

 Semantic Web Dog Food, a dataset containing information from main confer-
ences and workshops about the Semantic Web (see http: // data.semanticweb.org/ ).

« DBPedia, a dataset resulting of turning Wikipedia dumps into a structured for-
mat (see hitp:// wiki.dbpedia.org/ ).

These datasets were all loaded into the same Blazegraph database journal. The data
was chosen with the goal to have a diverse and relatively big database for experiments,
to imitate the real Semantic Web. As mentioned before, the distributed data approach
was abandoned for practical reasons. The servlet was a .war package and had to be
deployed on the local Tomcat server. It is important to note that the namespace 'data’
was used to reference the data in the Blazegraph. The client was run locally, with input
parameters such as a queries file, a file containing the server-URLs (in our experiments,
just the one URL). The experiments were run on two different machines; the first one is
a desktop PC (Run A on machine A), the second one is a Lenovo T420 laptop (Run
B on machine B). The technical details of these machines can be found in Table 5.1.

Machine ‘ Processors RAM | Operating System ‘
A Intel Core i7-3770K @ 4 x 3.5GHz | 16 GB | Windows 10 (x64)
B Intel Core 15-2520M @ 2 x 2.5GHz | 8 GB | Windows 8.1 (x64)

Table 5.1: Machines used for the experiments

The resulting data from the experiment (i.e. the runtime and approximation result
values) was stored into Excel files. For the analysis, the most interesting statistical
property was the relative error. This data was analysed manually and with the help
of MatLab R2015b (x64). MatLab was further used to create figures included in the
thesis.
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Evaluation

In this chapter, there will be a presentation and discussion of the results that were
retrieved with the before mentioned implementation of the Bloom filter approximation.
Following that, there will be a discussion of the limitations that come with these results,
and some ideas for future work that come from these limitations.

6.1 Results

This section will be structured after the hypotheses stated in Section 4.3. Only the
important results are included in the text to make the reading experience more comfort-
able. The queries are numbered but do not have any specific ordering. The following
statements made and figures shown were made from data extracted of Run A, unless
stated otherwise.

Overall it can be said that the resulting data does not show a smooth, regular pattern
and is therefore ambiguous to interpret. The query approximation was run with different
FPP inputs to determine if this would affect the execution time and result. The data
shows that this is indeed the case; lowering the FPP generally had more of a positive
impact on both the result exactness and the runtime. The reason for this is that each
time a filter is used to create a new one, the error already existing in the first filter
can only grow. So if there are less wrong elements getting through the Bloom filter,
which can be achieved by lowering the FPP value, this effect cascades and moves fur-
ther through all following filters. However, as this also affects the size of the filter, it
could be speculated that the runtime would grow. The data suggests that this was not
the case, in the contrary; the runtime generally sped up with a lower FPP. A possible
explanation for this is that there are less elements that will be accepted into the filter.
This seemingly cancels out the growing effect of the filter size that the lower FPP leads
to.
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6.1.1 Hypothesis 1

The first hypothesis stated that the approximation runtime should be faster than the
query execution in some cases, overall it should not be slower by a lot. This expectation
has not been fully confirmed. The approximation was faster or as fast for only seven of
the 20 queries (with a starting FPP of 1073), as can be seen in Figure 6.1.

Queries Runtime
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FPP 1071 |]
exact
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Figure 6.1: Runtime for FPP value of 107!

Even more, there were queries where the approximation performed far worse time wise
than actual execution. It could be assumed that the grammatical structure of these
queries was not appropriate for this kind of query approximation. Another cause of
the runtime inferiority of the Bloom filter approach could be the use of an index on
the data. According to the Blazegraph wiki, it ”is great at fast evaluation of selective
queries. A selective query is one where an index can be used to rapidly recover exact data
on which the query needs to operate” [Blazegraph by SYSTAP, LLC, 2015]. Although
the Blazegraph endpoint could not have used any optimization for joining the queries,
it could be faster in just retrieving the result sets for the subqueries. As explained, in
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the approximation servlet the endpoint was not used. The data was directly recovered
from the Blazegraph journal, which could have made a difference.

