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Abstract

A streaming time series is an unbounded sequence of data points that is continuously ex-
tended. The data points arrive in a predefined interval (e.g. every 5 minutes). Such time series
are relevant to applications in diverse domains. Imagine a meteorology station that sends a
temperature measurement every 3 minutes or imagine a trader in the financial stock market
who receives updated pricing information every 5 minutes.
We present the implementation of an index structure for streaming time series data. The sys-
tem keeps a limited amount of time series data in main memory. As a result, it is able to access
the latest portion of past measurement data. We introduce an implementation using two data
structures, a circular array and a B+tree, to efficiently access the data of past measurements.
The results of an experimental evaluation show the influence of the data structures on the
system performance.



Zusammenfassung

Kontinuierliche Zeitreihen werden durch neu ankommende Daten stetig erweitert. Die Daten
treffen dabei in einem vordefinierten Intervall ein. Derartige Zeitreihen sind relevant für di-
verse Bereiche. Beispielsweise in der Meteorologie, in welcher die Wetterinformationen kon-
tinuierlich aktualisiert werden oder, um einen weiteren Bereich zu nennen, in Finanzmärkten,
wo die Händler auf die neusten Preisinformationen angewiesen sind.
Wir präsentieren die Implementation einer Indexstruktur für kontinuierlich erweiterte Zeitrei-
hen. Unser System behält eine limitierte Anzahl der aktuellsten Daten im Arbeitsspeicher.
Daraus resultiert, dass das System auf diese Daten zugreifen kann. Dazu stellen wir unsere
Implementation vor, welche sich zwei Datenstrukturen zunutze macht: ein zirkuläres Array
und ein B+baum. Die beiden Datenstrukturen erlauben den effizienten Zugriff auf alle Werte
der vergangenen Daten, welche sich in einem bestimmten Zeitfenster befinden. Die Resultate
einer experimentellen Evaluation zeigen den Einfluss der Datenstrukturen auf die Laufzeit des
Systems.
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1. Introduction
A streaming time series is an unbounded sequence of data points that is continuously extended,
potentially forever. The data points arrive in a predefined interval (e.g. every 5 minutes).
Such time series are relevant to applications in diverse domains. For example, imagine a
meteorology station that sends a temperature measurement every 3 minutes or, to name a
different domain, imagine a trader in the financial stock market who depends on updated
pricing information. Thus, various applications need to be fed continuously with the latest
data.
But not only the current data can be interesting for an application. A streaming time series
contains historical data that can be exploited. For example to recover missing values since
a streaming time series is not always gapless. Due to sensor failures or transmission errors,
values can get missing. To recover missing values the historical data can be utilised. Ideally,
the missing value should be recovered efficiently, such that it is imputed before another new
value arrive. Therefore, the efficient access of past time series data is important.
We present a system that keeps a limited size of data in main memory. The measurements
with time points in a sliding time window are kept.

Definition 1 (Sliding Window) Let W = [t, t̄] be a sliding window of length |W |. Time t
represents the oldest time point that fits into the time window and time point t̄ represents the
most recent time point for which the stream produced a new value.

Because a portion of data is kept it is still accessible. The thesis proposes an implementation
for an index structure for streaming time series data to efficiently access the time point and
the value of measurements. In order to achieve efficient data access, the system uses two data
structures: a circular array in combination with a B+tree. The circular array has a size of
length |W |. The measurements are stored in the array, sorted by time. The B+tree as well
contains the same measurements with time points in the sliding time window. The leaves of
the tree are sorted from left to right by the measurement value. Thus, range queries can be
efficiently performed. For every new measurement that the stream produces the time window
slides forward. A value drops out of the window and a new value is inserted to the circular
array and the B+tree. Hence, if a measurement time point is not in the sliding window any
more, it is removed from both data structures.
The described system is implemented and its advantages are outlined in this thesis. Further-
more, the system is analysed in terms of runtime and space complexity. Finally, an experi-
mental evaluation tries to underpin the theoretical results.

At the beginning of this thesis, in Chapter 2, the TKCM algorithm is introduced. TKCM
is designed by Wellenzohn et al.[1]. The background aims to improve the understanding for
the system context and for the requirements our system must satisfy. Chapter 3 describes the
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context and introduces the operations the system must be able to perform. In Chapter 4, our
approach is presented and its advantages are discussed. Further, the pseudo-code to implement
the system is outlined. After that, the time and space complexity of the system is described
in Chapter 5. Followed by an experimental evaluation in Chapter 6 to examine the theoretical
results. Finally, the thesis is summed up in Chapter 7.

11



2. Background

A streaming time series is not always gapless, but missing values can be recovered with the
help of past data. To efficiently recover missing values, Wellenzohn et al.[1] present the Top-k
Case Matching (TKCM) algorithm. The algorithm and its connection to this thesis is intro-
duced in Section 2.1.

2.1. TKCM
TKCM recovers and imputes missing measurement values if it detects any. For each time
series s a set of correlated reference time series is determined to recover a missing value.
Therefore, TKCM monitors a set of streaming time series and once a value is missing it defines
a two-dimensional query pattern over the most recent values of a set of time series. The idea
is to derive a missing value in time series s from the k most similar past pattern.

Definition 2 (Time Series) Let S be a set S = {s1, s2, ...} of streaming time series. The
measurement value of time series si ∈ S at time t is denoted as si(t) and is represented by the
tuple (t, si(t)). For a base time series s, let Rs = 〈r1, r2, ...〉 be an ordered sequence of the
time series ri ∈ S \ {s}. The set of reference time series for s, Rd

s , at the current time t̄ are
the first d time series in Rs for which r(t̄) 6= NIL. The time points in a streaming time series s
are in time window W .

TKCM retains a sliding window of the streaming time series in main memory. To impute a
missing value, TKCM defines a query pattern Q(t̄) over the most recent values of the reference
time series. Afterwards, TKCM searches for the k most similar patterns in sliding window W .

17.1

14:10

i=2 17.0

14:15

17.2 r2

14:20

16.1

j=1

i=1 16.3

j=2

16.5 r1

j=3

Figure 2.1.: Query pattern Q(t̄) of length l = 3 and d = 2 reference time series at time point
t̄ = 14:20.

Definition 3 (Pattern) Let Rd
s = 〈r1, ..., rd〉 be the sequence of reference time series for a time

series s. A pattern P (t) of length l > 0 over Rd
s that is embedded at time t is defined as a
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d × l matrix P (t) = [pi,j]d×l where pi,j = Si(t − l + j). We write pi,j ∈ P (t) to denote that
value pi,j is contained in P (t).

The two-dimensional query pattern Q(t̄) is anchored at time point t̄ and consists the subse-
quence of length l spanning from t̄ − l + 1 to t̄ of each reference time series. Each row
represents a subsequence of a reference time series and each column represents the values of
the reference time series at a time point as illustrated in Figure 2.1.
For every time point t in W exists a measurement which means ∀t : t ≤ t < t̄→ s(t) 6= NIL
since s contains imputed values if the real ones are missing.
TKCM initializes one neighborhood N(qi,j) around each qi,j ∈ Q(t̄). The algorithm looks for
a new pattern P (t) in time window W , such that t ∈ W , by growing the neighborhood N(qi,j)
until the k most similar patterns to Q(t̄) have been found. TKCM stores the seen time points
t in a set T to avoid considering these patterns again.

Definition 4 (Next Pattern) The next pattern for neighborhood N(qi,j) is pattern P (t) =
[pi,j]d×l anchored at time point t = argmin

t∈W\T
|pi,j − qi,j|

To recover a missing value in a time series, past measurements need to be accessed efficiently.
Therefore, Wellenzohn et al.[1] suggest a combination of two data structures: a B+tree and a
circular array. The necessary access methods are described in Section 2.2.

2.2. Access Methods
The next pattern (Def. 4) is built on top of two access methods: sorted and random access.

Definition 5 (Sorted Access) Sorted access for a neighborhood N(qi,j) returns the next yet
unseen measurement (t, si(t)) where t = argmin

t∈W\T
|si(t)− qi,j|.

Definition 6 (Random Access) Random access returns value r(t), given time series r and time
point t.

Sorted access finds the most similar value to a given query pattern cell qi,j (Def. 3), then,
random access retrieves the values to fill the remaining pattern cells.
The next pattern search is presented in Algorithm 1. TKCM initializes a set T = {}. The set
is filled during execution with all time points t for which a pattern P (t) has been processed.
Using the sorted access mode, the algorithm finds the next yet unseen time point t /∈ T for
which the value is most similar to a given query pattern value qi,j . The random access mode
is used to look up the values that pattern P (t) is composed of.

13



Time t 13:40 13:45 13:50 13:55 14:00 14:05 14:10 14:15 14:20
s(t) 15.9 16.0 16.3 15.9 16.2 15.8 15.9 16.1 x
r1(t) 15.6 15.9 16.7 17.0 17.2 16.2 16.1 16.3 16.5
r2(t) 16.1 16.6 17.1 15.2 16.0 15.4 17.1 17.0 17.2

Table 2.1.: Data of the streaming time series s and the reference time series r1 and r2

17.1

14:10

i=2 17.0

14:15

17.2 r2

14:20

16.1

j=1

i=1Q(t̄): 16.3

j=2

16.5 r1

j=3

sorted access

x.xx

13:40

i=2 x.xx

13:45

x.xx r2

13:50

x.xx

j=1

i=1 x.xx

j=2

16.7 r1

j=3

random access

16.1

13:40

i=2 16.6

13:45

17.1 r2

13:50

15.6

j=1

i=1 15.9

j=2

16.7 r1

j=3

Figure 2.2.: Pattern for query pattern cell q1,3.

Example 1 As illustrated in Table 2.1 the value in time series s at time point 14:20 is missing.
Therefore, a pattern is anchored at this time point. To find a pattern for pattern cell q1,3 the next
most similar value to 16.5 is searched using sorted access as shown in Figure 2.2. This means,
the difference between 16.5 and 16.7 is the smallest compared to other values in reference time
series r1. Then, the missing pattern values are filled. Therefore, the values in r1 at time point
13:40 and 13:45 and the values in r2 at 13:40, 13:45 and 13:50 are inserted using random
access.

Algorithm 1: NextPattern(N(qi,j), T )
Input: Neighborhood N(qi,j) and seen time points T
Output: Next pattern P (t′)

1 P← matrix of size d× l
2 (t, si(t))← sortedAccess(N(qi,j),T )
3 P[i,j]← si(t)
4 foreach qx,y ∈ Q(t̄) do
5 if x 6= i and y 6= j then
6 P[x,y]← randomAccess(sx, t− j + y)
7 end
8 end
9 return P anchored at time t− j + l
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3. Problem Definition

The two access methods described in Section 2.2 are crucial for TKCM. However, they can
be used in every application that needs access to past time series data. Therefore, the access
methods should be usable for time series data in general. Hence, the data interval and the
sliding window size should be variable. Furthermore, the access methods should be executable
with duplicate values, since the measurements in time series data normally are not unique.
The present thesis introduces an implementation of the random and sorted access method for a
streaming time series s. The required operations and the context for our system are presented
in the following.

3.1. Context
We make the following assumptions for our system:

• The measurements arrive in a predetermined interval (E.g. every five minutes).

• There are no gaps between the measurements since gaps are filled before additional
values are inserted to the data structure.

• No measurements arrive out-of-order.

3.2. Operations
The system needs to efficiently perform on the streaming time series s in a sliding window W :

• shift(tree, array, t̄, v): add value v for the new current time point t̄ and remove value v’
for the time point t− 1 that just dropped out of time window W .

• sortedAccess(N(qi,j), T ): given a neighborhood N(qi,j) and a set of time points T ,
return the time point t 6∈ T , as described in Definition 5.

• randomAccess(array, t): return the value of time series s at time t, denoted by s(t)
(Def. 6).

• newNeighborhood(tree, qi,j, t, j, l): given a value qi,j ∈ Q(t̄) for time point t, the pat-
tern length l and the index j, return the new neighborhood N(qi,j).
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The random access operation can be performed by the circular array, while the sorted access
operation is executed on the leaves of a B+tree. The thesis introduces an implementation
of the random and sorted access method for a streaming time series s. The data structures
and their advantages are described in Chapter 4. Further, the thesis proposes a solution for
handling duplicate values.
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4. Approach

Each time series s ∈ S is represented by a circular array. The circular array is kept in main
memory. It uses random access to look up value s(t) for a given time t. Further, for each
time series s a B+tree is maintained that is also kept in main memory. The B+tree is ideal for
sorted access by value and therefore for range queries. Both data structures are described in
detail in Section 4.1 and Section 4.2, respectively. Figure 4.1 shows the data structures. All
measurements in the circular array are represented in the B+tree as well.

17.1

7.2 23.0 37.6 43.1

2.5 3.0 7.2 13.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 43.1 47.1

13:45 14:1514:10 13:15 13:30 13:50 14:05 14:00 13:55

2.5 25.4

lastPos

3.0 13.2 23.0 17.1 37.6 18.1 7.2 25.4 38.9 47.1 43.1 40.3

14:10 14:15 14:20 13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

size |W |

Figure 4.1.: A B+tree with the related circular array.

4.1. Circular Array
A circular array is used to store the time series data sorted by time in the predefined window
W . The value and the time point of a measurement is directly stored in the circular array. The
size of the array is determined by |W | and represents the capacity of the array. Hence, an array
with |W | = 10 can hold 10 measurements. The last update position lastPos is stored in a
variable and is updated with every insertion. In detail, a circular array contains the following
attributes: a counter count that counts the number of measurements in the array, a lastPos
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to store the position that was last updated with a measurement and finally the data, which
actually holds the time points and values of the measurements.

s t r u c t Measurement {
t imeStamp t ime ;
double v a l u e ;

} ;

s t r u c t C i r c u l a r A r r a y {
Measurement ∗ d a t a ;
i n t l a s t P o s ;
i n t c o u n t ;

} ;

4.1.1. States
The circular array can be in two different states:

1. First, the array is filled with every new arriving measurement until every position in the
circular array is occupied in array 1 in Figure 4.2,.

2. Afterwards, if all spaces in the circular array are occupied, the number of measurements
stays constant because a value drops out if a new value is inserted to array 2.

1.

2.2 1.9 1.5 3.6 6.2

lastPos

3.2

13:10 13:15 13:20 13:25 13:30 13:35

2.

3.2 1.3 4.5

lastPos

4.6 6.2 3.2 11.2 55.3 9.1 3.9 5.0 1.4

14:10 14:15 14:20 14:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

Figure 4.2.: Shifted circular array.

Example 2 The value at time point 14:25 in array 2 in Figure 4.2 is the newest measurement.
Hence, the last update position is at time point 14:25. A new measurement will be inserted
at the next position in the circular array i.e. at the position of the oldest time point 13:30. In
order to lookup the value at time point 14:00 we can take advantage of the fix interval. If the
last update position is at time point 14.25, we can directly calculate the position for time point
14:00, using the last update position and the interval. The detailed calculation of a value
position is described in Section 4.1.3.
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4.1.2. Shift
The measurements in a circular array are stored in a defined interval without any gaps in be-
tween. The measurement position in the array can be calculated with the lastPos and the time
difference between two consecutive measurements. The circular array has a count attribute
that is equal or smaller to |W |, which represents the number of measurements in the array. If
the count is equal to |W | one measurement has to be deleted for every arriving measurement.
Otherwise, there is no need to delete a value from the tree since no value dropped out of the
sliding window W . The insertion and simultaneous the conceivable deletion of a measurement
is presented in Algorithm 2.

Algorithm 2: Shift(tree, array, t̄, v)

Input: Tree tree, the circular array array, the new time point t̄ and the new value v
Output: The array such that (t̄,v) ∈ array

1 newPos← 0
2 if array.count < |W| then
3 if array.count 6= 0 then
4 newPos← (array.lastPos + 1) % |W|
5 end
6 array.count++
7 else
8 newPos← (array.lastPos + 1) % |W|
9 //delete the measurement that dropped out of the window Delete(tree,

array.data[newPos].time, array.data[newPos].value)
10 end
11 array.data[newPos].time← t̄
12 array.data[newPos].value← v
13 array.lastPos← newPos
14 AddMeasurement(tree, t̄, v)

Example 4.1.1 We assume a new measurement arrives with time point 14:25 and value 13.2.
The value 41.5 at time point 13:15 is replaced by the new measurement in the circular array.
Figure 4.3 shows the circular array before and after the update.

2.5 25.4

lastPos

3.0 41.5 23.0 17.1 37.6 18.1 7.2 25.4 38.9 47.1 43.1 40.3

14:10 14:15 14:20 13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

2.5 25.4 3.0

lastPos

13.2 23.0 17.1 37.6 18.1 7.2 25.4 38.9 47.1 43.1 40.3

14:10 14:15 14:20 14:25 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

Figure 4.3.: Update of a circular array.
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4.1.3. Random Access
Due to the properties of a circular array the random access of a value at time t is very efficient.
The position of a measurement in the array can be directly calculated without looping through
the array, since the values arrive in a predefined interval (e.g. every 3 minutes). The random
access operation is used to fill a pattern P (t) that is anchored at a time point t. The last update
position is used as reference time point for the calculation. The randomAccess(array, t) is
presented in Algorithm 3.

Algorithm 3: RandomAccess(array, t)
Input: The circular array array and the time point t
Output: Returns the value pi,j at time point t

1 if array.count = 0 then
2 //empty array
3 return NIL
4 end
5 step← (t - array.data[array.lastPos].time)
6 if |step| < array.count then
7 pos← (array.lastPos + step)%|W|
8 if array.data[pos].time = t then
9 return array.data[pos].value

10 end
11 end
12 return NIL

2.5 25.4 3.0

lastPos

13.2 23.0 17.1 37.6 18.1 7.2 25.4 38.9 47.1 43.1 40.3

14:10 14:15 14:20 14:25 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

← steps ← steps

Figure 4.4.: Random access of the value at time point 13:55.