Furthermore, the approximation approach was implemented in standard Java, without
any optimization done on the algorithm itself. A more sophisticated algorithm or opti-
mized code implementation (maybe with a more resource-friendly coding language than
Java) can surely shorten the approximation time used. Additionally, the computing
power and RAM of the devices the servlet and client program run on might play a role
for the slower computation of the approximation. While the computing time for the
query execution only sped up about 3% maximum on machine A in comparison, for the
approximation the differences were bigger (see Figure 6.2).

] Queries Runtime with FPP 1011
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|_
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Figure 6.2: Runtime for machine A and B with FPP value of 10~!!

Most likely, this is linked to the implementation of the approximation being not very
resource-friendly. The approximation process hit a limit while using the allocated RAM
and thus spent more time swapping memory on the less powerful machine B. If the
servlet was on a dedicated server (still on the same one as the database), as our scenario
planned for, the difference could be even more visible.
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6.1.2 Hypothesis 2

The second hypothesis makes a statement about the relative error behaviour with dif-
ferent FPP values. Generally, the relative error did not uniformly decrease with a lower
FPP. In the figures and tables with the data below one can see that in some cases, the
relative error shows an unsteady behaviour. That means, the relative error gets smaller
with lower FPP, but then grows again with even lower FPP or does generally show
some outlier behaviour. This behaviour was not expected and does not correspond to
Hypothesis 2. The error curve according to our expectations should have been a smooth
curve starting relatively high, dropping fast at the beginning and stagnating or only
falling very slowly after some point. An explanation for this unsteady behaviour could
be found when considering the paper ”On the false-positive rate of Bloom filters” [Bose
et al., 2008]. It states and proves that the FPP equation Bloom derived (see Equation
3.2) is wrong. It is proven that with given values for k > 2 hash functions, m bits
filter size and n elements in the filter, the FPP is strictly greater than the formula of
Bloom gives. They derive the following equation:

1 — k1
2 < D < 1 X (Ho(’f,/mknp)) 6.1)
p m

In the Equation 6.1, py, 5, , is the true FPP and p* the probability that Bloom has derived.
However, the Guava implementation code comments state that it uses the formula Bloom
derived for calculating the probability as seen the Github repository [The Google Guava
Authors, 2011]. So, we do not get results for the exact input FPP we gave, but for a
higher value. It seems plausible that some runs with seemingly lower FPP give back a
worse result, as the actual FPP must be higher than our input.

An example of that unexpected result was the phenomenon that the relative result error
was overall not the best with the lowest FPP. While the experiments with FPP 1072
generally had the worst results (see Table 6.1), the lowering of the FPP did not have a
linear effect on the relative error. This can be seen well in Figure 6.3. If we take a look
at the relative error average we had over all queries with the FPP chosen as 1071, it
comes down to approximately 30%. Averaging over all 20 queries, the approach with
an FPP of 107Y (see Table 6.2) has the best relative error with 12.8%. It is interesting
to see how the approximation method is more effective for some queries than others.
This can be seen in Figure 6.3 again, where all the queries are shown with their relative
error for three different FPP values. Furthermore, the relative error through all FPP
values for one single query can have a wide span. In the same Figure, we can see that
with query 9 the FPP of 10~ performs with a relative error as low as 0.344% while the
biggest relative error is 495.737% with the FPP of 1072,

The estimating error was not only positive; some results have been underestimated. It
may seem counter-intuitive that some results are approximated lower than the actual
value. For the over-estimation the main reason is the behaviour of the Bloom filter that
allows false positives. With the joins of the different filters, the error gets transferred
and can grow. In the test run, there were three queries that were either underestimated
or approximated correctly. They are the before mentioned, steady queries.
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Figure 6.3: Accuracy for FPP values of 1072, 10~ and 101!

One explanation for the under-estimation is the following: The Bloom filter in this
implementation can only represent a set. It does not change when one tries to insert a
variable binding twice. It does not trace the number of elements entered of the same
value. This can be a problem when one the variable that we enter into the filter appears
in several result triples. It only gets entered into the Bloom filter once and thus is in
fact, under-represented. This can be carried onto successive filters.