Example 4.1.2 We want to find the measurement value at time point 13:55 in the circular
array shown in Figure 4.4. The last update position was at time point 14:25 and therefore the
step is (−6). Since 13:55 −14:25 = −30 which is 6 times the time difference of 5 minutes.
Then the measurement position is calculated: (lastPos + (−6))%14 = 11. the value is at
position 11. Thus, the value with time point 13:55 is 47.1. The value is returned by the random
access method.
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4.2. B+tree
A B+tree is organized with nodes that include search keys. The search key values in every
node are kept in sorted order. A B+tree is a balanced tree, hence every path from the root of
the tree to a leaf of the tree has the same length. Each nonleaf node in the tree has between
dn/2e and n children and n is predefined for a particular tree.
The used B+tree and the implementation is based on the book of Silberschatz et al.[2]. A
B+tree is able to execute range queries very efficiently because the values in the B+tree leaves
are ordered from left to right and the leaf nodes are linked. Although insertion and deletion
operations on B+trees are complicated, they require relatively few disk I/O operations. There-
fore, the use of B+trees is popular in data base systems since I/O operations are expensive.
The speed of operations on B+trees makes it a frequently used index structure in database
implementations.
But although we do not have disk I/O operations in our system the B+tree has useful prop-
erties. The B+tree can be used to efficiently perform the sortedAccess(N(qi,j), T ) operation
described in Section 3.2. Because the B+tree we use has leaves linked in both directions. The
Section 4.2.1 presents the structure of the B+tree we used for our implementation.

4.2.1. The Structure of the used B+tree
We introduce the most important properties of a B+tree, for further information please refer
to [2]. The differences between the traditional B+tree in [2] and the B+tree we use, are the
following: On the one hand, the leaves in our B+tree are linked to the succeeding as well as
the preceding leaf to efficiently perform the sortedAccess(N(qi,j), T ) operation. On the other
hand, our B+tree is able to handle duplicate values. How the tree handles duplicate values is
described in Section 4.2.2. The other properties of our B+tree are presented in the following.
The parameter n determines the maximum number of pointers in a node and n− 1 represents
the maximum number of search keys, hence the size of a tree node. The keys in a node are
always sorted from left to right.

Example 3 If n is set to 7, an internal node may have between d7/2e = 4 and 7 children and
between 3 and 6 keys because dn/2e − 1 = 3 for n = 7. The root may have between 2 and
7 children or if it is the only node in the tree it can have no children and just one key. A leaf
node must have at least 3 keys and can have maximum 6 keys for n = 7.

A node contains m non-null pointers (m ≤ n) and m−1 non-null keys. For i = 0, 1, 2, 3, ...,m,
pointer Pi points to the subtree that contains search key values less than Ki and greater than
or equal to Ki−1. Pointer Pm points to the subtree that contains those key values greater than
or equal to Km−1.
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K0

17.2

P0

7.5 16.4

P1

17.2 33.1 43.5

Figure 4.5.: Left children keys < 17.2 and right children keys ≥ 17.2.

Example 4 Pointer P0 in Figure 4.5 points to the left subtree where all keys are smaller than
17.2 and pointer P1 points to the subtree where all keys are greater than or equal to the root
key 17.2.

There are three types of nodes that may exist in a B+tree: the root, interior nodes and leave
nodes.

• (Leaf) A leaf node must have at least d(n−1)/2e keys and may hold at most n−1 keys.

• (Inner Node) The inner nodes can have at most n−1 search keys and n pointers, pointing
to its child nodes. An inner node must have at least dn/2e pointers and can hold at most
n pointers. Hence, it must have at least dn/2e − 1 keys and at most n− 1 keys.

• (Root) The root node is the only node that can contain less than dn/2e pointers. The
root node must have at least one search key and two pointers to child nodes, unless the
root is a leaf node, thus, has no children.

A node contains the following attributes:

s t r u c t Node{
s t r u c t Node ∗ p a r e n t ;
void ∗∗ p o i n t e r s ;
i n t numOfKeys ;
double ∗ keys ;
boo l i s L e a f ;
s t r u c t Node ∗ prev , ∗ n e x t ;

} ;

The node structure can be used for every type of node, since the structure of the root, the inner
nodes and the leaf nodes is similar. A B+tree node contains: A pointer to the parent, which is
NIL if there is no parent. Further, pointers to child nodes or in leaves pointers to measurement
time points. Besides, the number of keys that a node holds at the moment is stored and of
course, the actual keys. Additionally, a boolean is used to represent if a node is a leaf node.
A leaf node can have two pointers, one to the previous and one to the next sibling. These two
pointers are only used if the node is a leaf node, otherwise they are set to NIL.
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Observation

The next higher value of a given value v in a leaf of the B+tree is at the same time the right
neighbor of v and the next lower value is also the left neighbor of v, since the leaves and their
keys are sorted from left to right.

17

7 23 37 43

2.5 3 6.1 7 13.2 17 18.1 23 25.4 37 38.9 40 43 47.1

Figure 4.6.: Example of a complete B+tree.

Example 5 We want to know the most similar value to the key 40 in the B+tree illustrated
in Figure 4.6. We have to compare 40 to two values, namely the right neighbor 43 and the
left neighbor 38.9. We find out that 38.9 is the most similar value in the entire B+tree since
|18.9− 40| < |43− 40|.

Application to our System

The B+tree described above contains search keys. In our case, these search keys are mea-
surement values. A value in time series s can occur multiple times. Hence, the values are
not unique and since the values are used as search keys, the B+tree must be able to handle
possible duplicates. Section 4.2.2 proposes an approach that allows to use duplicate values in
a B+tree and it explains how the measurement time points are stored in the tree.

4.2.2. Handling Duplicate Values: Associated Circular Doubly
Linked List

This Section presents our approach to handle duplicate values in our B+tree, in regard to our
requirements. The idea is to associate a doubly, circular linked list to each key in leaf nodes.
Cormen et al.[3] define three types of linked lists:

1. (Singly Linked List) A singly linked list can either be sorted in order of the keys or it
can be unsorted. The order is determined by a pointer in every linked list element e.
e.next points to the successor element in the list. The first element, or head, of the list
has no predecessor and the last element, or tail, has no successor.

2. (Doubly Linked List) A doubly linked list element has an additional pointer which points
to the predecessor, namely e.prev. Each element of a doubly, linked list is an object with
an attribute key and two pointer attributes: next and prev.
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3. (Circular Doubly Linked List) In a circular doubly linked list the prev pointer of the
head of the linked list points to the tail and the next pointer ot the tail points to the
head. If the element e is the only element in the list the pointers next and prev point to
e itself.

We use a doubly, circular linked list in our system. For clarity, we name the circular doubly
linked list in the following only linked list. A measurement time point is stored in a linked list
element. Every value in a leaf node of our B+tree has an associated linked list. If the same
measurement value is added multiple times to the time series s, the measurement time points
are added to the linked list associated to the leaf value. So instead of inserting the value again
and using another position in the leaf, the new time point is inserted to the associated linked
list.
The oldest value in a list, so the lowest time point, always is the element connected with a
pointer from the leaf key to the list. Even though the linked list not literally has an end and
a beginning, we name the time point associated to the leaf the head and we call the heads
predecessor the tail.

17.2 17.3 18.2 18.3 18.6 18.8 19.2 19.3 19.4 19.7 19.7 19.8

head

14:15 14:30

tail

14:50

head = tail

13:50

Figure 4.7.: Circular doubly linked lists associated to leaf nodes.

Example 6 Figure 4.7 illustrates the leaf level of a B+tree and the linked lists. It shows that
the oldest time point, here 14:15, is connected to the tree and the newest time point, 14:50,
the tail, is the predecessor of the head. Also, the Figure illustrates that a single element in a
linked list is linked to itself. The higher levels of the B+tree and the additional linked lists are
left away for clarity.

As described, the leaf nodes in our B+tree also have pointers, namely pointers to the associated
linked list. The number of pointers in a leaf node is always equal to the number of search keys
in the leaf. Hence, a pointer Pi points to the linked list associated to the leaf value at position
i.
A linked list element consists of the time point and the pointers to the predecessor prev and to
the successor next. This can be represented as follows:
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s t r u c t Element {
t i m e P o i n t t ime ;
s t r u c t Element ∗ prev , ∗ n e x t ;

} ;

Observation

The linked list associated to the measurement value stores the corresponding time point. The
newest measurement with time point t̄ that is added to an existing linked list always has a
newer time point compared to all other time points in the same list and also compared to the
other measurements in the tree. Because ∀t : t ≤ t < t̄ holds for all time points in the tree.
Consequently, a new time point is always inserted at the tail position. Therefore, the linked list
is always sorted by the time from head to tail. A shift on the circular array leads to a deletion
of the oldest measurement in time series s, thus, the measurement time point, as explained, is
always at the head position in a linked list. Also, a new measurement can be inserted without
looping through the list. It is always added to the tail position.

The insertion and the deletion of a time point from a linked list that contains multiple val-
ues is illustrated in Algorithm 4 and Algorithm 51, respectively.

Algorithm 4: AddNewTail(node, i, t)
Input: Leaf node, the index position i to the linked list L and the time point t to insert
Output: Linked List L such that t ∈ L

1 head← node.pointers[i]
2 tail← head.prev
3 newElement = CreateElement(t)
4 //insert new linked list element between head and tail
5 head.prev = newElement
6 tail.next = newElement
7 newElement.prev = tail
8 newElement.next = head

Algorithm 5: DeleteHead(node, i)

Input: Leaf node and index position i for the position of the associated Linked List L
Output: Linked List L such that t 6∈ L

1 head← node.pointers[i]
2 nextElement← head.next
3 prevElement← head.prev

4 leaf.pointers[i]← nextElement
5 prevElement.next← nextElement
6 prevElement.prev← prevElement

1Algorithm 5 is only used for linked lists that contain multiple elements.
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4.3. B+tree Operations
The data in the circular array is updated with every arriving measurement. Therefore, every
shift of the sliding window W leads to an array update. The operation updates also the B+tree.
Therefore, the deletion and insertion of a measurement in the tree is executed within the update
of the circular array. The deletion and the insertion in a B+tree are described in Section 4.3.2
and Section 4.3.3, respectively.

17.1

7.2 23.0 37.6 43.1

2.5 3.0 7.2 13.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 43.1 47.1

13:45 14:15

14:10 13:15

2.5 25.4

lastPos

3.0 13.2 23.0 17.1 37.6 18.1 7.2 25.4 38.9 47.1 43.1 40.3

14:10 14:15 14:20 13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05

size |W |

Figure 4.8.: Start situation

Example 7 We assume we have the situation illustrated in Figure 4.8. Value 25.4 occurs two
times. Hence, the associated linked list contains two elements. Further, all leaf values have
an associated time point. Some linked lists are not illustrated to improve clarity. The size of
window W and the circular array is |W | = 14. The array is already full, hence for every
new arriving measurement a value has to be added to the circular array and the B+tree and
another one has to be deleted from the data structures.

4.3.1. Search in a B+tree
Before we can delete or add a measurement we have to find the right leaf. Algorithm 6
presents the pseudo-code to find the appropriate leaf. The method starts at the root of the tree
and traverses the tree until it reaches the appropriate leaf node which would contain the value.
The current node is examined by looking for the smallest i for which the search key value k is
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greater or equal to. The current node is updated to the child node at pointer Pi. This procedure
is repeated until a leaf node is reached.

Algorithm 6: FindLeaf(tree, k)

Input: Tree tree and the search key k
Output: The appropriate leaf for the search key k

1 curNode← tree.root
2 if curNode = NIL then
3 return NIL
4 end
5 while curNode is no leaf do
6 Let i← smallest number such that k ≤ curNode.Ki

7 if no such i exists then
8 m← last non-null pointer in the node
9 curNode← curNode.pointers[m]

10 else
11 curNode← curNode.pointers[i]
12 end
13 end
14 return curNode

Example 8 We assume we want to find the key 13.2 in the B+tree illustrated in Figure 4.8
because this is the value that dropped out of the sliding window W .
The current node is examined by looking for the smallest i for which the search key value 13.2
is greater or equal to. In this case, the first pointer comes from the root at index position 0,
since 13.2 is smaller than 17.1. Then the new current node is set to the child node at pointer
position 0 which includes the search key 7.2. Afterwards, the current node is updated again to
the node at pointer position i = 1, hence P1. Since the new current node is a leaf node, the
leaf node is returned.

4.3.2. Deletion in the B+tree
In case a measurement value dropped out of the sliding window W , we first have to delete
this measurement from the tree, before we can add the new one. We first present the deletion
because it is normally executed before the insertion.
First, the leaf containing the measurement to delete is located with Algorithm 6. Since our
B+tree accepts duplicates, it is afterwards checked as illustrated in Algorithm 7 if the asso-
ciated linked list to the value has multiple linked list elements. If the linked list has multiple
elements, the identified element is deleted from the linked list using Algorithm 5 and the dele-
tion is already finished. If the entry time point is the single value in the linked list the leaf
value and its belonging linked list is deleted.
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Algorithm 7: Delete(tree, t, k)

Input: Tree tree, the measurement time point t and key k
Output: Tree tree such that t,k 6∈ tree

1 leaf← findLeaf(tree, k)
2 i← smallest number such that k ≤ leaf.Ki

3 if list on pointer i has multiple elements then

4 DeleteHead(leaf, i)
5 else
6 DeleteEntry(tree, leaf, leaf.keys[i])
7 end

The deleteEntry(tree, node, k, pointer) method illustrated in Algorithm 8 is called if the mea-
surement to delete is the only linked list element. A node has to be at least half-full to remain
in the same state after a deletion. In detail, the minimum number of keys depends on the node
properties. If the node is a leaf node it must contain at least d(n − 1)/2e keys. If the node is
an internal node the minimum number of keys is dn/2e− 1 and thus, the minimum number of
pointers is dn/2e.
Hence, all nodes have to be half-full after the search key is removed from a node. There are
three possible cases to achieve a state where the B+tree properties described in Section 4.2.1
are still satisfied. The tree must still be balanced and all nodes must be at least half-full after
a deletion.

1. (The node is at least half-full) The node has still enough keys. Hence, the measurement
is deleted and afterwards the algorithm stops. Figure 4.9 illustrates a leaf that has still
enough keys.

17.2

7.5 16.4 17.2 33.1 43.5

17.2

7.5 16.4 17.2 43.5

delete 33.1

Figure 4.9.: The node has still enough keys.

2. (The node is merged with a sibling) Provided that, the keys and pointers of the node
and its sibling fit into a single node and the node is not half-full after removing the
entry, we merge them. We move the entries from the right sibling into the left sibling,
and delete the now empty right sibling. If there is no left sibling the right sibling is
selected to receive the additional entries. Once a node is deleted, we must also delete
the entry in the parent node that pointed to the deleted node. This is done by calling
deleteEntry(tree, node, k, pointer) again. We traverse the tree recursively upwards until
the deleteEntry stops. Figure 4.10 illustrates a node that is merged with a sibling. The
Algorithm 13 for the redistribution can be found in Appendix Section A.1.
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17.2 50.1

7.5 16.4 17.2 33.1 50.1 52.1

17.2

7.5 16.4 17.2 33.1 52.1

delete 50.1

Figure 4.10.: The node can be merged with its sibling.

3. (The values in a node are redistributed) Provided that, the node is not half-full any more
and the node cannot be merged with a sibling the nodes have to be redistributed. To
ensure that each node is at least half-full and hence contains the minimum number of
keys. Merging is not possible, if the sibling and node together have more than the
allowed n pointers. Since inner nodes that have m keys have m + 1 pointers, the nodes
can only be merged if the sum of all keys in both nodes is smaller than the tree node size
n−1. Leaf nodes are merged if the sum of all keys in both leaves is smaller than n. Thus,
if the keys and pointers do not fit into one node, the keys have to be redistributed. We
redistribute the keys, such that each interior node has at least dn/2e − 1 keys and each
leaf node has at least dn − 1/2e keys. Therefore, we move the rightmost pointer from
the left sibling to the under-full right sibling. Consequently, we also need to replace the
key in the parent to ensure the parent pointer to the new organised node is still separable
from the other pointers. Figure 4.11 illustrates the case where some keys have to be
redistributed. The Algorithm 14 for a redistribution can be found in Appendix Section
A.1.

17.2 50.1

7.5 16.4 17.2 33.1 34.2 50.1 52.1

17.2 34.2

7.5 16.4 17.2 33.1 34.2 52.1

delete 50.1

Figure 4.11.: Some entries must be redistributed.
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17.1

7.2 23.0 37.6 43.1

2.5 3.0 7.2 13.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 43.1 47.1

delete 13.2

23.0

17.1 37.6 43.1

2.5 3.0 7.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 43.1 47.1

Figure 4.12.: Deleting 13.2 from the B+tree.