Here is an example: The first variable, let’s say 7a, has already been handled and the
filter has been created. The next variable, ?b, has included in its first subquery the
following resulting triples: (bl <knows> al), (bl <knows> a2), (bl <knows> a3). In
this example al, a2 and a3 are values that are a member of ?a s Bloom filter. This would
lead to the input of bl into the filter for ?b. Theoretically, it would get entered three
times. However, since our filter does not count the occurrence of the same values, in the
end there is only one result for bl entered. In such a way or similar, the error multiplies.
Of course, especially for the resulting Bloom filter, where we count the cardinality, this
becomes the final source of the error.
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’ Query (#) ‘ Approximation time (s) ‘ Result (# of tuples) | Relative error (%)
1 601.765 670 334
2 32.607 721 720
3 64.710 20 9
4 475.960 27211 2472727
5) 169.569 556 555
6 15.0581 1608 0.822
7 2.601 1161 386
8 9.626 3032 107.285
9 581.721 152995 495.737
10 0.118 221 0.194
11 401.008 169432 1064.610
12 0.175 1 0.98
13 64.161 20156 718.857
14 34.160 2503 63.179
15 411.529 135148 110.324
16 333.031 105321 4786.318
17 0.360 1 0
18 13.087 223 73.333
19 776.845 175686 466.25
20 5.399 1152 1.931

Table 6.1: Results for the 20 queries and FPP value of 1072

’ Query (#) ‘ Approximation time (s) ‘ Result (# of tuples) ‘ Relative error (%)
1 14.857 41 19.5
2 25.609 26 25
3 11.701 17 7.5
4 209.090 222 19.181
9 156.788 17 16
6 12.085 1598 0.823
7 0.369 44 13.666
8 4.816 134 3.785
9 389.047 558 0.811
10 0.075 214 0.156
11 389.708 1288 7.100
12 0.116 1 0.98
13 62.965 885 30.607
14 16.242 496 11.717
15 253.828 1211 0.002
16 286.810 2037 91.590
17 0.107 1 0
18 12.992 18 5
19 769.266 878 1.335
20 9.101 0 28 1

Table 6.2: Results for the 20 queries and FPP value of 10~
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Figure 6.4: Runtime for FPP values of 1072, 10~ and 10~

6.1.3 Hypothesis 3

Finally, in the third hypothesis the expectation was formulated that the approximation
runtime should decrease when lowering the FPP value. What is quite surprising is the
little effect the lowering of the FPP had. Over the different values, there are of course
differences; sometimes they are quite major (see Figure 6.4 with data from Run B) but
mostly they are not. However, in average the FPPs all performed badly on the same
queries. Along the lines of what was expected, some FPPs also performed better than
the calculation on the same queries. Between the exactness levels in these specific cases
there were only minor differences in the runtime, with the exception of the FPP 102
which delivers again results that are mostly worse than the others. It seems this proba-
bility value is too low for both the results and the approximation time to be comparable
to the others. With this, Hypothesis 3 can be partly confirmed. While lowering the
FPP value had some positive effect on the runtime, a distinct, optimal value where the
runtime started to rise again could not be found. Instead, the time seemed to stay near
the same value or oscillate nearly to that value with higher FPPs.
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In summary, it can be said that 1072 is the one FPP that delivered the worst results
regarding relative error. Lowering the FPP has mostly positive effects on the relative
error; the overall most positive results were achieved with an FPP of 1077.