Example 4.3.1 We again refer to the example in Figure 4.8. The measurement with time point
13:15 dropped out of the sliding window W . Therefore, it needs to be deleted. First, the
findLeaf method finds the leaf that contains 13.2. Then it deletes the value and its associated
linked list. The leaf now has only 1 key left and therefore is smaller than the minimum number
of allowed keys of 2 = d(n − 1)/2e, since 1 < d(4 − 1)/2e. The left neighbor has still
enough space for the only key left in the node, namely 7.2. The node is merged with its left
sibling. As a consequence, the key in the parent is not correct any more, since 7.2 now is part
of the left child. Key 7.2 in the parent is removed as well by calling deleteEntry recursively.
Then deleteEntry checks whether this node can be merged with its sibling. Since the node has
one pointer left to its now only child and the sibling has already three keys, 23.0, 37.6, 43.1
and hence 4 pointers. So 1 + 4 is more than the allowed 4 pointers in an inner node. As a
consequence, the keys have to be redistributed. The node takes the root node key 17.1 as a new
key and adds the leftmost child of the right sibling. This is the leaf node with the keys 17.1 and
18.1. The root node takes the leftmost key of its right children 23.0. The right children now
has the keys 37.6 and 43.1 left. The tree before and after deleting 13.2 is illustrated in Figure
4.12.
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Algorithm 8: DeleteEntry(tree, node, k, pointer)

Input: Tree tree, the node node where the deletion key belongs to and k the key to delete
Output: The node node such that k 6∈ node

1 node← remove k and associated linked list from node
2 if node is the root then
3 AdjustRoot(tree)
4 return
5 end
6 if node is leaf then
7 minNrOfKeys← d(n− 1)/2e
8 else
9 minNrOfKeys← dn/2e − 1

10 end
11 if minNrOfKeys ≤ number of keys left in node then
12 //node has still enough keys
13 return
14 end
15 //node has not enough keys - merge or rearranges necessary
16 neighborIndex← get position of left sibling in parent or -1 if no left sibling
17 if neighborIndex = -1 then
18 kIndex← 0
19 neighbor← node.parent.pointers[1]
20 else
21 kIndex← nIndex;
22 neighbor← node.parent.pointers[nIndex]
23 end
24 //innerKeyPrime is the value between pointers to node and neighbor in parent
25 innerKeyPrime← node.parent.pointers[kIndex]
26 capacity← n-1
27 if node is a leaf then
28 capacity← n
29 end
30 //Merge if both nodes together have enough space
31 if (neighbor.numOfKeys + node.numOfKeys ) < capacity then
32 MergeNodes(tree, node, neighbor, nIndex, innerKeyPrime)
33 else
34 RedestributeNodes(tree, node, neighbor, nIndex, kIndex, innerKeyPrime)
35 end

31



4.3.3. Insertion in the B+tree
We now describe the insertion of a measurement to the B+tree. The general technique of an
insertion into a B+tree is to first determine the appropriate leaf node for the new measurement
with the findLeaf method. After the right leaf has been found, there are three possible conse-
quences for the B+tree: The key already exists in the leaf, the key does not exist yet and the
leaf has still enough space, and finally the key does not exist yet but the leaf is already full,
since numOfKey = n− 1.

Algorithm 9: AddMeasurement(tree, t, v)

Input: Tree tree, the new time point t and the new value v
Output: The tree such that t, v ∈ tree

1 //the tree does not exist yet - create tree
2 if tree.root = NIL then
3 NewTree(tree, t, v)
4 return
5 end
6 leaf← findLeaf(tree, v)
7 //insert to leaf as linked list value
8 if key already exists in leaf then
9 i← smallest number such that k ≤ leaf.Ki

10 AddNewTail(leaf, i, t)
11 else if leaf.numOfKeys < n-1 then
12 //enough space for new key value pair
13 InsertRecordIntoLeaf(tree, leaf, t, v)
14 else
15 SplitAndInsertIntoLeaves(tree, leaf, t, v);
16 end

1. (Search key already exists in the leaf) If the search key already exists in the leaf node
the time point of the measurement is added to the already existing associated list and the
search keys in the leaf remain unchanged. In this case, refer to Algorithm 4.

2. (Search key does not exist yet and the leaf has enough space) We insert the entry to the
node such that the search keys are still in order and a new linked list is allocated where
the measurement time point is inserted.

3. (Search key does not exist yet but the leaf has not enough space) In general, we take n
search key values (the values n− 1 in the leaf node plus the value being inserted to the
right position such that the keys remain ordered) and put the first dn/2e in the existing
node and the remaining values in a newly created node. If a node is split, we conse-
quently must insert the new leaf node into the B+tree structure and re-link the leaves.
We need to insert an entry with the leftmost key of the new leaf node, and a pointer
to the new node, into the parent of the leaf node that was split. If there is no room,
the parent must be split, requiring an key to be added to its parent. In the worst case,
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all nodes in the path to the root must be split. If the root itself is split, the entire tree
becomes one level deeper. Splitting of a nonleaf node is a different from splitting of a
leaf node. If there is no space in the parent node to add a new key the parent node has
to be split as well. When an nonleaf node is split, the child pointers are divided among
the original and the newly created node. The key values are handled slightly differently
if a inner node is split. The key values that lie between the pointers moved to the right
node are moved along with the pointers, while those that lie between the pointers that
stay on the left remain unchanged. However, the search key value that lies between the
pointers that stay on the left, and the pointers that move to the right node is treated dif-
ferently. This search key is not added to either of the two nodes. Instead, it is added to
the parent node. The Algorithms for splitting a leaf node or an inner node can be found
in Appendix Section A.2.

23.0

17.1 37.6 43.1

2.5 3.0 7.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 43.1 47.1

add 41.5

23.0

17.1 37.6 40.3 43.1

2.5 3.0 7.2 17.1 18.1 23.0 25.4 37.6 38.9 40.3 41.5 43.1 47.1

Figure 4.13.: B+tree after the insertion of 41.5.

Example 4.3.2 We again consider the example from the beginning after the deletion of 13.2
(Fig. 4.12). The value 41.5 has been inserted to the circular array and hence must be added
to the B+tree. The new tree after the insertion of the new measurement is illustrated in Figure
4.13. This measurement belongs to a leaf node which is already full. Hence, the leaf is split
and the search key is passed to the parent and we find out that the parent is not full yet.
Therefore, the leftmost key of the newly created leaf is inserted to the parent. Finally, the
parent contains the search keys 37.6, 40.3 and 43.1.
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4.4. Neighborhood
The sortedAccess(N(qi,j), T ) method in Algorithm 11 uses the B+tree to return the time
point t 6∈ T such that |qi,j − s(t)| is minimal, given a neighborhood (N(qi,j). But before a
neighborhood can grow it has to be initialized. The neighborhood initialization is described in
Section 4.4.1.

4.4.1. Initialize a Neighborhood
The Algorithm 10 initializes a new neighborhood. A neighborhood consists of the following
attributes:

s t r u c t NeighborhoodPos {
Element ∗ t imeStampPos ;
Node ∗ LeafPos ;
i n t i n d e xP o s ;

} ;

s t r u c t Neighborhood {
i n t l ;
i n t j ;
double key ;
NeighborhoodPos l e f t P o s ;
NeighborhoodPos r i g h t P o s ;

} ;

A neighborhood N(qi,j) is defined around each value qi,j of a query pattern Q(t̄), where
leftPos− and rightPos+ are neighborhood positions of type NeighborhoodPos in leaves
of the B+tree. They represent the left and right border of the neighborhood. In total d × l
neighborhoods are initialized. Thus, for every time series r in query pattern Q(t̄), l neighbor-
hoods are initialized. The index j represents the position of the measurement within the query
pattern. If j = 1 the oldest time point in the query pattern is meant and if j = l, thus if j is
equal to the pattern length, the latest time point in the query pattern is meant.
Initially the neighborhood position is set to the position of qi,j in the B+tree. Therefore, we
find the leaf that contains qi,j using Algorithm 6. Since leftPos− and rightPos+ represent
linked list elements we search qi, j in the linked list at the value position with the smallest
number, such that qi,j ≤ leaf.Ki. The pattern length l is the upper bound for the search be-
cause the query pattern value qi, j is at least at position t̄ − l in the circular array. Hence, it
must be in the l newest time points in the linked list. We traverse the linked list backwards
until the element time point is equal to the time point of qi,j . After we place the leftPos− and
rightPos+ to the found linked list element and return neighborhood N(qi, j)
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Figure 4.14.: Query Pattern Q(t̄) of length l = 3 and d = 1 reference time series.
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Figure 4.15.: The circular array and the B+tree for time series r1 after initialization.

Example 9 If d = 1 just one time series included in query pattern Q(t̄). Figure 4.14 illus-
trates an example of a query pattern with d = 1. In total l neighborhoods are initialized for
time series r1. Figure 4.15 shows the circular array and the B+tree for time series r1 after the
initialization. The coloured linked list elements represent the leftPos− and rightPos+ of the
newly initialized neighborhoods.
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Algorithm 10: NewNeighborhood(tree, qi,j, t, j, l)

Input: Tree tree, the query pattern value qi,j and its time point t and position j and the
pattern length l

Output: The initialized neighborhood N(qi,j)
1 N.key← qi,j
2 N.j← j
3 N.l← l

4 leaf← FindLeaf(tree, qi,j)
5 i← smallest number such that qi,j ≤ leaf.Ki

6 e← leaf.pointers[i]

7 //Upper Bound: The value is at most pattern length away form first list value
8 maxSteps← l
9 while e.time 6= t and maxSteps 6= 0 do

10 //go from newest value back towards oldest
11 e← e.prev
12 maxSteps−−
13 end
14 N.leftPos← set position to e
15 N.rightPos← set position to e
16 return N(qi,j);

4.4.2. Sorted Access
After the initialization of the l × d neighborhoods the k most non-overlapping patterns are
calculated. Thus, the sortedAccess(N(qi,j), T ) operation is executed until the k patterns are
retrieved. Sorted access searches the time point for the next most similar value to a query pat-
tern cell qi,j of query pattern Q(t̄). The Algorithm 11 presents the sorted access method. The
neighborhood N(qi,j) is expanded until such a value is retrieved. Some time points may have
to be skipped because the time point anchored a pattern already and therefore not need to be
considered again. The next unseen most similar value to qi,j is either at position t− or t+, which
represent the time points to the direct left or right of leftPos− and rightPos+, respectively.
If |si(t−) − qi,j| ≤ |si(t+) − qi,j| leftPos− is decremented to prev(leftPos−) and t = t−.
prev(leftPos−) searches for the next previous measurement time point (next(rightPos−)
vice versa). If leftPos− has a predecessor in the linked list of a leaf value v, which is not the
tail, prev(leftPos−) is set to the predecessor, thus prev(leftPos−) is still in the same linked
list. If there is no appropriate predecessor in the linked list, prev(leftPos−) is placed to the
tail of the linked list associated to the leaf value on the left side next to v. If there is no value
to the left side in the same leaf, the rightmost value in the left leaf sibling is used.
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Algorithm 11: SortedAccess(N(qi,j), T )

Input: The neighborhood N around query pattern value qi,j and the set of visited time
points T

Output: Time point of the next most similar value to qi,j
1 leftPos−← N.leftPos
2 rightPos+← N.rightPos
3 while t− 6= NIL and (t− −j + l) ∈ T do
4 leftPos−← prev(leftPos−)
5 end
6 while t+ 6= NIL and (t+ −j + l) ∈ T do
7 rightPos+← next(rightPos+)
8 end
9 if t− 6= NIL and t+ 6= NIL then

10 if |ri(t−) - qi,j| ≤ |ri(t+) - qi,j| then
11 leftPos− ← prev(leftPos−); t← t−

12 else
13 rightPos+ ← next(rightPos+); t← t+

14 end
15 else if t− 6= NIL then
16 leftPos− ← prev(leftPos−); t← t−

17 else if t+ 6= NIL then
18 rightPos+ ← next(rightPos+); t← t+

19 else
20 return NIL
21 end
22 return t
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Figure 4.16.: Status of N(q1,2) after growing 3 times.

Example 10 Figure 4.16 shows how the neighborhood N(q1,2) is expanded. We assume that
the other neighborhoods N(q1,1) and N(q1,3) have not been initialized yet. Hence, there are
no additional time points anchored for a pattern previously and the timeset T is initially empty.
If the sortedAccess(N(qi,j), T ) is executed 3 times the resulting neighborhood is illustrated in
Figure 4.16.
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5. Complexity Analysis

This analysis refers to a single time series s for which a B+tree and a circular array are main-
tained and the complexity calculations are valid for our context, e.g. the linked list elements
are traversed at most l times.

5.1. Runtime Complexity
Circular, Doubly Linked List

Lemma 1 The insertion of a new time point to a linked list needs O(1) time.

Proof: For each new value produced by a time series s a linked list in the B+tree is expanded.
Since the new value is always inserted at the tail position it needs O(1) time. �

Lemma 2 The deletion of a time point from a linked list needs O(1) time.

Proof: For each deletion in a B+tree a time point needs to be removed from a linked list.
Since the oldest value is always at the head position, the deletion needs O(1) time. �

Circular Array Operations

Lemma 3 The update of the circular array takes O(1) time.

Proof: The next update position in a circular array is computed in O(1) time, hence the update
takes O(1) time. �

Lemma 4 The random access of a time point t takes O(1) time.

Proof: The random access algorithm needs to calculate the position for the time point t. Since
the position can be calculated using the lastPos and the time interval, it takes O(1) time. �

B+tree Operations

Normally, the complexity of B+tree operations is dependent on the required disk I/O oper-
ations because I/O operations are expensive. The speed of operations on B+trees makes it
a frequently used index structure in database implementations. But we do not have disk I/O
operations, hence, the complexity of our implementation also depends on the tree node size
which usually is neglected because it is not as expensive as disk I/O operations.
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Since we have no disk I/O operation the parameter n has an influence on our complexity. For
every node visited we pay O(n) time to find the position of a value. The parameter |W | has
an influence as well since there are at most |W | keys in B+tree leaves (provided that there are
no duplicate values).

Lemma 5 Finding a leaf in the B+tree takes at most O(n× logn |W |) time.

Proof: The nodes are traversed recursively downwards from the root of the tree to its leaves.
In the worst case, the number of nodes that must be traversed is logn|W |. This leads to
logn|W | complexity, where |W | is the maximum total number of keys in the leaves and n is
representing the maximum number of pointers in an inner node.
Additionally, you pay for every node that is visited O(n) time to find the index position to the
child node. Hence, the total complexity to find a leaf takes O(n× logn |W |) time. �

Lemma 6 The insertion of a measurement to the B+tree takes O(n× logn(|W |)) time.

Proof: Before a measurement can be inserted to the tree the appropriate leaf has to be found.
Lemma 5 states that this takes O(n × logn(|W |)) time. The addition of a measurement can
cause three different cases as explained in Section 4.3.3.

• (The key already exists) Lemma 1 states that a measurement can be inserted in O(1)
time to the linked list.

• (The node has still room and the measurement is inserted to the node) This causes that
the insertion place has to be found which takes at most O(n) time, since the keys have
to remain ordered.

• (The node is already full and the node has to split) To split the node it takes O(n) time.
Because the keys have to remain ordered, the insertion point is found by traversing
the keys. After the keys are distributed to both nodes in O(n) time. If the tree is
recursively traversed upwards, at most logn |W | nodes are split which results in a total
time complexity of n× logn |W |.

Since the time complexity to find a leaf is O(n × logn |W |) which is equal to the time com-
plexity of a redistribution, the overall time complexity of an insertion is O(n × logn |W |).
�

Lemma 7 The deletion of a measurement from the B+tree takes O(n× logn |W |) time.

Proof: Before a measurement is deleted from the tree the appropriate leaf has to be found.
Lemma 5 states that this takes O(n × logn |W |) time. The deletion of a measurement can
cause four different cases as explained in Section 4.3.2.

• (The measurement time point is a linked list element which contains multiple elements)
Lemma 2 states that a measurement can be deleted in O(1) time from the linked list.
Hence, duplicates have no influence on the complexity of a deletion.
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• (The node is at least half-full) If the node has still enough keys the entry is searched in
O(n) time by traversing the node keys and then is deleted.

• (The values in a node are redistributed) The redistribution is done by moving keys and
pointers. At most n keys have to be shifted which cost O(n) time.

• (The node is merged with a sibling) To merge two nodes the keys and pointers have
to be moved which costs at most O(n) time. If the nodes are traversed upwards, there
are at most O(logn |W |) nodes to merge. Hence, the time complexity of the merge is
O(n× logn |W |).

Since the time complexity to find a leaf is O(n× logn |W |) is equal to the time complexity of
merge, the overall runtime complexity of deletion is O(n× logn |W |). �

Lemma 8 The shift(tree, array, t̄, v) takes O(n× logn |W |) time.

Proof: The total time complexity of a shift depends on the following operations:

• The update of the circular array takes O(1) as stated in Lemma 3.

• The deletion of a measurement to the B+tree takes O(n× logn |W |) time.

• The insertion of a measurement to the B+tree takes O(n× logn |W |) time.

O(n × logn |W |) dominates the overall time complexity, this leads to a time complexity of
O(n× logn |W |) for the shift operation. �

Neighborhood Operations

The newNeighborhood(tree, qi,j, t, j, l) operation searches a specific measurement. There-
fore, it cannot just take the tail or head position in a linked list like the insertion or deletion
method. We initialize l × d neighborhoods, one for each value in a query pattern Q(t̄). Thus,
l neighborhoods in every time series r which are part of the pattern. The newNeighborhood
method always is executed at the l newest measurements in an involved time series because
the query pattern is anchored at the newest time point t̄. Thus, we can give an upper bound,
namely the pattern length l. As a consequence, at most l element examinations in a linked list
are necessary, where l represents the pattern length.

Lemma 9 The search of a specific time point in a linked list for newNeighborhood(qi,j, t, j, l)
is executed takes at most O(l) time.

Proof: A time series s in a pattern P (t) initializes l neighborhoods. Hence, in the worst case
the l newest measurements in the circular array for s have the same value and thus, are stored
in the same linked list in the B+tree. Therefore, l list elements have to be traversed to find the
specific measurement time point, starting from the tail and scanning backwards. �
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Lemma 10 The initialization of a neighborhood in time series s takes O(l + (n× logn |W |))
time.