If we take a look at the relative errors the approximation resulted in, we see that most
queries had a tolerable percentage, with a relative error mean of 12.79% and a median
of 6.05% for the best performing FPP. There are some outliers; but what is more im-
portant is that different FPP performed the best for different queries. Since it can’t be
guessed which FPP yields the best outcome for a query, it is advised to choose 1072,
which had overall the best results. Or it can be argued that either 1078 or 10710 should
used if the relative error is not as important as the time constraint, which was in average
slightly better for those two over all queries. However, there were generally no extreme
differences in the runtime of FPP values higher than 1072,

6.2 Limitations and Future Work

The experiments in this thesis were conducted trying to simulate real life conditions.
However, that was not possible in some aspects that will be elaborated here. One ex-
ample for this is the distributed data. With both the Bloom filter method and the
conventional computation of the query we could handle distributed data. It would be
possible to handle the joins at the client side in the Bloom filter case. With the exact
computation, the usage of the service clause makes it possible to send the query to a
single endpoint where the subqueries are then sent further and at last joined again.

However, one problem that was omitted in this thesis is the mapping of subqueries
to data endpoints. If the datasets in different endpoints did not overlap at all and the
subqueries referenced only one dataset, the mapping could be done with a single ask
query for each subquery. The formulation of the previous statements already highlights
possible complications. If the datasets overlap, or subqueries refer to multiple endpoints
the mapping is more complicated. This is a possibly frequent situation in reality, since
one of the main advantages of Linked Data is that datasets from different sources can
be combined to find out new information. While this is something that would be inter-
esting to solve and compare different methods for, it is not a subject this thesis tries to
examine. For the sake of comparing the query execution, we assume the mapping has
already been done and use the combined datasets as our endpoint. Since the mapping
would pose the same problem for actual query execution as for query approximation, it
would not cause any time or result difference between the two approaches.

What was further done was a manual optimization of the queries. The AND clauses
were ordered in such a way that our algorithm could cope with them. For the Bloom fil-
ter joins to work, the variables have to be ordered in such a way that a connection exists
between them. This connection consists of a subquery where the two unbound variables
take the place of the aubject and object. This means that our queries have ordered AND
clauses, so that they link the variables similar to a chain through the whole query. This
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is one adaption to the queries that should be possible to solve in a programmatic way.
Again, this was omitted and the simple, manual solution was chosen. The optimization
was applied to the queries before they were entered as input, so the query execution had
the same conditions as the query approximation.

The Bloom filter implementation of this thesis is the standard one that has some re-
strictions other variants of Bloom filter do not have. Firstly, it can only represent a set,
which does not include multiple identical values for the same variable. This introduces an
underestimation error, of which an explanation is contained in the results section. This
additional error could maybe be solved with another implementation of the filter, which
is called the Counting Bloom Filter (e.g. as mentioned in Network Applications of
Bloom Filters: A Survey [Broder and Mitzenmacher, 2003]). Secondly, when using
our chosen Bloom filter implementation, we have to know how many elements we want
to insert into it to guarantee a specific FPP. This means that we need to make a list of
all definite members of the candidates returned by the query, and go through the list
again to insert the data into the filter. This introduces an overhead into the algorithm
that can be considered unnecessary. A Bloom filter approach that is worth mentioning
in this context is the dynamic Bloom filter mentioned in Theory and Network Ap-
plications of Dynamic Bloom Filters [Guo et al., 2006]. It works without knowing
in advance how many elements will be inserted into the filter. A comparison between
multiple variants of a Bloom filter used in a similar implementation could be a further
input for future work.

A further limitation of this paper concerns the setup of the experiment, that were done
locally and on a standard PC and a Lenovo T420 laptop. To gain further insights and
verify the results statistically, the experiments have to be run a considerable amount
of time. The implementation used in the experiments uses a simple, single-threaded
method so all queries are executed in succession. That means the experiments took a
long time to complete and were thus small in number. A future parallel implementation
(e.g. on a machine cluster) would speed up the whole experiments greatly, and would
facilitate a more thorough testing with a more adequate number of runs. Moreover,
it would be interesting to see how the Bloom filter approach would compete in a true
server setting with a high network load. One of the main advantages of the method is
that Bloom filters are considerably smaller to send through the net. In the setup of the
experiments, that advantage could not be fully exploited. In a distributed setup of the
data endpoints, they would have to send tuples to each other to be joined. In the current
setup this all happens on the same server, which causes the correct query execution a
slight advantage.
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7

Conclusions

This chapter will conclude the thesis. It presents the most important findings of this
thesis and includes a summary of the results section.

The aim of this thesis was to review different approaches for Query approximation, anal-
yse them for suitability with RDF datasets and SPARQL queries and then implement
and evaluate a solution in Java code. From three different approaches, the Bloom filter
approach was chosen for efficiency reasons - the transformation of the method to an
algorithm for the SPARQL and RDF domain was seen as the least time-costly. Further-
more, the broad usage of Bloom filters in different applications speaks for a well-tested
behaviour suitable for several use cases. All in all, the Bloom filter promised a good cost
to benefit ratio for the approximate query processing with the given time restraints.
The derived algorithm uses Bloom filters to represent the results of subqueries and also
to serve as a join mechanism with its filtering of unsuitable elements. With the imple-
mentation in the java code, some constraints had to be made, for example the distributed
databases could not be modelled exactly. An example for this is that the datasets had
to be loaded into a single SPARQL endpoint. With some detours, like the SERVICE
clauses, the experiment environment was modelled slightly more realistic. However,
these adaptions have to be kept in mind when interpreting the results.

The results themselves are partly ambiguous as to the whole usefulness of the presented
query approximation approach. Especially Hypothesis 1 could not generally be con-
firmed, the approximation outperformed the execution only for less than half of the test
queries. Some queries were processed a lot slower with the approximation, which leads to
the conclusion that the chosen approach is not useable for a general speedup of querying
in this format. However, some assumptions as to the factors that could have caused the
slowness were made, including the naive implementation of the algorithm in Java, the
devices that the experiments were run on (especially that client and server run on the
same machine) and the grammatical structure of some queries. These assumptions could
be tested with further work.

Hypothesis 2 could be partly confirmed. There was one FPP that stood out as the best
approach with respect to the average relative error over all 20 queries. Although that
would indicate an optimum FPP value for our algorithm, the behaviour of the relative
error was not as continuous as expected. The data revealed quite an unsteady effect on
the lowering of the FPP value. Instead of a continuously decreasing error we found irreg-
ular up and downs on the relative error. An explanation offered refers to the calculation
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of the FPP used in the code implementation of the Bloom filter. The implementation
used an approach to calculate the number of hash functions and the bit size of the filter
from the FPP and element insertion input, that differs from the correct mathematical
equation. Additionally to this phenomenon, the general overestimation and underesti-
mation of the results have been explained in the results section. Using other Bloom filter
implementations seems to offer practical solutions to reduce the estimation error.
Hypothesis 3 could be confirmed in the aspect that generally, the runtime in our exper-
iments decreased with a lower FPP value. Mostly, the time difference was not major
between the values. We found that a probability of 1078 or 10710 delivered slightly
faster results averaged over all queries. In conclusion, there has been no clear indication
for an optimum FPP value for the query runtime with the FPP range that was tested.
An approach for further work would be to expand the FPP value range and enlarge the
space between the values.

The resulting data suggests a neutral conclusion on the usage of Bloom filters for query
approximation with the approach we have taken in this thesis. However, when paying
attention to the limitations and the ideas for improvement of the approach there are
some optimizations still to be made. They might deliver a more promising result when
being implemented in future work.
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Appendix

A.1 Setting up the Experiments

First of all, the Java code has to be set up. For this, one can choose to either use the
Jjar and .war files included on the CD directly (found in the code folder). For direct use,
the bloomfilterclient.one-jar.jar file is suggested. It can be run directly on the terminal
with the command java -jar bloomfilterclient.one-jar.jar. But first, the Tom-
cat server should be set up with the web applications and it should be running.
Alternatively, the code can be run with Maven to produce an own .jar / .war file.
This way, you can choose alternative inputs for the program to run with. The file for
the query input (named ’Queries.txt’) can be found in the BloomFilterClient under
the directory src/main/resources. Placed in the same folder is the input file for the
location of the SPARQL Endpoints, ’ServerURIs.txt’. On the servlet, there is a file
names blazegraph.properties, found in the folder src/main/resources. With the parame-
ter com.bigdata. journal.AbstractJournal.file=location/bigdata.jnl we can de-
fine the location of the data we want to access. This location is later relative to the /bin
path in the Tomcat environment. In the working example, this data is a copy of the one
the Blazegraph web application uses, placed into a new folder with name data.