Proof: The initialization of the neighborhood needs to search a specific measurement in the
B+tree. Hence the complexity to find the measurement leaf is equal to the find leaf operation
defined in Lemma 5. At most l linked list elements are traversed as stated in Lemma 9. This
leads to a total complexity of O(l + (n× logn |W |)). �

Lemma 11 The sortedAccess(N(qi,j), T ) takes at most O(|T |) time.

Proof: If the timeset contains |T | time points and since at most |T | time points have to be
skipped the sortedAccess(N(qi,j), T ) takes at most at most O(|T |) time. �

5.2. Space Complexity
Lemma 12 The space complexity of a circular array is O(|W |).

Proof: Every circular array for a time series s has a size |W |. Hence, the space complexity of
one circular array is O(|W |). �

Lemma 13 The space complexity of a B+tree is O(|W |).

Proof: Each measurement is stored once in the tree. In the worst case, all values are unique
and |W | values are stored in leaves which cause a space complexity of O(|W |). The number
of keys in inner nodes and the root is always smaller than the number of keys in the leaf level.
Hence, the space complexity of the leaf level determines the overall space complexity. �
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6. Experimental Evaluation

This Chapter describes our experimental setup, the experiments and their results. We eval-
uated the running time of the shift, the sorted access and the newNeighborhood operation
with different parameters. We did not include random access, because its time complexity is
constant.

6.1. Setup
In the experiments we construct a data set with measurement values with a time span of 100
years between the newest and the oldest value. We use one time series r, thus d = 1. The
interval between two values is set to 3 minutes. Since 20 measurements arrive per hour the
data set contains in total 17′520′000 measurements in 100 years. The window size |W | is set
to 3 years (525′600). The data set contains values randomly chosen between 0 and 10′000 and
duplicates are possible.

6.2. Runtime

6.2.1. Shift
Increased Tree Node Size

Aim This experiment tries to illustrate the effect of an increased tree node size n− 1 on the
shift operation. Besides, it wants to show that using a B+tree was an appropriate choice.

Method To evaluate the influence of the tree node size on the runtime of the shift operation
we executed the shift with values of the dataset introduced in Section 6.1. For each tree node
size represented in Figure 6.1 we made 3× 1′000′000 shifts to eliminate outliers.

Variables We measure the runtime of the algorithm with different tree node sizes n − 1.
Therefore, the window size |W | remains fixed to 3 years. The experiment starts with a tree
node size n− 1 = 1.

Prediction We expect that the tree node size influences the runtime as we described in
Lemma 8, which is nearly linear. Besides, we expect that the graph shows a minimum at a
tree node size slightly larger than 1. Otherwise, e.g. a red-black tree might have been a better
choice because red-black tree has a tree node size of 1[4].
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Results Figure 6.1 shows that the parameter n indeed has an influence on the running time.
We observe that the algorithm had the best running time with a tree node size around 11. A
bigger or smaller tree node size decelerate the runtime. After the minimum is achieved the
runtime is nearly linear with an increasing tree node size.
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Figure 6.1.: Shift operation with increasing values for n− 1.

Increased Window Size

Aim This experiment attempts to illustrate the effect of an increased window size |W | on
the performance of the shift operation.

Method To evaluate the influence of window size |W |, we executed the shift over a different
dataset than in the first experiment. This dataset has the same size as the dataset described in
Section 6.1 but contains values randomly chosen between 0 and 100′000, thus 10 times more
distinct values are possible. The dataset is modified because the insertion of a duplicate value
does not enlarge the height of the B+tree and therefore should have no effect on the runtime of
the shift with an enlarged window size |W |. For each window size |W |we made 3×1′700′000
shifts to keep the outliers as small as possible.

Variables We measure the runtime of the algorithm with different window sizes |W |. There-
fore, the tree node size remains fix and is set to 11 because the runtime for this tree node size
was the minimum in the experiment illustrated in Figure 6.1.

Prediction We expect that the window size influences the runtime as we described in
Lemma 8. But we except that the window size |W | only influences the runtime until no
additional distinct values arrive. Hence, we expect an increasing runtime until the window has
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a size of 100′000. We predict that a larger window size also causes fewer deletes. The circular
array only has cheap list operations instead of expensive structural changes like the B+tree.
This reduces the runtime for a larger window |W | for the first updates which do not delete
a measurement from the B+tree. To reduce this effect we make 1′700′000 shifts instead of
1′000′000.

Results Figure 6.2 shows that the parameter |W | influences the runtime of a shift. As
expected, the runtime increases until the window size has achieved a size around |W | =
100′000. Afterwards, it decreases slightly. This can be explained with the increased window
size which results in fewer measurement deletions. Hence, a larger window size has two
different effects on the runtime. On the one hand, it increases the height of the B+tree which
increases the runtime for |W | up to 100′000 and on the other hand, a larger window size for
|W | > 100′000 significances less deletions from the B+tree which decreases the runtime.
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Figure 6.2.: Shift operation with increasing values for |W |.

6.2.2. New Neighborhood
Aim This experiment attempts to show the effect of an increased pattern length l on the new
neighborhood operation. We try to show that the pattern length l has a very small influence to
the runtime, which would support the usage of linked lists.

Method To evaluate the influence of the pattern length on the runtime of the new neigh-
borhood operation, we executed the operation with values of a dataset with again 17′520′000
values but only 1′000 possible distinct values. This leads to many duplicate values. The
window size |W | is set to 17′520′000 as well, to enhance the effect of duplicate values. We
measure the runtime of the neighborhood initialization for a measurement at position t̄− l for
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different pattern lengths. The B+ tree is shifted 1′000′000 times and then the initialization is
executed.

Variables We set the tree node size to 11 and the window size to 6 years. This leads to more
duplicate values which should increase the effect of l. We have a maximum pattern length of
9′000.

Prediction We expect that the tree node size influences the runtime linearly as we described
in Lemma 10. In our case, the influence is expected to be visible because the tree contains
many duplicate values. The pattern length only has an influence if the value qi,l occurs multiple
times in time window W .

Results As expected, the pattern length in our experiment has a visible influence on the
runtime because the dataset contains many duplicate values. An increased pattern length leads
to a worse runtime. However, we have many duplicates in our example. Since the values in
our dataset are randomly chosen between 0 and 1′000 there can be values that occur more
often than others. This influences the runtime, since sometimes fewer linked list values have
to be examined although l is higher.

0

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

8,
00

0

9,
00

0

0.2

0.4

0.6

0.8

1

·10−2

l

ru
nt

im
e

[m
s]

Runtime

Figure 6.3.: Initialize neighborhood for a measurement at pattern cell qi,l

6.2.3. Sorted Access
Aim This experiment attempts to illustrate the effect of timeset T on the runtime of the
sorted access method.
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Method To evaluate the influence of the timeset on the runtime of the sorted access opera-
tion, we execute the sorted access on a B+tree filled with values of the dataset introduced in
6.1. The window size |W | is set to 3 years and the tree node size to 11. The timeset is filled
with time points that need to be skipped by the algorithm, hence t− − j + l ∈ T . We have
no time points t+ − j + l ∈ T . The graph would show if there exists no more time points to
the left side of N(qi,j) and the condition would be renewed. At first, the timeset contains only
five values that need to be skipped. After, every time 10 more values are added. We increase
the number of time points t− − j + l ∈ T , such that the while loop is executed every time
|T | times. The test is executed 3 times and the average runtime is calculated. The timeset for
every execution is renewed, such that time points t ∈ T are never skipped because they have
been seen before. Furthermore, before each execution the neighborhood is initialized again.

Variables We measure the runtime of the sorted access algorithm with a fix tree node size
and a fix window size |W | but each time for a different timeset |T |.

Prediction We expect that the timeset T has a linear influence on the runtime as we de-
scribed in Lemma 11, since for every skipped time point the sorted access is expected to be
slower. Therefore, we expect a linear graph.

Results Figure 6.4 illustrates the results. We can see that the graph is nearly linear, which
was expected. Although, the graph is not exactly linear this could be due to outliers.

0 10 20 30 40 50 60 70 80 90 10
0

0

5 · 10−2

0.1

0.15

0.2

|T |

ru
nt

im
e

[m
s]

Runtime

Figure 6.4.: Grow neighborhood with an increasing timeset size |T |.
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7. Summary and Conclusion

We studied the requirements to keep a portion of a streaming time series in main memory and
simultaneously provide efficient access possibilities to past time series data. The system we
presented uses two different data structures to achieve efficient access: a B+tree and a circular
array. Random access is efficiently performed on a circular array and sorted access is effi-
ciently performed on a B+tree with leaves linked to the respective successor and predecessor.
Furthermore, the thesis introduces a possibility to handle duplicate values in a B+tree with a
simple but powerful linked list. The duplicate handling is not only simple to implement but
also effective in terms of update velocity. Moreover, in our context, retrieving a specific value
in the linked list has an upper bound. We presented the algorithms to implement this system
and analysed their runtime and space complexity. Finally, we evaluated the performance of
the system to underpin our theoretical results.
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A. Algorithms

A.1. B+tree Deletion

Algorithm 12: AdjustRoot(tree)
Input: Tree tree
Output: The tree with an adjusted root node

1 //enough keys in the root
2 if 0 < tree.root.numOfKeys then
3 return
4 end
5 //if the root has a child, promote the first (only) child as the new root
6 if root is not a leaf then
7 newRoot← tree.root.pointers[0]
8 newRoot.parent← NIL
9 else

10 newRoot← NIL
11 end
12 tree.root← newRoot
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Algorithm 13: MergeNodes(tree, node, neighbor, nIndex, kPrime)

Input: Tree tree, the node and its neighbor neighbor, the neighborIndex nIndex and the
key kPrime

Output: node and its neighbor are merged to one node
1 //Swap neighbor with node if node is on the extreme left and neighbor is to its right
2 if nIndex = -1 then
3 swap neighbor with node
4 end
5 neighborInsertionIndex← neighbor.numOfKeys
6 if node is no leaf then
7 neighbor.keys[neighborInsertionIndex]← kPrime
8 neighbor.numOfKeys++
9 decreasingIndex← 0

10 numOfKeysBefore← node.numOfKeys
11 for i← neighborInsertionIndex + 1, j← 0; j < node.numOfKeys do

12 neighbor.keys[i]← node.keys[j]
13 neighbor.pointers[i]← node.pointers[j]
14 neighbor.numOfKeys++
15 decreasingIndex++, i++, j++
16 end
17 node.numOfKeys← numOfKeysBefore - decreasingIndex
18 neighbor.pointers[i]← node.pointers[j]

19 //All children must now point up to the same parent
20 for i← 0; i < neighbor.numOfKeys + 1; i++ do
21 tmp← neighbor.pointers[i]
22 tmp.parent← neighbor
23 end
24 else
25 // a leaf, append the keys and pointers of the node to the neighbor
26 //Set the neighbor’s last pointer to point to what had been the node’s right neighbor
27 for i← neighborInsertionIndex, j← 0; j < node.numOfKeys do
28 neighbor.keys[i]← node.keys[j]
29 neighbor.pointers[i] = node.pointers[j]
30 neighbor.numOfKeys++, i++, j++
31 end
32 relink leaves
33 end
34 deleteEntry(tree, node.parent, kPrime, node)
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Algorithm 14: Redistribute(tree, node, neighbor, nIndex, kIndex, kPrime)

Input: Tree tree, the node node and its neighbor neighbor, the neighborIndex nIndex,
the kIndex and the the key kPrime

Output: The keys in the node and its neighbor, as well as the parents keys are
redestributed

1 //node has neighbor to the left side
2 if nIndex != -1 then
3 //Pull neighbor’s last key-pointer pair
4 over from the neighbor’s right end to n
5 if node is not a leaf then
6 m← neighbor.pointers[neighbor.numOfKeys]
7 insert neighbor.pointers[m] and kPrime to first position in node and shift other

pointers and values right
8 remove neighbor.key[m-1], neighbor.pointers[m] from neighbor
9 replace kPrime in node.parent by neighbor.keys[m-1]

10 else
11 //last value pointer pair in the node
12 m← neighbor.pointers[neighbor.numOfKeys -1]
13 insert neighbor.pointers[m] and neighbor.keys[m] to first position in node and

shift other pointers and values right
14 remove neighbor.key[m], neighbor.pointers[m] from neighbor
15 replace kPrime in node.parent by node.keys[0]
16 end
17 else
18 //node is leftmost child. Take a key-pointer pair from the neighbor to the right
19 //Move the neighbor’s leftmost key-pointer pair to n’s rightmost position
20 if node is not a leaf then
21 node.keys[node.numOfKeys]← kPrime
22 node.pointers[node.numOfKeys +1]← neighbor.pointers[0]
23 replace kPrime in node.parent by neighbor.keys[0]
24 remove neighbor.keys[0], neighbor.pointers[0] from neighbor
25 else
26 node.keys[node.numOfKeys]← neighbor.keys[0]
27 node.pointers[node.numOfKeys +1]← neighbor.pointers[0]
28 node.parent.keys[kIndex] = neighbor.keys[1]
29 remove neighbor.keys[0], neighbor.pointers[0] from neighbor
30 end
31 end
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A.2. B+tree Insertion

Algorithm 15: SplitLeaves(tree, leaf, t, v)

Input: Tree tree, the insertion node leaf , the time point t and the value v
Output: The leaf is split into two leaves

1 insertPoint← 0
2 nrOfTempKeys← 0
3 insertPoint← getInsertPoint(tree, leaf, v)
4 //fills the keys and pointers
5 for i← 0, j← 0; i < oldNode.numOfKeys; do
6 if j = insertPoint then
7 j++
8 end
9 tempKeys[j]← oldNode.keys[i]

10 tempPointers[j]← oldNode.pointers[i]
11 nrOfTempKeys++, i++, j++
12 end
13 //enter the record to the right position
14 tempKeys[insertPoint]← v
15 newList← create list and insert t
16 tempPointers[insertPoint]← newList
17 nrOfTempKeys++
18 newNode.numOfKeys← 0
19 oldNode.numOfKeys← 0

20 //calculate splitpoint by dn/2e
21 split = GetSplitPoint(n-1)
22 //fill first leaf
23 for i← 0; i < split do
24 oldNode.keys[i]← tempKeys[i]
25 oldNode.pointers[i]← tempPointers[i]
26 oldNode->numOfKeys++, i++
27 end
28 //fill second leaf
29 for j← 0, i← split; i < nrOfTempKeys; do
30 newNode.keys[j]← tempKeys[i]
31 newNode.pointers[j]← tempPointers[i]
32 newNode->numOfKeys++, i++, j++
33 end
34 link leaves
35 newNode.parent← oldNode.parent
36 keyForParent← newNode.keys[0]
37 insertIntoParent(tree, oldNode, keyForParent, newNode)
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Algorithm 16: SplitInnerNodes(tree, oldInnerNode, index, key, childNode)

Input: Tree tree, the node oldInnderNode and the child node childNode, the index
index and in addition the key

Output: The inner node is split into two nodes
1 nrOfTempKeys← 0, x← 0
2 for i← 0, j← 0; i < oldNode.numOfKeys; do
3 if j = index then
4 j++
5 end
6 tempKeys[j]← oldInnerNode.keys[i], nrOfTempKeys++, i++, j++
7 end
8 for i← 0, j← 0; i < oldInnerNode.numOfKeys + 1; do
9 if j = index + 1 then

10 j++
11 end
12 tempPointers[j]← oldInnerNode.pointers[i], i++, j++
13 end
14 newInnerKey← key
15 tempKeys[index]← newInnerKey, tempPointers[index + 1]← childNode
16 nrOfTempKeys++
17 newInnerNode.numOfKeys← 0, oldInnerNode.numOfKeys← 0
18 split← getSplitPoint(n)
19 for x < split; do
20 oldInnerNode.keys[x]← tempKeys[x]
21 oldInnerNode.pointers[x]← tempPointers[x]
22 oldInnerNode.numOfKeys++, x++
23 end
24 oldInnerNode.pointers[x]← tempPointers[x]
25 leftMostKey← tempKeys[x]
26 newInnerNode.parent← oldInnerNode.parent
27 newInnerNode.numOfKeys← (nrOfTempKeys - oldInnerNode.numOfKeys-1)
28 for ++x, j← 0; j < newInnerNode.numOfKeys; do
29 //first key is not inserted to this node - it is inserted to upper node
30 newInnerNode.pointers[j]← tempPointers[x]
31 newInnerNode.keys[j]← tempKeys[x], j++, x++
32 end
33 newInnerNode.pointers[j]← tempPointers[x]
34 for i← 0; i < newInnerNode.numOfKeys + 1; do
35 childOfNewNode← newInnerNode.pointers[i]
36 childOfNewNode.parent← newInnerNode, i++
37 end
38 insertIntoParent(tree, oldInnerNode, leftMostKey, newInnerNode)
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Algorithm 17: InsertIntoParent(tree, oldChild, k, newChild)

Input: Tree tree, the newly created newChild and the oldChild and the key k
Output: The key k is inserted to the parent or the parent is split

1 parent← oldChild.parent
2 if parent = NIL then
3 insertIntoANewRoot(tree, oldChild, k, newChild)
4 return
5 end
6 pointerPos← pointer position index from parent to oldChild
7 //the new key fits into the node
8 if parent.numOfKeys < n-1 then
9 insertIntoTheNode(parent, pointerPos, k, newChild)

10 else
11 splitAndInsertIntoInnerNode(tree, parent, pointerPos, k, newChild)
12 end

The entire source code can be found here:
https://github.com/memast2/BA-TimeSeriesData

56



B. Contents of the CD-ROM

The CD-ROM contains the following content:

Abstract.txt The abstract of this thesis in English.

Zusfsg.txt The abstract of this thesis in German.

Thesis.pdf The digital copy of this thesis.

Experiments The experimental results in csv format and the datasets in text format.
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