For the setup of the Servlet and Blazegraph, first you have to install an Apache Tomcat
distribution and download the Blazegraph web application (.war file). The Tomcat has
to be unpacked and set up in the usual way. It has to be paid attention to the fact
that the port under /conf/server.xml that listens to the HTTP should be the same as
the port used in the ServerURIs.txt input file. It is defined with the tag: <Connector
port="portnumber" protocol="HTTP/1.1" connectionTimeout=.../>.

To use the web application on the Tomcat, the .war files have to be placed into the /we-
bapps folder. They are automatically unpacked for usage when the Tomcat is started.
For a Windows system, navigate on the terminal into the /bin folder and run startup.bat.
In the code that was supplied, the data file for the Servlet access has been specified to
be /bin/data/bigdata.jnl. This was done to avoid any locks or access denied errors. The
file there is a copy of the /bin/bigdata.jnl file.

To fill the database, you can download data dumps from the websites that are presented
in the Section 5.3 Setup, or choose your own data dumps. The data format we chose
was .nt files, because they can be read into the Blazegraph easily. For this, just enter
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the absolute location of the .nt file into the Blazegraph Update tab. Before this, you
should create and use a new Namespace with the name data and Mode triples.
After starting the Tomcat Server, the Servlet should be running and ready to access.

A.2 Glossary

Apache Maven 7 Apache Maven is a software project management and comprehension
tool” [The Apache Software Foundation, 2016b]. It was used to compile Java
projects with their required library files.

Apache Tomcat This is the name of an ” open source implementation of the Java Servlet,
JavaServer Pages, Java Expression Language and Java WebSocket technologies”
[The Apache Software Foundation, 2016a]. It is used to deploy web applications
and act as a Webserver.

Approximate Query Processing (AQP) Generally stands for an approach to estimate
the result of a database query. It generally trades correctness of the result for
faster execution time.

Big Data The term that is used ”to refer to the increase in the volume of data that are
difficult to store, process, and analyze through traditional database technologies”
[Hashem et al., 2015].

Blazegraph ” An ultra-scalable, high-performance graph database with support for the
Blueprints and RDF/SPARQL APIs” [Blazegraph by SYSTAP, LLC, 2016]. Was
used in the experiments for storing the RDF datasets and querying it with SPARQL.

Bloom Filter A space-efficient structure to represent a data set and test whether ele-
ments are included in the stored set or not.

FPP False positive probability. Here: The probability that an element is not in the data
set but the membership test with the corresponding Bloom filter returns that it is
a member.

Linked Data A term that specifies the usage of RDF to publish and connect information
from different sources in the Semantic Web.

Ontology A formal model that defines characteristics of data and relationships between
objects from a specific domain.

OpenRDF / Sesame This is a Java framework for handling the querying and the pro-
cessing of RDF data. It is now called RDF4J. More information on [Eclipse RDF4J,
2016].

Peer to Peer (P2P) A system where all participating nodes are (ideally) equal in their
role and function, as opposed to the traditional client / server architecture of
systems.
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RDF Stands for Resource Description Framework. RDF is a directed, labelled graph
data format used for representing information in the Web.

Semantic Web An extension of the known Web constructed to make sharing and search-
ing for data easier for computers.

SPARQL A querying language similar to SQL, but especially built for executing queries
on RDF / Semantic Web data [W3C Recommendation, 2008].

URI Uniform Resource Identification. Can be used to identify resources, be it digital
objects on the Internet or on a computer, or physical objects.

URL Uniform Resource Locator. Is, for example, used to present addresses of websites
in an easy to read format for humans.

World Wide Web Consortium (W3C) A ”community that develops open standards to
ensure the long-term growth of the web” [W3C, 2016].

XML Extensible Markup Language. A language that can be used to format documents
to a state where it’s readable for humans as well as for computers.
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